
2 Gödel’s Incompleteness Theorems

2.1 Hilbert’s Programme

In the 1920s David Hilbert (1862–1943) formulated a programme for
the further development of mathematics. He proposed to axiomatise
various branches of mathematics in first-order logic and to reduce
mathematical reasoning to formal derivations that can be processed
automatically. This should be possible by constructing effective proce-
dures (algorithms) to establish the truth of mathematical statements in
a mathematical theory. A more global idea was to prove the consistency
of mathematics.

This programme was realised only partially. For important ar-
eas of mathematics, axiom systems were developed, in particular for
Peano arithmetic (PA) and for ZFC, which led to a formalisation of
mathematics in set theory. Furthermore, precise notions of proofs were
defined. Appropriate formal proof systems are Hilbert-Frege systems,
the method of resolution, and sequent calculi.

In 1931, Gödel proved the completeness theorem for first-order
logic. It says that a formula ψ follows from a set of formulae Φ if
and only if it ϕ can be derived from Φ in sequent calculus, i.e. Φ |=
ψ ⇔ Φ ⊢ ψ. It follows that the set of all valid first-order sentences
val(FO) = {ψ ∈ FO : ⊢ ψ} is recursively enumerable.

Finally, algorithms for deciding satisfiability and validity for certain
fragments of FO and other logics were found.

However, fundamental results from the 1930s showed that Hilbert’s
programme was due to fail.

Theorem 2.1 (Gödel’s First Incompleteness Theorem). Every sufficiently
powerful recursively axiomatisable theory is incomplete.
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We shall make the notion of sufficiently powerful theory precise later.
Examples of such theories are ZFC and PA.

Theorem 2.2 (Church, Turing). Satisfiability and validity of FO are
undecidable.

Theorem 2.3 (Gödel’s Second Incompleteness Theorem). Let Φ be a
decidable sufficiently powerful axiom system. Then the consistency of
Φ is not provable in Φ (Φ ̸⊢ ConsΦ).

In particular, this holds for Φ = ZFC, so the consistency of mathe-
matics is provable if and only if it is inconsistent.

2.2 Theories

Definition 2.4. A theory T ⊆ FO(τ) is a satisfiable set of τ-sentences
which is closed under |=, i.e. T |= ψ implies ψ ∈ T. We say that T is
complete if for each sentence ψ ∈ FO(τ) either ψ ∈ T or ¬ψ ∈ T. We say
that T is recursively axiomatisable if there is a decidable set Φ ⊆ FO(τ)

of axioms such that Φ|= := {ψ ∈ FO(τ) : Φ |= ψ} = T.

Theorem 2.5. Let T be a complete theory over a signature τ. Then the
following statements are equivalent.

(1) T is recursively axiomatisable.
(2) There exist a recursively enumerable axiom system Φ such that

T = Φ|=.
(3) T is recursively enumerable.
(4) T is decidable.

Proof. (1) ⇒ (2) This case is trivial.
(2) ⇒ (3) If the set Φ is recursively enumerable, then so is the set of all

finite Φ0 ⊆ Φ. Hence we can systematically generate all derivable
sequents Φ0 ⇒ ψ (with Φ0 ⊆ Φ), hence we can also derive all
ψ with Φ ⊢ ψ, but {ψ : Φ ⊢ ψ} = T. Hence T is recursively
enumerable.

(3) ⇒ (4) T is complete. Hence ψ ̸∈ T if and only if ¬ψ ∈ T. Hence
also FO \ T is recursively enumerable. It follows that T is decidable.
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(4) ⇒ (1) Put Φ = T. q.e.d.

Consider the structure N = (N,+, ·, 0, 1), the arithmetic of natural
numbers. The theory TA = Th(N) = {ϕ : N |= ϕ} is the true arithmetic.
As a theory of a structure, it is complete.

