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Abstract. We prove (non)convergence laws for random expansions of
product structures. More precisely, we ask which structures A admit a
limit law, saying that the probability that a randomly chosen expan-
sion of An satisfies a fixed first-order sentence always converges when n
approaches infinity. For the groups Zp, where p is prime, we do indeed
have such a limit law, even for the infinitary logic Lω

∞ω, and these proba-
bilities always converge to dyadic rational numbers, whose denominator
only depends on the expansion vocabulary. This can be used to prove
that the Abelian group summation problem is not definable in Lω

∞ω.
Further examples for structures with such a limit law are permutation
structures and structures whose vocabulary only consists of monadic
relations. As a negative example, we prove that the very simple struc-
ture ({0, 1},≤) does not have a limit law. Furthermore, we develop a
method based on positive primitive interpretations that allows transfer-
ring (non)convergence results to other structures. Using this method, we
are able to prove that structures with binary function symbols or unary
functions that are not interpreted by permutations do not have a limit
law in general.

1 Introduction

The study of convergence and nonconvergence laws for logical formulae on ran-
dom finite structure has been an important topic of finite model theory since the
discovery of the celebrated 0-1 law for first-order logic, discovered 50 years ago
by Glebskĭı et al. [6] and, independently, by Fagin [5]. Informally, this law says
that any property of finite graphs or finite relational structures that is definable
by a first-order sentence is either almost surely true or almost surely false on
(sufficiently large) randomly chosen finite structures or graphs. More precisely,
let ψ be a first-order sentence of vocabulary τ and, consider, for any positive nat-
ural number n, the probability µn(ψ), that a random τ -structure with universe
[n] := {0, . . . , n− 1} (chosen with uniform probability from all such structures)
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is a model of ψ. The 0-1 law says that, for each first-order sentence of any re-
lational vocabulary, the sequence µn(ψ) converges exponentially fast to either 0
or 1, as n goes to infinity.

Since then, there has been an enormous amount of work on variations of
such questions, related to many different logical systems as well as to more
general probability distributions, focussing not just on 0-1 laws but on more
general questions about convergence and nonconvergence of such sequences of
probabilities µn(ψ). Yuri Gurevich has made significant contributions to this
area. Together with Blass and Kozen, he proved the 0-1 law for the fixed-point
logic LFP [2], a result that later motivated the generalization to the 0-1 law
for Lω∞ω, the infinitary logic with a bounded number of variables [10]. In [7] he
presented a lucid survey on 0-1 laws. For further results we refer to [3].

Here we consider a further variation of questions about limit laws, which had
originally been motivated by investigations concerning the logical definability
of the Abelian group summation problem. Given a finite group or semigroup
(G,+, 0) and a subset X ⊆ G, we want to determine the sum over all elements
of X. Algorithmically this is a very simple problem. If the elements of X come
in some order, then we process them along that order and calculate the sum
in a trivial way. However, the logical definability of this problem is much more
delicate. If we consider G as an abstract structure and X as an abstract set,
without a linear order and hence without a canonical way to process elements
one by one, then it is unclear how to define the sum in any logic that does not
have the power to quantify over a linear order. Indeed it had been conjectured
that the Abelian summation problem would not even be expressible in Choiceless
Polynomial Time with counting, one of the most powerful known candidates
for a logic that might be capable of defining all polynomial-time computable
properties of finite structures. Although it has eventually been proved in [1] that
this conjecture is false and that, indeed, the summation problem for Abelian
semigroups is even definable in fixed-point logic with counting (FPC), it turned
out that even for the restricted case of groups Znp , the summation problem cannot
be defined in fixed-point logic without counting, and in fact not even in the
infinitary logic Lω∞ω. This last result relied on a new limit kind of limit law for
random expansions of Znp that was also established in [1]. Here we investigate
the question what kind of base structures, beyond the groups Zp, admit a limit
law of this kind.

In the next section, we precisely define this problem. We shall then explain
the proof from [1] for the groups Zp. In Sect. 4 we discuss some further cases
where a similar limit law can be established, before we turn to nonconvergence
results. The simplest base structure A for which random expansions of An do
not admit a limit law for first-order logic is A = ({0, 1}, <). We finally discuss a
method based on positive primitive interpretations to transfer such convergence
and nonconvergence results among different base structures, and establish a few
more cases for nonconvergence laws of this kind.
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2 The problem

Let A be a structure with a finite universe A of finite (not necessarily relational)
vocabulary σ, and let τ be another finite relational vocabulary with σ ∩ τ = ∅.
For each n, let An be the n-fold product of A, defined in the usual way: The
universe of An is An, the set of n-tuples over A, written as functions a : [n]→ A
(sometimes also denoted as a = (a(0), . . . , a(n − 1))); for each relation symbol
R ∈ σ of arity r and a1, . . . ar ∈ An, we have that An |= R(a1, . . . , ar) if, and
only if, A |= R(a1(i), . . . , ar(i)) for all i ∈ [n], and for each function symbol
f ∈ σ of arity r and a1, . . . ar, b ∈ An, we have that An |= f(a1, . . . ar) = b if,
and only if, A |= f(a1(i), . . . , ar(i)) = b(i) for all i ∈ [n].

