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Abstract We investigate structural properties of ω-automatic presentations of infi-
nite structures in order to sharpen our methods to determine whether a given struc-
ture is ω-automatic. We apply these methods to show that several classes of structures
such as pairing functions and infinite integral domains do not have an ω-automatic
model.
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1 Introduction

Automatic structures are (in general) infinite structures that admit a finite presen-
tation by automata. Informally, an automatic presentation of a relational structure
B = (B,R1, . . . ,Rm) consists of a language L, which must be recognizable by an
automaton A, and a surjective function π : L → B that associates every word of L

with the element of B that it represents. The function π must be surjective (every
element of B is named by some word in L) but need not be injective (elements may
have more than one name). In addition it must be recognizable by automata, reading
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their inputs synchronously, whether two elements of L name the same element of B ,
and, for each relation Ri , whether a given tuple of words in L names a tuple in Ri .
Together, the automata A and the automata that recognise equality and the relations
R1, . . . ,Rm provide a finite representation of the structure B.

In principle we can use automata over finite words, infinite words, finite trees, or
infinite trees to obtain different classes of automatic structures. All of these automata
models are effectively closed under first-order operations (union, intersection, com-
plementation, and projection) and their emptiness problem is decidable. Indeed, these
two properties ensure that

– every automatic structure has a decidable first-order theory, and more generally
– given any automatic presentation of A and any first-order formula φ(x1, . . . , xk)

one can effectively construct an automaton respresenting the relation φA := {ā ∈
Ak :A |= φ(ā)}.
Thus, all (first-order) definable properties of automatic structures can be algorith-

mically investigated using automata-theoretic methods based on appropriate finite
presentations. This makes automatic structures a domain of considerable interest for
computer science.

While the case of word-automatic structures (with presentations based on au-
tomata operating on finite words) is reasonably well understood [3, 5, 8], much less
is known for presentations based on other classes of automata. In particular the avail-
able methods to analyse whether a given structure admits an automatic presentation
on, say, infinite words, or to classify all such structures inside a given domain, are
still relatively weak. For countable structures, an important achievement is the result
by Kaiser, Rubin, and Bárány [7] that a countable structure is ω-automatic if, and
only if, it is word-automatic. Thus the recent result by Tsankov [17] that the additive
group of the rationals is not automatic immediately implies that it is not ω-automatic
either.

One of the most prominent and important structures with a decidable first-order
theory is certainly the field of reals (R,+, ·). The decidability goes back to Tarski
[15] and is based on a quantifier elimination argument. Therefore, it is very natural
to ask whether the field of reals admits an automatic presentation. Of course, such
a presentation cannot be based on automata on finite words (or finite trees) because
languages of finite words and trees are countable. However, it might be the case that
the field of reals is ω-automatic, i.e., admits a presentation based on automata on
infinite words, or that it is ω-tree-automatic, with a presentation based on automata
on infinite trees.

The question whether this is the case is closely related to classical problems raised
by Büchi and Rabin in the context of decidable theories such as Presburger arith-
metic and the theory of the field of reals. The decidability of Presburger arithmetic,
the first-order theory of (N,+), has originally been proven by quantifier elimination,
but Büchi’s automata based proof of the decidability of S1S (the monadic theory of
infinite words) immediately carries over to an automata-theoretic decidability argu-
ment for Presburger arithmetic. In Rabin’s classical paper [13], where he proved the
decidability of S2S (the monadic theory of the infinite binary tree) and several other
theories, he explicitly raised the question whether also the decidability of the field of
reals could be proved by automata-theoretic methods.
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It is quite easy to see that both reducts (R,+) and (R, ·) of the field of reals are
ω-automatic. A presentation for (R,+) is obtained by using a slightly modified bi-
nary encoding of the reals and an implementation of bitwise addition with carry by an
automaton. To represent (R, ·) one can use that (R,+) ∼= (R+, ·) via the exponential
function. However, it has so far been open whether two such presentations could be
combined to one of the entire field. We shall prove that this is not the case. More
generally we investigate structural restrictions on the complexity of ω-automatic re-
lations in order to prove that certain classes of structures do not have ω-automatic
models.