Another way to define arithmetic on natural numbers is Peano’s
axiom system, where well-known properties of arithmetic on natural
numbers are given explicitly. However, we shall see later that the two
axiom systems are not equivalent.

In monadic second-order logic (MSO) one can write the “axiom of
induction” as

∀X
(
X0 ∧ ∀y(Xy → X(y + 1))

)
→ ∀zXz,

where X is a second-order variable and stands for the set of elements
having some property. In FO we explicitly name each definable property,
which leads to an infinite (but enumerable) set of axioms.

Let τar be the signature of arithmetic: τar = {+, ·, 0, 1}. The axiom
system of Peano arithmetic ΦPA consists of the following axioms:

(1) ∀x¬(x + 1 = 0),

(2) ∀x∀y((x + 1 = y + 1) → (x = y)),
(3) ∀x(x + 0 = x),
(4) ∀x∀y(x + (y + 1) = (x + y) + 1),

(5) ∀x(x · 0 = 0),

(6) ∀x∀y(x · (y + 1) = (x · y) + x),

and the scheme of induction axioms:

(7) ∀y(ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(x + 1, y)) → ∀xϕ(x, y))
for every formula ϕ(x, y1, . . . , yn) ∈ FO(τar) .

Remark 2.6. For every formula ϕ(x, ȳ) and every tuple b̄ ∈ Nk, ϕ(x, b̄)
defines a set ϕN,b̄ = {a ∈ N : N |= ϕ(a, b̄)}.

The theory PA := Φ|=
PA is called Peano arithmetic. It gives us induc-

tion for all sets definable in that sense. Notice that PA is recursively
axiomatisable and therefore recursively enumerable.
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We introduce the notion of a representative axiom system, which
formalises the above-mentioned notion of a sufficiently powerful axiom
system.

Definition 2.7. An axiom system Φ is representative (or permits coding)
if one can construct, for each n ∈ N, a term tn such that

(1) Φ |= ¬(tn = tm) for all m ̸= n, and
(2) for every total computable function f : Nk → N there is a formula

ϕ f (x̄, y) such that for all n1, . . . , nk ∈ N and for all m ∈ N

(1) Φ ⊢ ∃=1yϕ f (tn1 , . . . , tnk , y),
(2) if f (n1, . . . , nk) = m then Φ ⊢ ϕ f (tn1 , . . . , tnk , tm), and
(3) if f (n1, . . . , nk) ̸= m then Φ ⊢ ¬ϕ f (tn1 , . . . , tnk , tm).

Remark 2.8. If Φ is representative, then each decidable relation R ⊆ Nk

is represented by a formula ϕR(x1, . . . , xk) such that

• (n1, . . . , nk) ∈ R implies Φ ⊢ ϕR(tn1 , . . . , tnk ), and
• (n1, . . . , nk) ̸∈ R implies Φ ⊢ ¬ϕR(tn1 , . . . , tnk )

because we can put ϕR(x1, . . . , xk) = ϕ f (x1, . . . , xk, t1) where f : Nk →
N is the characteristic function of R.

Our next goal is to show that TA, ΦPA and ZFC are representative.
For this purpose we encode tuples of fixed length by numbers.

Definition 2.9. The function [·, ·] : N2 → N is defined as [x, y] =
1
2 (x + y)(x + y + 1) + x.

Lemma 2.10. [·, ·] is a bijection.

Proof. Enumerate N2 as depicted in Figure 2.1. There are (x+y)(x+y+1)
2

elements on the diagonals before the diagonal containing the element
(x, y). On every diagonal {(x, y) : x + y = k} there are k + 1 ele-
ments. Thus the pair (x, y) gets the number (∑0≤n<x+y n + 1) + x =

(∑1≤n≤x+y n) + x = 1
2 (x + y)(x + y + 1) + x = [x, y]. q.e.d.