We consider the probability spaces Snτ (A) consisting of all (σ∪ τ)-expansions
of An, with the uniform probability distribution. For every sentence ψ ∈ L(σ∪τ)
(in whatever logic L), let µn(ψ) denote the probability that a randomly chosen
structure B ∈ Snτ (A) is a model of ψ.

We are interested to know for which finite structures A the following limit
law holds: For every finite relational vocabulary τ and for every sentence ψ ∈
FO(σ ∪ τ) there exists a (dyadic rational) number q such that

µ(ψ) := lim
n→∞

µn(ψ) = q.

3 The groups Zp

It has been shown in [1] that such a limit law holds for A := (Zp,+, 0), for any
prime p, not just for FO but also for Lω∞ω. The proof generalizes the classical
techniques, based on extension axioms, for proving the 0-1 law for FO and Lω∞ω
on random graphs and random finite relational structures.

Consider the group (Zp,+, 0), for some prime p, and an arbitrary finite rela-
tional vocabulary τ = {X1, . . . , X`}. For each n ∈ N, we consider the probability
spaces Sn(Zp), consisting of all expansions of (the additive group of) the vector
space (Zp)n by relations from τ , with the uniform probability distribution. We
prove the following limit law.

Theorem 1. For every relational vocabulary τ and for every sentence ψ ∈
Lω∞ω({+, 0} ∪ τ),

lim
n→∞

µn(ψ) =
r

2`
, for ` = |τ | and some r ≤ 2`.

Proof. Let δ1, . . . , δm be the m = 2` atomic τ -types in the constant 0 (and
without variables). For each j, δj is a conjunction over ` atoms or negated
atoms of form Xi(0, . . . , 0), for Xi ∈ τ . Obviously, for all j ≤ m and all n,
µn(δj) = 1/m.

For any collection a1, . . . , ak of elements of (Zp)n let span(a1, . . . , ak) be the
subspace generated by a1, . . . , ak. Clearly, the size of span(a1, . . . , ak) in (Zp)n
is bounded by pk, for any n.
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Recall that an atomic k-type t(x1, . . . , xk) of a vocabulary σ is a maximal
consistent set of atoms and negated atoms in the variables x1, . . . , xk. In our
case, a k-type t(x1, . . . , xk) specifies the linear dependencies and independencies
of x1, . . . , xk and the truth values of all atoms X(y1, . . . , yr) where X ∈ τ , and
each yi is a Zp-linear combination of x1, . . . , xk.

Definition 2. For each j ≤ m , we define ATj to be the set of all atomic types
t(x1, . . . , xk) of vocabulary {+, 0} ∪ τ such that

(1) t is consistent, i.e. realisable in some B ∈ Snτ (A),
(2) t |= δj ,
(3) t implies, for each i ≤ k, that xi 6∈ span(x1, . . . , xi−1).

We then define Tj to be the theory of all extension axioms

exts,t := ∀x̄(s(x̄)→ ∃xk+1t(x̄, xk+1))

where s and t are, respectively, atomic k and k + 1-types in ATj with t |= s.

Please notice that condition (3) of Definition 2 is equivalent to: t entails the
linear independence of x1, . . . , xk.

Proposition 3. Every extension axiom exts,t ∈ Tj has asymptotic probability
one on the sequence of spaces Snτ (Zp).

Proof. Let (a1, . . . , ak) be a realisation of the atomic type s(x̄) ∈ ATj in some
randomly chosen expansion B of (Zp)n. The type s(x̄) fixes the truth values
of all τ -atoms in the variables x1, . . . , xk and the constant 0, and t(x̄, xk+1)
additionally fixes truth-values for the τ -atoms that contain at least one term
with the variable xk+1. There is a bounded number q of such atoms. Therefore,
if we fix some element b ∈ (Zp)n \ span(a1, . . . , ak), then the probability that
B |= t(ā, b) is 2−q.

The elements b that we have to explore are those outside of span(a1, . . . , ak).
Each of them fixes |span(a1, . . . , ak, b) \ span(a1, . . . , ak)| ≤ (p − 1)pk new ele-
ments, so there are at least pn−k−1 independent choices for b. Since there are
fewer than pnk realisations of s(x̄) in B, the probability that one of them cannot
be extended to a realisation of t(x̄, xk+1) is at most

pnk(1− 2−q)p
n−k−1

which tends to 0 exponentially fast as n goes to infinity.
Thus, the asymptotic probability of every extension axiom exts,t ∈ Tj is one

on Snτ (Zp). ut

For every j ≤ m, k < ω, let ϑkj be the conjunction of all extension axioms in
Tj with at most k variables. Further, let E(k, j) be the class of all expansions B
of An (for any finite n ≥ k) such that B |= δj ∧ ϑkj .

Lemma 4. µ(δj ∧ ϑkj ) = 1/m for all j ≤ m, k < ω.
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Proposition 5. For every ψ ∈ Lk∞ω and every j ≤ m, either A |= ψ for all
A ∈ E(k, j), or A |= ¬ψ for all A ∈ E(k, j).

Proof. Take any two structures A,B ∈ E(k, j). From the fact that both struc-
tures satisfy δj∧ϑkj we immediately get a winning strategy for the k-pebble game
on A and B (for background on the model comparison games for k-variable logic,
see [4]). Hence the two structures are Lk∞ω-equivalent, so it cannot be the case
that ψ is true in one and false in the other. ut

Given any formula ψ ∈ Lk∞ω, let r(ψ) = |{j ≤ m : ψ is true in all A ∈
E(k, j)}|. It follows that

µ(ψ) = lim
n→∞

µn(ψ) =
r(ψ)

m
.