In the study of ω-automatic presentations, it is important to distinguish between
injective and non-injective presentations. Injective presentations are much easier to
work with, since we do not need an automaton to determine whether two words en-
code the same element. In the case of word-automatic structures it is not hard to
see that every such structure admits an injective automatic presentation. However, it
had been open for some time whether ω-automatic structures always admit injective
presentations, until Hjorth, Khoussainov, Montalbán and Nies [6] described an ω-
automatic structure that does not even permit an injective Borel presentation (which
is a much more general notion than an injective ω-automatic presentation). Neverthe-
less, many interesting ω-automatic structures do admit injective presentations such
as, for instance, the reducts (R,+) and (R, ·) of the field of reals. Therefore it is also
interesting to ask what kind of structures admit an injective presentation.

We shall study injective ω-automatic presentations in Sect. 3. A central tool
for such investigations is the notion of end-equivalence of infinite words: two
words α,β ∈ Σω are end-equivalent, in short α ∼e β , if they are equal from some
position onwards, i.e. α[n,ω) = β[n,ω) for some n ∈ N, and we shall analyse the
size of ∼e-equivalent sets in injectively ω-automatic structures. As a consequence
we can derive certain restrictions on the behaviour of definable functions in such
structures.

In Sect. 4 we consider ω-automatic structures with not necessarily injective pre-
sentations, but with a definable linear order. Inspired by the work of Kaiser, Rubin
and Bárány [7] and the work of Kuske [9], we use the algebraic characterization
of ω-regular languages by ω-semigroup morphisms to show that every ω-automatic
presentation of an uncountable linear order contains a (very simple) encoding of the
lexicographic order on all infinite binary strings. As a consequence, we can establish
the bounds for definable functions, that we proved in Sect. 3, also for this case.

In Sect. 5 we investigate further properties of functions that can be defined (with
parameters) in an ω-automatic structure. Combining the results of Sects. 3 and 5, we
shall be able to conclude for several classes of structures, such as infinite integral
domains or structures with a definable pairing function, that they do not contain any
ω-automatic model. Thus, in particular, the field of reals is not ω-automatic.

2 Preliminaries

2.1 Automata and Presentations

We assume that the reader is familiar with the basic notions of automata theory, es-
pecially with automata operating on infinite words. For an introduction see [16].
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Here, we just recall some basic definitions in order to fix our notation. For a given
alphabet Σ , we denote by Σω the set of all ω-words α = α[0]α[1]α[2] · · · over Σ .
We write α[m,n) as an abbreviation for the infix α[m]α[n + 1] · · ·α[n − 1] of α. As
a convention we use Greek letters α,β, γ, . . . to denote infinite words and Roman
letters u,v,w, . . . to denote finite words. An ultimately periodic word is a word that
can be written as α = v(w)ω. The period length of an ultimately periodic word α is
the smallest number n such that α = v(w)ω for some w ∈ Σn. Sometimes we use the
term a bit more sloppy and say that a word has period length n when the actual period
length divides n.

A Büchi-automaton is a tuple A = (Q,Σ,q0,	,F ), where Q is a finite set of
states, Σ a finite set of symbols, q0 ∈ Q the initial state, 	 ⊆ Q × Σ × Q the transi-
tion relation and F ⊆ Q the set of accepting states. A run of A on a word α ∈ Σω is an
ω-word ρ ∈ Qω where ρ[0] = q0 and for all i ∈ N we have (ρ[i], α[i], ρ[i +1]) ∈ 	.
A run is accepting, if for infinitely many i it holds that ρ[i] ∈ F . A word α ∈ Σω is
accepted by an automaton A if there is an accepting run of A on α. The language of
all words accepted by a Büchi-automaton A is denoted by L(A). A language L ⊆ Σω

is called ω-automatic (or ω-regular) if L = L(A) for some Büchi-automaton A. For
some Büchi-automaton A = (Q,Σ,q0,	,F ) and w ∈ Σ∗ the transition profile of w

with respect to A is defined as

	(w) := {
(p, q,0) : there is a w-path from p to q that visits an accepting state

}

∪ {
(p, q,1) : there is a w-path from p to q that visits no accepting state

}
.