Now define [a0, . . . , an−1] := [a0, [a1, . . . , an−1]] for n > 2. Thus
we have definable bijections Nk → N for every fixed k. To describe
arbitrary computable functions, hence computations of arbitrary finite
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Figure 2.1. Enumeration of N × N

length (for example of Turing Machines) by formulae of arithmetic, we
need coding sequences of natural numbers of bounded length.

Theorem 2.11 (Chinese Remainder Theorem). Let q1, . . . , qn−1 ∈ N

be pairwise relatively prime and let q := ∏i<n qi. Then the function
F : Z/qZ → Z/q0Z × · · · × Z/qn−1Z with a 7→ (a0, . . . , an−1) where
a ≡ ai (mod qi) is a bijection.

Proof. Since Z/qZ and Z/q0Z × · · · × Z/qn−1Z are finite and have
the same number of elements, it suffices to show that F is injective. Let
a, a′ ∈ Z/qZ be such that a ≡ a′ (mod aj) for all j < n. Then a − a′ is
divisible by all qj, hence (since the qj are relatively prime) also by the
product q. It follows that a ≡ a′ (mod q). q.e.d.

Lemma 2.12 (β-Lemma by Gödel). There is a total computable function
β : N3 → N such that for each finite sequence (a0, . . . , an−1) on N,
there exist a, b ∈ N with β(a, b, j) = aj for all j < n.
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2 Gödel’s Incompleteness Theorems

Proof. Put β(x, y, z) := x (mod 1 + y(z + 1)). Obviously, β is definable
(in TA, PA) by

ϕβ(x, y, z, v) := v < 1 + y(z + 1) ∧ ∃u(x = u + uy(z + 1) + v) .

It remains to show that for all n and all a0, . . . , an−1 we can find
appropriate a, b such that a ≡ aj (mod 1 + b(j + 1)) for all j < n. Let
b := m! for m = max(n, a0, . . . , an−1).

Claim 2.13. For 0 ≤ i < j ≤ n, the numbers 1 + (i + 1)b and 1 + (j + 1)b
are relatively prime.

Otherwise there is a prime p with p | 1+(i+ 1)b and p | 1+(j+ 1)b,
and hence p | (i − j)b. But p - b (otherwise p - 1 + (i + 1)b), hence
p | (i − j) and hence p < n. But all p < n divide b, a contradiction. This
proves the claim.

We can apply Chinese Remainder theorem and conclude that there
is an a < ∏n−1

j=i (1 + b(j + 1)) such that a ≡ aj (mod 1 + b(j + 1)) for all
j < n.

A sequence (a0, . . . , an−1) on N can be coded by ⟨a0, . . . , an−1⟩ :=
[a, b, n] so that β(a, b, j) = aj for all j < n with b = max(n, a0, . . . , an−1)!

q.e.d.

Now we can define ln(⟨a0, . . . , an−1⟩) := n, πi(⟨a0, . . . , an−1⟩) = ai.
It is clear that [·, ·], β, ln, πi are definable in TA,PA and ZFC.

2.2.1 Coding Turing Machines

Let M = (Q, Σ, δ, q0, F) be a deterministic Turing Machine. A config-
uration of M is a tuple c = ⟨q, w, p⟩ ∈ Q × Σ∗ × N ⊆ N × N∗ × N

where q is the state of M in c, w is the tape inscript and p is the head
position. A computation is a sequence ⟨c0, c1 . . . , cm⟩ of configurations
with ci ⊢M ci+1.

Lemma 2.14. Let Φ ∈ {TA, ΦPA, ZFC}, and let M be a Turing Ma-
chine. Then there exist formulae ConfM(x), StartM(x, y), EndM(x, y)
and RunM(x) such that

• Φ ⊢ ConfM(x) if and only if x represents a configuration of M,
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2.2 Theories

• Φ ⊢ StartM(x, y) if and only if x encodes the input configuration
of M on input y,

• Φ ⊢ EndM(x, y) if and only if x encodes a final configuration of M
with output y,

• Φ ⊢ RunM(x) if and only if x encodes a computation of M.