Hence the limit law holds for Lω∞ω. ut

Theorem 6. The Abelian group summation problem is not definable in Lω∞ω.

Proof. Suppose that the Abelian group summation problem is definable by a
formula ϕ(x) ∈ Lk∞ω such that for every finite Abelian group (H,+, 0), all X ⊆
H and every h ∈ H,

(H,+, 0, X) |= ϕ(h) ⇐⇒
∑

X = h.

Consider the sentence ψ := ∃x(ϕ(x)∧X(x)∧X(0)), which expresses that both
0 and the sum over all elements of X are contained in X. Let G = (Z2,+, 0) and
H = Zn2 . For a randomly chosen X ⊆ H all elements of H have equal probability
to be the sum of all elements of X. The probability that this sum is itself an
element of X quickly converges to 1/2. Thus the asymptotic probability of ψ on
the spaces Snτ (Z2) converges to 1/4.

However, since we use only one random relation, the denominator of the
asymptotic probabilities in the limit law is 2, so µn(ψ) should converge to either
0,1, or 1/2. Contradiction. ut

Categoricity. A classical result about limit laws for finite random structures
states that the theory of all extension axioms is ω-categorical, i.e. it has, up to
isomorphism, precisely one countable model. We can prove an analogous cate-
goricity result in our setting.

Let Z∗p be the weak ω-product of Zp. Its elements are the functions g : ω → Zp
such that g(n) = 0 for all but finitely many n, addition is defined component-
wise in the obvious way, and 0 is the constant function mapping all n ∈ ω
to 0. The next observation says that the theories {δj} ∪ Tj are categorical for
expansions of Z∗p.

Proposition 7. Let Aω and Bω be any two expansions of Z∗p to {+, 0} ∪ τ -
structures which are both models of {δj}∪Tj. Then Aω and Bω are isomorphic.
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Proof. The universes of both Aω and Bω are the same as for Z∗p. Fix an enu-
meration g0, g1, g2, . . . of this set, and define a sequence (fn)n∈ω of partial iso-
morphisms from Aω to Bω as follows. Let f0 = {(0,0)}. Since both Aω and Bω

are models of δj , this is indeed a partial isomorphism. Suppose now that, for
k ≥ 0, fk has already been defined, with domain span(a1, . . . ,ak), and image
span(b1, . . . , bk). Since fk is a partial isomorphism (a1, . . . ,ak) and (b1, . . . , bk)
realise the same atomic type s(x̄).

For even k, let ak+1 be the first element in the enumeration g0, g1, g2, . . .
that does not appear in the domain of fk, and let t(x̄, xk+1) be the atomic type
realised by (a1, . . . ,ak,ak+1). Since Bω |= exts,t the tuple (b1, . . . , bk) can be
extended by a suitable element bk+1 to a realisation of t(x̄, xk+1). This defines
an extension of fk to a partial isomorphism fk+1 from span(a1, . . . ,ak+1) to
span(b1, . . . , bk+1).

For odd k we proceed similarly, by choosing for bk+1 the first element in the
enumeration of the universe that is not contained in the image of fk. Since the
appropriate extension axiom holds in Aω the element bk+1 can then be matched
by an element ak+1 to provide the extension fk+1.

The union f =
⋃
k∈ω fk is then the desired isomorphism between Aω and

Bω. ut

4 Limit Laws for Other Structures

In this section, we show that the following structures also have a limit law:

– Structures only equipped with monadic relation symbols.
– Permutation structures, i.e. structures equipped with unary function symbols

that are interpreted by bijective functions.

In Section 5, we see concrete examples of two structures that have a non-
convergence law instead. One of them has a binary relation symbol, while the
another one has only unary function symbols that are interpreted by certain
non-bijective functions.

4.1 Atomic Types and Extension Axioms in General Structures

We say that an element a ∈ A is uniformly definable in some logic L, if there
exists an L-formula ϕ(x) such that

An |= ϕ(b̄)⇐⇒ b̄ = (a, a, . . . , a)

for every n ∈ N and b̄ ∈ An. For example, if c ∈ σ is a constant symbol, then
ϕ(x) := x = c is such a uniform definition of cA. Another example is the formula
ϕ0(x) := ∀y(x + y = y) which uniformly defines the neutral element in a group
(G,+).

Now let ū = (u1, . . . , up) be an enumeration of all uniformly FO-definable
elements of A . Let σA := {c1, . . . , cp} be a vocabulary containing constant sym-
bols for these uniformly definable elements and let A′ be the (σ∪σA)-expansion



Random Expansions of Product Structures 7

with cA
′

i = ui. Furthermore, let δ1, . . . , δm be the atomic (σA ∪ τ)-types (with
no variables) of possible (σ ∪ σA ∪ τ)-expansions of A′.

Similar to Definition 2, we define the sets ATj (for each j ≤ m) consisting of
all atomic types t(x1, . . . , xk) over the vocabulary σ ∪ σA ∪ τ with the following
properties:

(1) t is consistent, i.e. realisable in some B ∈ Snτ (A′).
(2) t |= δj
(3) t |= xi 6= h(x1, . . . , xi−1, xi+1, . . . , xn) where h is a (σ ∪ σA)-term.

