Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, B. Puchala

10. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 07.07. um 13:00 Uhr am Lehrstuhl.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 10 Punkte

Betrachten Sie folgende Strukturen. Bestimmen Sie jeweils die kleinste Zahl $m \in \mathbb{N}$ mit $\mathfrak{A} \not\equiv_m \mathfrak{B}$ oder beweisen Sie, dass $\mathfrak{A} \equiv \mathfrak{B}$. Geben Sie im ersten Fall eine Formel vom Quantorenrang m an, welche die Strukturen trennt, sowie Gewinnstrategien für Herausforderer bzw. Duplikatorin in den Spielen $G_m(\mathfrak{A}, \mathfrak{B})$ und $G_{m-1}(\mathfrak{A}, \mathfrak{B})$.

(a)
$$\mathfrak{A} := \bullet \longrightarrow \bullet$$
 und $\mathfrak{B} := \bullet \longrightarrow \bullet$

- (b) $\mathfrak{A} := (\mathcal{P}(\mathbb{N}), \subseteq)$ und $\mathfrak{B} := (\mathcal{P}\{0,1\}, \subseteq)$ (Potenzmengen von \mathbb{N} und $\{0,1\}$)
- (c) $\mathfrak{A} := (\mathbb{Z}, M, 1)$ und $\mathfrak{B} := (\mathbb{Q}, M, 1)$, wobei M der Graph der Multiplikation ist
- (d) $\mathfrak{A} = (\mathbb{Q}, <)$ und $\mathfrak{B} = (\mathbb{R}, <)$.

Aufgabe 2 10 Punkte

- (a) Zeigen Sie, dass die Theorie $T_{\rm dl}$ der dichten linearen Ordnungen nicht vollständig ist und dass die Theorie $T_{\rm dlo}$ der dichten linearen Ordnungen ohne Endpunkte vollständig ist. Geben Sie ferner eine weitere vollständige Erweiterung $T' \neq T_{\rm dlo}$ von $T_{\rm dl}$ an.
- (b) Sei $\tau = \{P, Q\}$ mit einstelligen Relationssymbolen P und Q. Zeigen Sie, dass die Theorie der τ -Strukturen \mathfrak{A} , in denen $P^{\mathfrak{A}}$ und $Q^{\mathfrak{A}}$ unendlich sind und eine Partition des Universums bilden, vollständig ist. Bleibt die Theorie vollständig, auch wenn $P^{\mathfrak{A}}$ und $Q^{\mathfrak{A}}$ keine Partition bilden?

Aufgabe 3 10 Punkte

- (a) Beweisen Sie folgenden Satz: Sei Φ eine Menge von FO-Sätzen über einer relationalen Signatur τ , $\mathcal{K} = \operatorname{Mod}(\Phi)$ die durch Φ axiomatisierte Klasse von Strukturen, und sei \mathcal{B} eine τ -Struktur. Wenn für jedes $m \in \mathbb{N}$ ein $\mathcal{A}_m \in \mathcal{K}$ existiert mit $\mathcal{B} \equiv_m \mathcal{A}_m$, dann gilt $\mathcal{B} \in \mathcal{K}$.
- (b) Zeigen Sie mit Hilfe des Satzes aus (a), dass die Klasse der Graphen, in denen jeder Knoten nur endlich viele Nachfolger hat, nicht FO-axiomatisierbar ist.

Aufgabe 4 10 Punkte

Ein Spiel $\mathcal{G} = (V, V_0, V_1, E)$ kann man als Struktur über der Signatur $\tau = \{V_0, V_1, E\}$ auffassen: Das Universum ist V, V_0 und V_1 sind unäre Relation und E ist eine binäre Relation. Zeigen Sie, dass keine Formel $\varphi(x) \in FO(\tau)$ existiert, so dass für jedes Spiel \mathcal{G} gilt:

 $\mathcal{G} \models \varphi(v) \iff v \text{ ist in der Gewinnregion von Spieler } 0.$

Hinweis: Benutzen Sie, dass transitive Hüllen nicht FO-definierbar sind.