It follows from Lemma 2.14 that TA, ΦPA, ZFC are representative.

Corollary 2.15 (Tarski). TA is undecidable.

Likewise, PA and ZFC|= are undecidable. For TA and PA we
have the following theorem. Since TA is complete, it would be decid-
able if there were a decidable axiom system for TA. PA is recursively
axiomatised; if it were complete, it would be decidable.

Theorem 2.16 (Gödel).

(1) There is no decidable axiom system for TA.
(2) PA is incomplete.

There are many possible ways to encode terms and formulae with
tuples of natural numbers. We consider the following Gödelisation of
terms:

• [xi] := ⟨0, i⟩ ∈ N,
• [0] := ⟨1, 0⟩ ∈ N,
• [1] := ⟨1, 1⟩ ∈ N,
• [t0 + t1] := ⟨2, [t0], [t1]⟩ ∈ N,
• [t0 · t1] := ⟨3, [t0], [t1]⟩ ∈ N,

and the following Gödelisation of formulae:

• [t0 = t1] := ⟨4, [t0], [t1]⟩ ∈ N,
• [¬ϕ] := ⟨5, [ϕ]⟩ ∈ N,
• [ϕ ∧ ψ] := ⟨6, [ϕ], [ψ]⟩ ∈ N,
• ∃xi ϕ := ⟨7, i, [ϕ]⟩.

For a formula ϑ(x) and k ∈ ω we write ϑ(k) for ϑ[x/k] where k is
1 + 1 + · · ·+ 1 (k times), i.e. the formula which we get substituting k
times 1 + · · ·+ 1 for x in ϑ(x).
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2 Gödel’s Incompleteness Theorems

Theorem 2.17 (Fixed Point Theorem). Let Φ be representative. For each
formula ψ ∈ FO({+, ·, 0, 1}) there is a sentence ϕ such that Φ ⊢ ϕ ↔
ψ([ϕ]). In other words, the function gψ : ϕ 7→ ψ([ϕ]) has a fixed point
(up to logical equivalence).

Proof. Let f : N × N → N the function with f ([ϑ(x)], k) := [ϑ(k)] and
f (n, k) = 0 if n is not the Gödelisation of a formula ϑ(x). Obviously, f is
computable. Hence there is a formula α(x, y, z) such that Φ ⊢ α(n, k, m)

if and only if m = f (n, k) (because Φ is representative). For a given
formula ψ(x), set ϑ(x) := ∀z(α(x, y, z) → ψ(z)) and ϕ := ϑ([ϑ]).

We show that Φ ⊢ ϕ ↔ ψ([ϕ]) holds, which proves the theorem.
We have f ([ϑ], [ϑ]) = [ϕ], and hence

Φ ⊢ α([ϑ][ϑ], [ϕ]) . (∗)

• We show that Φ ⊢ ϕ → ψ([ϕ]) holds. We have

Φ ⊢ (ϕ ∧ α([ϑ], [ϑ], [ϕ])) → ψ([ϕ])

because Φ ⊢ ϕ if and only if Φ ⊢ ∀z( f ([ϑ], [ϑ]) = z → ψ(z)) and
Φ ⊢ α([ϑ], [ϑ], [ϕ]) if and only if f ([ϑ], [ϑ]) = [ϕ]. Hence with (∗)
we obtain Φ ⊢ ϕ → ψ([ϕ]).

• It remains to show that Φ ⊢ ψ([ϕ]) → ϕ. We have Φ ⊢
∃=1z α([ϑ], [ϑ], z) because α represents a function. By (∗), we
obtain Φ ⊢ ∀z α([ϑ], [ϑ], z) → z = [ϕ]. Then Φ ⊢ ψ([ϕ]) →(
∀z α([ϑ], [ϑ], z) → ψ(z)

)
(in other words, ∀z α . . . implies z = [ϕ],

so ψ(ϕ) implies ψ(z)). By definitions of ϕ and ϑ, the expression
in the larger brackets of the preceding formula is equal to ϕ, and
hence we get Φ ⊢ ψ([ϕ]) → ϕ. q.e.d.