Again, for every j ∈ {1, . . . ,m}, we let

Tj := {exts,t : s, t ∈ ATj , t is an extension type of s}

where exts,t := ∀x̄(s(x̄)→ ∃xk+1t(x̄, xk+1)).

4.2 Only Monadic Relations

Now we investigate the case that the vocabulary σ contains only monadic relation
symbols. Thus, A′ has the form (A, (PA)P∈σ, (c

A′

i )i=1,...,p) where PA ⊆ A for
every relation symbol P ∈ σ and the c1, . . . , cp are interpreted by the uniformly
FO-definable elements of A := (A, (PA)P∈σ). If |A| = 1, then An ∼= A and the
limit law holds due to trivial reasons. Therefore, we consider structures A with
|A| ≥ 2.

Proposition 8. Let L be a logic with FO ≤ L. An element a of A is uniformly
definable in L if, and only if, there are some relation symbols P1, . . . , Pk ∈ σ
with

⋂k
i=1 P

A
i = {a}.

Proof. For the direction “⇐”, we prove that
⋂k
i=1 P

A
i = {a} implies that the

first-order formula ϕ(x) :=
∧k
i=1 Pix is in fact a uniform definition of a. Towards

this end, let An |= ϕ(b̄) for some b̄ = (b1, . . . , bn) ∈ An. Then bj ∈
⋂k
i=1 P

A
i = {a}

and, hence, bj = a for every j as desired.
“⇒”: Now assume that some L-formula ϕ(x) is a uniform definition of a.

Let σ′ := {P ∈ σ : P monadic relation symbol and a ∈ PA}. Towards a con-
tradiction, assume the existence of some b ∈

⋂
P∈σ′ P

A \ {a}. Since ϕ(x) is a
uniform definition of a, we have An |= ϕ((a, a, . . . , a)) but An 6|= ϕ((b, a, . . . , a)).
However, this is not possible, because the function π : An → An that swaps
(a, a, . . . , a) with (b, a, . . . , a) (and maps every other element onto itself) is an
isomorphism of An for n ≥ 2. Indeed, π is clearly bijective and for every relation
symbol P ∈ σ, we can distinguish between the following two cases:

– P ∈ σ′: Then (a, a, . . . , a) ∈ PAn and (b, a, . . . , a) ∈ PAn , because a, b ∈ PA.
– P /∈ σ′: Then a /∈ PA and, hence, (a, a, . . . , a) /∈ PAn and (b, a, . . . , a) /∈ PAn ,

because a occurs in both tuples at the second position. ut

Proposition 9. Let exts,t ∈ Tj. Then µ(exts,t) = 1.
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Proof. Let exts,t = ∀x̄(s(x̄)→ ∃yt(x̄, y)). Furthermore, let ā = (a1, . . . , ak) be a
realisation of the atomic type s(x̄) ∈ ATj in some randomly chosen expansion
B of (A′)n. Let σ+ resp. σ− be the set of all monadic relation symbols P such
that Py resp. ¬Py occurs in t. Because t is realisable, it cannot happen that⋂
P∈σ+ PA = ∅. Furthermore, we must have |

⋂
P∈σ+ PA| ≥ 2, because otherwise

t could only be realised by a tuple consisting of some uniformly definable element,
but then t violates (3). Choose a, b ∈

⋂
P∈σ+ PA with a 6= b. Let {P1, . . . , Pr}

be a complete enumeration of σ− without repetitions. For every such Pj ∈ σ−
there must be some bj ∈

⋂
P∈σ+ PA \ PA

j , because of the same reason that t
would not be realizable otherwise.

Now consider the tuples d̄ := (b1, . . . , br, d̄
′) where d̄′ ∈ {a, b}n−r. Every such

tuple that is different from a1, . . . , ak is a candidate for t, because the conditions
(1)-(3) from the definition of ATj are satisfied. Thus, there are at least 2n−r− k
many elements that might extend ā = (a1, . . . , ak) to a realisation of t. Each of
them has a probability of 2−q of being a realisation of t where q is the number of
τ -literals in t(x̄, y) with y. Therefore, the probability that ā cannot be extended

to a realisation of t is at most (1 − 2−q)2
n−r−k. There are at most |A|nk many

realisations of s. The probability that one of them cannot be extended is at most

|A|nk · (1− 2−q)2
n−r−k

which tends to 0 exponentially fast as n goes to infinity. Thus µ(exts,t) = 1. ut

By following the proof of Theorem 1, we obtain an analogous result for the case
where the base structure A exhibits only monadic relations.

Theorem 10. Let σ be a vocabulary consisting only of monadic relation sym-
bols, τ be some relational vocabulary and A be some finite σ-structure. For every
sentence ψ ∈ Lω(σ ∪ τ),

lim
n→∞

µn(ψ) =
r

2`
, for some r ≤ 2`

where µn(ψ) denotes the probability that a random τ -expansion of An satisfies
ψ. The number ` is the number of τ -structures with p elements where p is the
number of uniformly definable elements of A.

In Section 5, we shall see a counterexample to the limit law for the case where
A is allowed to have binary relations.