If two words have the same transition profile, then they are indistinguishable for the
automaton.

Lemma 1 Let A = (Q,Σ,q0,	,F ) be a Büchi-automaton, α ∈ Σω, and v,w ∈ Σ∗
such that 	(v) = 	(w). Then for every α′ obtained by substituting some occurrences
of v by w in α it holds that α ∈ L(A) if, and only if, α′ ∈ L(A).

Proof Fix some α,α′ ∈ Σω such that α′ originates from α by the substitution of v by
w at positions I ⊆ N. Let ρ be a run of A on α. We construct a run ρ′ in the following
way: for every i ∈ I replace (simultaneously) the infixes ρ[i, i + |v|) by a sequence
p0 · · ·p|w|−1 such that p0 · · ·p|w|−1 is a w-labeled path in A, p0 = ρ[i],p|w|−1 =
ρ[i + |v| − 1] and pj ∈ F for some 0 ≤ j ≤ |w| − 1 if, and only if, ρ[j ′] ∈ F for
some i ≤ j ′ < i + |v|. Such a sequence exists since 	(v) = 	(w). It is easy to check
that ρ′ is a run of A on α′ and that ρ′ is accepting if, and only if, ρ is accepting. �

We pick up on the idea of ω-automatic presentations from the introduction. To
give a formal definition, we first need to define the notion of ω-regularity for k-ary
relations R ⊆ (Σω)k .

Definition 2 We call a relation R ⊆ (Σω)k ω-regular if the corresponding lan-
guage LR := {〈α1, . . . , αk〉: (α1, . . . , αk) ∈ R} is ω-regular. Here 〈α1, . . . , αk〉 ∈
(Σk)ω denotes the convolution of α1, . . . , αn which is defined as 〈α1, . . . , αk〉[i] =
(α1[i], . . . , αk[i]) ∈ Σk .
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For finite words (w1, . . . ,wk) ∈ (Σn)k of length n the convolution 〈w1, . . . ,wk〉 ∈
(Σk)n is defined analogously.

Observe that we have defined the convolution of finite words only for words of the
same length, and hence, we can avoid the introduction of a padding symbol. In the
following we usually identify (w1, . . . ,wk) and 〈w1, . . . ,wk〉.

Having introduced the notion of ω-automatic (or ω-regular) relations, we proceed
to define the central notion of ω-automatic presentations of structures.

Definition 3 Let τ = {R1, . . . ,Rn} be a relational vocabulary, where RA
i denotes a

relation symbol of arity ri . An ω-automatic presentation (over the alphabet Σ ) of a τ -
structure A = (A,RA

1 , . . . ,RA
n ) is a pair (L,π) consisting of a structure L = (L,≈,

RL
1 , . . . ,RL

n ) and a surjective labeling function π : L → A such that the following
holds:

– L ⊆ Σω;
– ≈ = {(α,β) : π(α) = π(β)};
– RL

i = {(α1, . . . , αri ) : (π(αi), . . . , π(αri )) ∈ Ri} for i ∈ {1, . . . , n};
– L,≈,RL

1 , . . . ,RL
n are ω-regular relations.

We call a presentation injective if π is injective, in which case we omit ≈ in the
signature of L. A τ -structure is ω-automatic if it has an ω-automatic presentation.

We remark that we can easily obtain a notion of ω-automaticity also for struc-
tures which contain function symbols, by just replacing every function f by its graph
Gf := {(a1, . . . , ak, b) : f (a1, . . . , ak) = b}. Furthermore, note that instead of giv-
ing a concrete labeling function π it suffices to require that (L,RL

1 , . . . ,RL
n )/ ≈ is

isomorphic to A.
As mentioned in the introduction, every ω-automatic structure has a decidable

first-order theory and moreover, every first-order definable relation on an ω-automatic
structure can be described by an effectively computable automaton. Indeed, for ω-
automatic structures we can also allow the formulas to contain quantifiers of the form
“there are k mod m many elements”, “there are at most countably many elements”
and “there are uncountably many elements”. The extension of first-order logic by
these counting quantifiers is denoted by FOC. This was first proven for injective
ω-automatic presentations by Kuske and Lohrey [10], and later generalised to all
ω-automatic presentations by Kaiser, Rubin, and Bárány [7].