Using the Fixed Point Theorem and a diagonalisation argument,
one can prove that in sufficiently powerful theories the set of all true
(or all false) sentences is not definable in the theory.

Theorem 2.18. Let A be a structure that extends N so that Th(A) per-
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mits coding. Then there is no first-order formula TrueA(x) such that

A |= ψ ⇔ A |= TrueA([ψ]).

Proof. Suppose that such a formula TrueA(x) exists. By the Fixed
Point Theorem applied to ¬TrueA(x), there exists a fixed point ϕ with
Th(A) ⊢ ϕ ↔ ¬TrueA([ϕ]) (which can informally be interpreted as “ϕ

claims that ϕ is false”). Hence A |= ϕ ⇔ A |= ¬TrueA([ϕ]) ⇔ A ̸|= ϕ,
which is a contradiction. (The last equivalence is due to the definition
of TrueA(x).) q.e.d.

Corollary 2.19 (Tarski). The set of true sentences in N is not definable
in N.

We give still another formulation of the preceding result.

Theorem 2.20. Let T be a representative and complete theory. Then T
is not definable in T, i.e. there is no formula TrueT(x) with ψ ∈ T ⇔
TrueT([ψ]) ∈ T.

We get a different proof of Gödel’s First Incompleteness Theorem:
If T is recursively axiomatisable and representative, then T is incom-
plete. (Otherwise T would be decidable. Since T is representative, the
decidable set {[ψ] : ψ ∈ T} would be definable in T.)

Let Φ be decidable and representative. We select an appropriate
coding of derivations in the sequent calculus and consider the relation
B ⊆ N × N such that (n, m) ∈ B if and only if n encodes a derivation
of a sequent Φ0 ⇒ ψ so that Φ0 ⊆ Φ and m = [ψ]. Since B is
decidable, there is a formula ProofΦ(x, y) so that Φ ⊢ ProofΦ(n, m)

if and only if (n, m) ∈ B. Put ProvableΦ(x) := ∃y ProofΦ(y, x) and
ConsΦ := ¬Provable([0 ̸= 0]). Hereby ConsΦ expresses consistency of
Φ, and [0 ̸= 0] is the Gödel number of a false sentence.

Theorem 2.21 (Gödel’s Second Incompleteness Theorem). If Φ ⊇ ΦPA

is decidable and consistent, then Φ ̸⊢ ConsΦ.

Proof. According to the Fixed Point Theorem, there is a sentence ϕ with

Φ ⊢ ϕ ↔ ¬ProvableΦ([ϕ]) (+)
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2 Gödel’s Incompleteness Theorems

(i.e. ϕ expresses its own non-provability).
First, we show that this implies Φ ̸⊢ ϕ. Indeed, assume Φ ⊢ ϕ.

Then there is a proof that Φ0 |= ϕ for some finite subset Φ0 of Φ.
Hence we have Φ ⊢ ProvableΦ([ϕ]) and Φ ⊢ ¬ϕ, which contradicts the
assumption that Φ ⊢ ϕ because Φ is consistent.

Thus the consistency of Φ implies the non-provability of ϕ, as a
formula: ConsΦ → ¬ProvableΦ([ϕ]). One can formulate this proof in
Φ ⊇ ΦPA and show that Φ ⊢ ConsΦ → ¬ProvableΦ([ϕ]). If Φ ⊢ ConsΦ

then Φ ⊢ ¬ProvableΦ([ϕ]), and hence Φ ⊢ ϕ by (+). However, we have
already shown that this is impossible, and hence Φ ̸⊢ ConsΦ. q.e.d.

10


	Gödel's Incompleteness Theorems
	Hilbert's Programme
	Theories