4.3 Permutation Structures

Let σ be a vocabulary consisting only of unary function symbols and τ be any
relational vocabulary. We say that A is a permutation structure, if every sA (for
s ∈ σ) is a permutation of A.

We shall prove that permutation structures admit a limit law. First of all, we
observe that An can be decomposed into disjoint copies of finitely many finite
structures that only depend on A.



Random Expansions of Product Structures 9

Theorem 11. Let A be a finite permutation structure. Then there are finitely
many pairwise non-isomorphic finite structures B1, . . . ,Bq such that every An

is isomorphic to a disjoint union of copies from {B1, . . . ,Bq}.

Proof. Consider some element a ∈ An of An and let An(a) be the substructure
of An that is generated by a. Let #(a) := |{a(i) : i = 1, . . . , n}| be the number of
pairwise different elements occurring in a. Clearly, we have 1 ≤ #(a) ≤ ` := |A|.
Choose some b ∈ A#(a) such that {b(1), . . . , b(#(a))} = {a(1), . . . , a(n)} and
for every i ∈ {1, . . . , n}, let ι(i) ∈ {1, . . . ,#(a)} be chosen such that b(ι(i)) =
a(i). Notice that b must consist of pairwise different elements. Let A#(a)(b)
be the substructure of A#(a) generated by b. We claim that An(a) is isomor-
phic to the structure A#(a)(b). Let An(a) and A#(a)(b) denote the universe

of An(a) resp. A#(a)(b). A#(a)(b) contains all elements of the form Jt(b)KA
#(a)

,
while An(a) consists of all Jt(a)KA

n

where t(x) is some σ-term. By definition

of An resp. A#(a), we have that Jt(b)KA
#(a)

(i) = Jt(b(i))KA and Jt(a)KA
n

(j) =
Jt(a(j))KA. Since A is a permutation structure, we can thus conclude that the

equality type of a is the same of Jt(a)KA
n

and that every Jt(b)KA
#(a) ∈ B con-

sists of pairwise different elements. Furthermore, we obtain in particular that

Jt(a)KA
n

(i) = Jt(a(i))KA = Jt(b(ι(i)))KA = Jt(b)KA
#(a)

(ι(i)). As a result, the map-
ping π : A#(a)(b) → An(a), (c1, . . . , c#(a)) 7→ (cι(1), . . . , cι(n)) is an isomorphism

between A#(a)(b) and An(a). Thus, A can be decomposed into disjoint copies of
Ak(c) where c ∈ Ak consists of pairwise different elements and 1 ≤ k ≤ ` = |A|.
So, there are (up to isomorphism) q ≤

∑`
k=1

(
`
k

)
many such (finite) structures

B1, . . . ,Bq that allow the decomposition of any An. ut

For every i = 1, . . . , q let #i(n) be the number of disjoint copies of Bi occurring
in An. If #i(r) ≥ 2 for some r ∈ N, then there are two different tuples ā1, ā2 ∈ Ar
with Bi

∼= Ar(ā1) and Bi
∼= Ar(ā2). Now for n = k · r, consider tuples of the

form (b̄1, . . . , b̄k) ∈ An with b̄i ∈ {ā1, ā2} for every i ≥ 1. Clearly, we have
Bi
∼= An(b̄1, . . . , b̄k) for every such tuple, of which there are at least 2k many.

Thus, #i(n) ≥ 2b
n
2r c grows exponentially in n.

Now consider the case where #i(r) ≤ 1 for every r ∈ N. Clearly, there must
be at least one r ∈ N with #i(r) = 1 (otherwise Bi would not have been included
in the list B1, . . . ,Bq) and, consequently, there exists some tuple ā ∈ Ar with
Bi
∼= Ar(ā). If ā would consist of two different elements, then tuples with the

same elements as ā but with different equality type would induce more (even
disjoint) copies Bi as substructures. This implies that ā = (a, . . . , a) for some
a ∈ A and, thus, Bi

∼= A(a) ∼= An(a, . . . , a) for every n ≥ 1. Therefore, we
actually have that #i(n) = 1 for every n ≥ 1. Furthermore, it must also be the
case that π(a) = a for every automorphism π of A, because otherwise we would
again find more than one copy of Bi. Since Bi occurs exactly once as a copy
in every An and since a is a fixed point of every automorphism of A, there is a
first-order formula that locates the (unique) copy of Bi and defines (a, . . . , a) in
it, i.e. a must be uniformly definable.
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Thus, for every i = 1, . . . , q we have

(i) either #i(n) grows exponentially in n, or
(ii) #i(n) = 1 for every n and Bi

∼= A(a) ∼= An(a, . . . , a) for some uniformly
FO-definable element a ∈ A.

Proposition 12. Let A be a finite permutation structure. Then µ(exts,t) = 1
for every exts,t ∈ Tj , j ≤ m.