Theorem 4 ([7, 10]) Given an ω-automatic presentation (L,π) of a structure A

and an FOC-formula φ one can effectively construct an automaton that recognises
π−1(φA).

It follows that also the FOC-theory of every ω-automatic structure is decidable.
When we say that a function or relation is definable in a structure A we implicitly
refer to FOC-definability.

Another important result in [7] answers a question raised by Blumensath in [2].
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Theorem 5 ([7]) Let A be a countable structure. Then the following statements are
equivalent.

– A is ω-automatic.
– A has an injective ω-automatic presentation.
– A is finite word automatic.

2.2 ω-Semigroups

There is also an algebraic way to characterise the notion of ω-regularity which is
based on ω-semigroups. Here, we give a short overview about the fundamental con-
cepts and known results about this correspondence, since some of our constructions
can be more conveniently formulated in the algebraic framework. With our presenta-
tion we follow Perrin and Pin [12].

Definition 6 An ω-semigroup is a two-sorted structure S = (Sf , Sω, ·,∗,π) with the
following properties.

– (Sf , ·) is a semigroup.
– ∗ : Sf × Sω → Sω is the mixed product satisfying for all x, y ∈ Sf , z ∈ Sω

x ∗ (y ∗ z) = (x · y) ∗ z.

– π : Sω
f → Sω is the infinite product that satisfies for all x0, x1, . . . ∈ Sf

x0 ∗ π(x1, x2, x3, . . .) = π(x0, x1, x2, . . .).

– Additionally one demands some kind of associativity rule for π , namely that for
every strictly increasing sequence of positive integers (ki)i∈N it holds that

π(x1, x2, x3, . . .) = π
(
(x1x2 · · ·xk1), (xk1+1xk1+2 · · ·xk2), . . .

)
.

Because of the last two properties we can represent the product x0 ∗ π(x1, x2,

x3, . . .) without ambiguity as x0x1x2x3 · · · and we also write (xi)i∈N to denote this
product. Furthermore we write (xi)[n,m) to abbreviate xn · · ·xm−1.

In the study of finite (ω-)semigroups idempotence and absorption play an impor-
tant role. An element e of a semigroup (S, ·) is idempotent if e · e = e, and e absorbs
d from the left if e · d = e. For every element s of a finite semigroup (S, ·) there is a
k ∈ N such that sk is idempotent. The smallest number k such that sk is idempotent
for all elements s ∈ S is called the exponent of the semigroup.

Example 7 For an alphabet Σ , the free ω-semigroup over Σ is the structure Σ∞ =
(Σ+,Σω, ·,∗,π), where ·,∗ and π are interpreted as the usual concatenation opera-
tions.

Observe that even in the case that Sf and Sω are finite sets, the ω-semigroup
(Sf , Sω, ·,∗,π) is not a finite object, since the domain of π is still uncountable.
Thomas Wilke [18] solved this problem by showing that every ω-semigroup is com-
pletely determined by three operations of finite arity. The resulting structure is called
Wilke-algebra.
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Definition 8 A Wilke-algebra is a two sorted structure (Sf , Sω, ·,∗, ()ω) where:

– (Sf , ·) is a semigroup.
– ∗ : Sf × Sω → Sω is the mixed product satisfying for all x, y ∈ Sf , z ∈ Sω

x ∗ (y ∗ z) = (x · y) ∗ z.

– ()ω : Sf → Sω is the power operation with the property that for all x, y ∈ Sf it
holds that

x(yx)ω = (xy)ω and
(
xn

)ω = xω for all n ≥ 1.

From a given ω-semigroup one naturally obtains a Wilke-algebra by restricting
the infinite product π to the products of the form π(a, a, a, . . .) for a ∈ Sf . But also
the converse is true.

Theorem 9 (Wilke [18]) Every finite Wilke-algebra can be uniquely extended to a
finite ω-semigroup.

The key to prove this theorem is the Theorem of Ramsey. We state it here since
we make extensive use of it, especially in Sect. 4.

Theorem 10 (Ramsey’s Theorem [14]) Let G = (N,E) be the complete countable
undirected graph and f : E → C a coloring of the edges with some finite set of
colors C. Then there is an infinite set N = {n1 < n2 < n3 < · · · } ⊆N such that every
edge in E ∩ (N × N) has the same color.

Definition 11 Let S and T be ω-semigroups. An ω-semigroup morphism g : S → T

is a pair g = (gf , gω) such that

– gf is a semigroup morphism from (Sf , ·) to (Tf , ·), and
– gω is a function gω : Sω → Tω that preserves the mixed and the infinite product,

i.e. for every sequence (xi)i∈N, xi ∈ Sf it holds that

gω(x1x2x3 · · · ) = gf (x1)gf (x2)gf (x3) · · ·
and for x ∈ Sf , y ∈ Sω

gf (x) ∗ gω(y) = gω(x ∗ y).

If we have given an ω-semigroup morphism g : S → T , we usually omit the sub-
scripts of the mappings gf and gω whenever this cannot lead to any confusion. We
are now ready to give the central definition of this section.

Definition 12 Let L ⊆ Σω be a language and g : Σ∞ → S a morphism into some
finite ω-semigroup S. We say that L is recognised by S via g if, and only if,
g−1

ω (gω(L)) = L.
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In other words, for every set X ⊆ Sω we say that the language g−1(X) is recog-
nised by S via g. Observe that every morphism from g : Σ∞ → S is completely
determined by the values gf (a), a ∈ Σ . Therefore we can represent every such mor-
phism in a finite way.

Now that we know how to recognise a language by an ω-semigroup, we state that
the class of languages which are recognizable by a finite ω-semigroups is precisely
the class of ω-regular languages.

Theorem 13 From a finite ω-semigroup S given as its corresponding Wilke-algebra
and a morphism g : Σ∞ → S that recognises the language L one can effectively
compute a Büchi-automaton that recognises L, and vice versa.

For a proof of this theorem we refer the reader to [12].

3 Injective Presentations

It is well-known that every structure which possesses an automatic presentation that
encodes elements by finite words or trees, can also be represented by an injective
automatic presentation. In contrast, the class of injectively presentable ω-automatic
structures does not coincide with the class of all ω-automatic structures [6]. Therefore
it is interesting to ask which structures allow an injective ω-automatic presentation.
At this point, only a few examples of structures are known which have an ω-automatic
representation but not an injective one.

In the following we introduce a technique that is particularly useful when injec-
tive presentation are considered. Two words α,β ∈ Σω are end-equivalent, in short
α ∼e β , if they are equal from some position onwards, i.e. α[n,ω) = β[n,ω) for
some n ∈ N. Making explicit a position m after which the words are equal, we ob-
tain refined relations ∼m

e , i.e. two words are ∼m
e -equivalent (m-end-equivalent) if

α[m,ω) = β[m,ω). Clearly α ∼e β if, and only if, α ∼m
e β for some m. Moreover,

the equivalence relation ∼m
e partitions any language into finite classes, each of size at

most |Σ |m.
In general, end-equivalence plays a crucial role in the study of ω-regular lan-

guages. We first observe that every infinite ω-regular language has an infinite
∼e-class.

Lemma 14 Let L be an infinite ω-regular language. Then L has an ∼e-equivalence
class which is infinite.

Proof Since L is an ω-regular language, by [4] it has the form L = ⋃
1≤i≤n UiV

ω
i for

some (finite-word) regular languages Ui,Vi which are not empty. We consider two
cases.

Suppose that V ω
i = {vω

i } for each i, in which case L is countable. Since L is
infinite there is an i such that Uiv

ω
i is also infinite. In general the words in Uiv

ω
i are

not pairwise ∼e-equivalent. Nevertheless all w ∈ Uiv
ω
i fall into one of at most |vi |

many ∼e-classes and therefore Uiv
ω
i / ∼e must contain an infinite class.