Proof. Let exts,t = ∀x̄(s(x̄)→ ∃yt(x̄, y)). Furthermore, let ā = (a1, . . . , ak) be a
realisation of the atomic type s(x̄) ∈ ATj in some randomly chosen expansion
B of (A′)n. (Recall that A′ is the expansion of A with names for the uniformly
definable elements.) Let b ∈ (A′)n be an element that satisfies the (σ ∪ σA)-part
of t, i.e. we have (A′)n |= t(ā, b)∩FO(σ∪σA). Such an element must exist (for n
sufficiently large), because t is consistent (see also condition (1)). As in the proof
of Theorem 11, there must be an index i ∈ {1, . . . , q} such that An(b) ∼= Bi. It is
not possible that #i(n) = 1 for every n ∈ N, since otherwise b would have to be
a tuple consisting only of some FO-definable element a = cA

′

j for some cj ∈ σA,
but then we would have y = cj ∈ t in contradiction to condition (3). Therefore,
#i(n), the number of occurrences of Bi, grows exponentially in n. Let mt be the
number of τ -literals in t(x̄, y) with y. The probability that B |= t(ā, b) is 2−mt

and, therefore, the probability that ā cannot be extended to a realisation of t is
at most (1 − 2−mt)#i(n)−k. Since there are at most |A|nk realisations of s, the
probability that one of them cannot be extended to a realisation of t is at most

|A|nk · (1− 2−mt)#i(n)−k

which tends to 0 as n goes to infinity, because #i(n) grows exponentially in n.
Thus µ(exts,t) = 1. ut

Again, by following the proof of Theorem 1, we obtain a limit law for permutation
structures.

Theorem 13. Let A be a finite permutation structure of vocabulary σ. Then
there exists a number m such that for every sentence ψ ∈ Lω(σ ∪ τ),

lim
n→∞

µn(ψ) =
r

m
, for some r ≤ m.3

5 Nonconvergence for Linear Orders

The limit law for random expansions of products of the Abelian groups Zp raised
the question whether such a limit law could be proved for random expansions of
products of any finite structure A.

However, this fails dramatically. Even in the very simple case where A =
({0, 1},≤) we can establish a nonconvergence law, based on Kaufmann’s proof

3 Please recall that m is still the number of atomic (τ ∪σA)-types that are realisable in
(σ∪σA∪τ)-expansions of A′. These types δ1, . . . , δm have been defined in Section 4.1.
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of the nonconvergence law for monadic second-order logic on random finite struc-
tures [9]. The heart of Kaufmann’s argument is the construction of a formula
which almost surely defines a linear ordering.

Proposition 14 (Kaufmann). There exists a first-order formula ϕ<(x, y) of
a vocabulary τ ∪{Y1, . . . , Ym} (where τ consists of four binary predicates and the
Yi are monadic) such that on randomly chosen τ -structures with universe [n],
the probability that, for some interpretation of Y1, . . . Ym, the formula ϕ<(x, y)
defines a linear order, converges to 1 as n goes to infinity.

To obtain an analogous first-order formula on random expansions of An, for
A = ({0, 1},≤), we observe that An is isomorphic to (P([n]),⊆). A random
expansion of An to a ({≤} ∪ τ)-structure Bn can thus be equivalently viewed
as a random (τ ∪ {⊆})-structure Cn with universe P([n]). By restricting the
τ -relations of Cn to singleton sets we further get a random structure Dn with
universe [n] where, for each each R ∈ τ and i1, . . . , ik ∈ [n],

Dn |= Ri1 . . . ik ⇐⇒ Cn |= R{i1} . . . {ik}.

Further, let

sing(x) := ∃z(z 6= x ∧ ∀y(z ≤ y ∧ (y ≤ x→ (y = z ∨ y = x))).

Clearly, for a = (a1, . . . , an) ∈ {0, 1}n we have that An |= sing(a) if, and only if,
ai = 1 for exactly one i, which means that a represents a singleton set of P([n]).

We now translate arbitrary sentences ϕ ∈ FO(τ∪{Y1, . . . , Ym}) into formulae
ϕ∗(y1, . . . , ym) ∈ FO({≤} ∪ τ) by the following operations

– replace the set predicates Yi by new element variables yi;
– relativise every first-order quantifier Qz to sing(z), i.e. replace every subfor-

mula ∃zϑ by ∃z(sing(z)∧ ϑ) and every subformula ∀zϑ by ∀z(sing(z)→ ϑ);
– replace atoms Yiz by z ≤ yi.

By induction on ϕ, one easily proves the following correspondence.

Lemma 15. For any expansion of An to a ({≤} ∪ τ)-structure Bn and the
corresponding τ -structure Dn over [n], and for all sets Y1, . . . Ym ⊆ [n] we have
that

Dn |= ϕ(Y1, . . . , Ym) ⇐⇒ Bn |= ϕ∗(f(Y1), . . . , f(Ym))

where f : P([n]) → {0, 1}n is the above mentioned bijection witnessing the iso-
morphism between (P([n],⊆) and An.

By applying this translation to the MSO(τ)-sentence

ψ := ∃Y1 . . . ∃Ym(“ϕ<(x, y) defines a linear order”)

we get a first-order sentence ψ∗ ∈ FO({≤} ∪ τ) (using first-order quantifiers
∃y1 . . . ∃ym to simulate ∃Y1 . . . ∃Ym). Since ψ has asymptotic probability 1 on
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random τ -structures, it follows ψ∗ has asymptotic probability 1 on random ex-
pansions of An. Notice that the linear order defined by ϕ∗< in ψ∗ is not on
the universe of An, but on those elements representing singleton sets in P([n]).
By standard constructions we now can get sentences that have no asymptotic
probability. For instance, consider instead of ψ the MSO-sentence ψodd, with an
additional existentially quantified set variable Z, saying that

– ϕ<(x, y) defines a linear order,
– Z contains precisely the even elements of this order,
– the minimal and the maximal element of the order belong to Z.

Translating ψodd as above results in a sentence ψ∗odd ∈ FO({≤}∪τ) such that
µ2n(ψ∗odd) = 0 for all n, and limn→∞ µ2n+1(ψ∗odd) = 1. We thus have established
the following nonconvergence law.

Theorem 16. There exists a first-order sentence ψ∗ ∈ FO({≤} ∪ τ) such that
on random expansions of products of A = ({0, 1},≤), the sequence of probabilities
µn(ψ∗) does not converge.

6 Transferring (Non-)Convergence to Other Structures

In this section we present a method that allows us to transfer (non)convergence
laws for structures such as ({0, 1},≤) to other structures. This method is based
on special logical interpretations, only using positive primitive formulae. A for-
mula ϕ ∈ FO(σ) is called positive primitive, if it consists only of ∃,∧ and σ-
atoms. The following lemma is an immediate corollary of [8, Lemma 9.1.4].

Lemma 17. Let A be a σ-structure and ϕ(x1, . . . , xr) ∈ FO(σ) a positive prim-
itive formula. Then for every n and every ā1, . . . , ār ∈ An,

An |= ϕ(ā1, . . . , ār)⇐⇒ A |= ϕ(ā1(i), . . . , ār(i)) for every i ∈ [n].

Let σ1, σ2 be vocabularies where σ2 is relational. A positive primitive inter-
pretation from σ1 to σ2 (of arity k) is a first-order interpretation I consisting only
of positive primitive formulae (and without congruence formula). More precisely,
I is a sequence (δ, (ψS)S∈σ2

) of positive primitive FO(σ1)-formulae where

– δ = δ(x̄) is the domain formula, and
– ψS = ψS(x̄1, . . . , x̄ar(S)) are the relation formulae for S ∈ σ2.

Here, the tuples x̄, ȳ, x̄1, . . . are of length k respectively. We also write ar(I) to
denote the arity of I, which is here the number k. For the sake of simplicity
we always assume σ2 to be relational, but it is not difficult to generalise these
concepts to arbitrary vocabularies.

We say that I interprets a σ2-structures B in a σ1-structure A (and write
I(A) ∼= B) if and only if there exists a bijection h, called the coordinate map,
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which maps δA = {ā ∈ Ak : A |= δ(ā)} to B such that for all S ∈ σ2 and
ā1, . . . , āar(S) ∈ δA holds

A |= ψS(ā1, . . . , āar(S))⇐⇒ (h(ā1), . . . , h(āar(S))) ∈ SB.

This coordinate map h : δA → B induces coordinate maps hn : δA
n → Bn wit-

nessing I(An) ∼= Bn. To see this, recall that δA
n

= {(ā1, . . . , āk) ∈ (An)k : An |=
δ(ā1, . . . , āk)}. For every (ā1, . . . , āk) ∈ δAn and every i ∈ [n], let

(hn(ā1, . . . , āk))(i) := h(ā1(i), . . . , āk(i)).

Using Lemma 17, it is straightforward (but technical) to verify that this is indeed
the definition of a coordinate map for I(An) ∼= Bn.

Proposition 18. Let I be a positive primitive interpretation with I(A) ∼= B.
Then I(An) ∼= Bn for every n ≥ 1.

A positive primitive interpretation I = (δ, (ψS)S∈σ2) not only defines copies
of σ2-structures inside σ1-structures, but it also can be used to convert σ2-
formulae ϕ(x1, . . . , x`) into σ1-formulae ϕI(x̄1, . . . , x̄`) as follows:

– Replace every variable x by a new k-tuple of variables, denoted by x̄.
– Equalities x = y are turned into

∧
1≤≤k xi = yi.

– Turn atoms like Sx1 . . . xar(S) for S ∈ σ2 into ψS(x̄1, . . . , x̄ar(S)).
– Replace ∃xη and ∀xη by ∃x̄(δ(x̄) ∧ ηI) resp. ∀x̄(δ(x̄)→ ηI).

The connection between ϕ and ϕI is made precise in the following well-known
interpretation lemma, which can be adapted for many different logics.

Lemma 19 (Interpretation Lemma for FO). Let I(A) ∼= B with coordinate
map h : δA → B, ϕ(x1, . . . , x`) ∈ FO(σ2) and ā1, . . . , ā` ∈ δA. Then

A |= ϕI(ā1, . . . , ā`)⇐⇒ B |= ϕ(h(ā1), . . . , h(ā`)).

Now let τ be another finite, relational vocabulary disjoint from σ1 ∪ σ2. A
positive primitive interpretation also serves as a bridge between random (σ2∪τ)-
expansions of B and of (σ1∪τ?)-expansions of An. Here, we use τ? := {R? : R ∈
τ} where R? is a new relation symbol of arity ar(I) · ar(R) = k · ar(R) in order
to account for the fact that I operates on k-tuples over A. Furthermore, let Iτ
be the result of adding the formulae ψR(x̄1, . . . , x̄ar(R)) := R?(x̄1, . . . , x̄ar(R)) for
R ∈ τ to I.

Using this new interpretation we can now translate a given (σ2 ∪ τ)-sentence
ϕ into a (σ1 ∪ τ?)-sentence ϕIτ . We write µB,τ

n (ϕ) to denote the probability
that a random (τ ∪ σ2)-expansion of Bn satisfies ϕ, while µA,τ?

n (ϕIτ ) is defined
analogously. The connection between µB,τ

n (ϕ) and µA,τ?

n (ϕIτ ) is clarified in the
following theorem.

Theorem 20. Let I(A) ∼= B for a positive primitive interpretation I from
σ1 to σ2. For every sentence ϕ ∈ FO(σ2 ∪ τ) and every n ≥ 1 it holds that
µA,τ?

n (ϕIτ ) = µB,τ
n (ϕ).
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Proof. As in Proposition 18, we have I(An) ∼= Bn witnessed by a coordinate
map hn : δA

n → Bn for every n ≥ 1.
For a randomly chosen (σ1∪τ?)-expansion C of An we obtain a corresponding

(σ2 ∪ τ)-expansion D of Bn by setting

RD := {(hn(ā1), . . . , hn(āk)) : (ā1, . . . , āar(R)) ∈ (RI)C ∩ (δA
n

)ar(R)}.

Then we have Iτ (C) ∼= D with coordinate map hn and, by the interpretation
lemma (Lemma 19), it follows that C |= ϕIτ ⇐⇒ D |= ϕ. Furthermore, this
(σ2 ∪ τ)-structure D is already uniquely determined by C.

Conversely, for a randomly chosen (σ2∪τ)-expansion D of Bn, we can define

a corresponding (σ1∪τ?)-expansion C of An by setting (R?)
C := h−1n (RD) where

h−1n (RD) := {(ā1, . . . , āar(R)) ∈ (δA
n

)ar(R) : (hn(ā1), . . . , hn(āar(R))) ∈ RD}

for R ∈ τ . Again, we have Iτ (C) ∼= D with coordinate map hn and, because of
the interpretation lemma, we again have C |= ϕIτ ⇐⇒ D |= ϕ. Please notice that
we could also define C differently in the case that δA

n 6= An, because then (R?)C

could theoretically contain tuples with elements fromAn\δAn . However, for every
D we would have exactly the same number of possibilities. Thus, µA,τ?

n (ϕIτ ) =
µB,τ
n (ϕ) follows. ut

Please recall that a finite σ-structure A has a limit law, if for every finite rela-
tional vocabulary τ and every sentence ϕ ∈ FO(σ∪τ), µA,τ (ϕ) := limn→∞ µA,τ

n (ϕ)
exists. Otherwise, we say that A has no limit law.

Corollary 21. Let σ1, σ2 be vocabularies where σ2 is relational. Let A,B be
finite structures with I(A) ∼= B for a positive primitive logical interpretation I
from σ1 to σ2 without equality formula. Then:

(i) If A has a limit law, then B has a limit law.
(ii) If B has no limit law, then neither does A.

Proof. Since (ii) is just the contraposition of (i), it suffices to prove only one of
these items. Towards proving (ii), assume that B does not have a limit law. Thus,
for some finite, relational vocabulary τ there exists a sentence ψ ∈ FO(σ2 ∪ τ)
such that µB,τ (ψ) = limn→∞ µB,τ

n (ψ) does not exist. By Theorem 20, it follows
that µA,τ?(ψIτ ) := limn→∞ µA,τ?

n (ψ) = limn→∞ µB,τ
n (ψ) does not exist as well.

Therefore, A has no limit law. ut

The following two examples demonstrate how Corollary 21 can be used to trans-
fer nonconvergence laws to other structures.

Example 22. The structure A1 := ({0, 1}, fA1

≤ ) with fA1

≤ (a, b) = 1 ⇐⇒ a ≤ b
inherits the nonconvergence law of ({0, 1},≤), because I := (δ(x), ψ≤(x, y))
where

δ(x) := x = x

ψ≤(x, y) := f≤(x, y) = f≤(x, x)
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is a positive primitive logical interpretation (without equality formula) with

I(A1) ∼= ({0, 1},≤).

By Corollary 21(ii), it follows that A1 has no limit law.

The next example shows that even structures that are only equipped with unary
functions may have a nonconvergence law.

Example 23. Consider A2 := (A2, (s
A2

a 7→b)a,b∈A2,a6=b, s
A2

{0,1}) where

– A2 := {0, 1, 0′},
– sA2

a 7→b(a) := b and sA2

a7→b(c) := c for every a, b, c ∈ A2 with c 6= a,

– sA2

{0,1}(a) = 1 for a ∈ {0, 1} while sA2

{0,1}(0
′) = 0.

Here is a positive primitive logical interpretation I = (δ(x), ψ≤) with I(A2) ∼=
({0, 1},≤):

δ(x) := s0′ 7→0(x) = x

ψ≤(x, y) := ∃z(s0′ 7→0(z) = x ∧ s0′ 7→0(s0 7→1(z)) = y).

Applying Corollary 21(ii) yields that A2 has no limit law.

7 Future Work

While we have analysed some structures with respect to limit laws and intro-
duced a new method to transfer (non)convergence laws between structures, the
question of what structures have such a limit law is not fully settled. There are
many structures for which we do not know whether or not they have a limit law
and this paper is a first step towards a complete characterisation of structures
with limit laws.
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