Theory Comput Syst

In the other case, there is a Vi which contains two words w,v such that wω �= vω.
Set U ′

i := Uiw
∗ then U ′

i v
ω ⊆ (UiV

∗
i )V ω

i = UiV
ω
i . The language U ′

i v
ω is infinite.

Otherwise the language w∗vω would also be finite and therefore wivω = wjvω for
some i �= j . But then wl = vk for some k, l ∈ N and therefore wω = vω, a contradic-
tion. Since U ′

i v
ω is infinite we know from the first part of the proof that U ′

i v
ω/ ∼e

contains an infinite ∼e-class. �

In the following we examine which elements of a structure can be encoded by
words from the same ∼e-class. To this end it is convenient to transfer the notion
of end-equivalence from words in a given presentation to elements of the encoded
original structure.

Definition 15 Let A be a structure with an ω-automatic presentation (L,π) and let
∼ be an equivalence relation on the domain L of the presentation. Then we say that
a set B ⊆ A is (∼,L,π)-equivalent (or ∼-equivalent in (L,π)) if, and only if, there
is a set of words X ⊆ L which are pairwise ∼-equivalent such that B ⊆ π(X).

If the presentation (L,π) is clear from the context we just say that a set B ⊆ A is
∼-equivalent without mentioning the presentation explicitly.

Observe that an equivalence relation ∼ on the domain of the presentation does
not need to induce an equivalence relation on the domain of the structure. Indeed, an
element of the structure can have several encodings in the presentation and can thus
occur in the image of more that one ∼-class.

Lemma 16 Let A be an infinite structure. Then for every injective ω-automatic pre-
sentation (L,π) of A there is an infinite set M ⊆ A that is ∼e-equivalent in (L,π).

Proof Since A is infinite, L must also be infinite and therefore by Lemma 14 there
must be an infinite class X ∈ L/ ∼e. Since π is injective it follows that π(X) is an
infinite set that is ∼e-equivalent in (L,π). �

The importance of the notion of ∼m
e -equivalent sets stems from the fact that we

can, in some sense, control the action of a definable function f on such sets. More
precisely, the image f (B) of every ∼m

e -equivalent set B ⊆ A can be partitioned into
a constant number of ∼m

e -equivalent sets in such a way that the constant does only
depend on the underlying ω-automatic presentation of the structure together with the
function f , but not on the specific set B ⊆ A.

Lemma 17 Let A be a structure with ω-automatic presentation (L,π) and let f :
Ak+� → A be a function which is FOC-definable in A. Then there is a constant
q such that, for every m ∈ N, every ∼m

e -equivalent subset B ⊆ A and every tuple
a ∈ A�, the image f (Bk, a) admits a partition into q-many sets C0, . . . ,Cq−1 which
are all ∼m

e -equivalent.

Proof Let A be a Büchi-automaton with state set Q = {0, . . . , q − 1} that recog-
nises f in (L,π). First we choose a tuple of words vā that represent ā. Since
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B is ∼m
e -equivalent in (L,π), there is a set M = {vb : b ∈ B} ⊆ L of pairwise

∼m
e -equivalent representatives of B . For every tuple b̄ ∈ Bk we denote with vb̄ the

unique tuple in Mk that represents b̄. Now choose for every tuple vb̄ a representative
fb̄ of f (b̄, ā). This means that the word (vb̄, vā, fb̄) is accepted by A for every tuple
b̄ ∈ Bk . Let ρb̄ be an accepting run of A on (vb̄, vā, fb̄).

We obtain a partition of Mk into sets M0, . . . ,Mq−1 by setting Mi := {vb̄ :
ρb̄[m] = i}. For every non-empty Mi we fix a tuple vb̄ ∈ Mi . We show that for any d̄

with vd̄ ∈ Mi there is an encoding of f (d̄, ā) that is ∼m
e -equivalent to fb̄.

The main observation is that we can simply replace the tail of (vd̄ , vā, fd̄ ) by the
tail of (vb̄, vā, fb̄) and obtain a new word that is accepted by A. This will give us a
new encoding of f (d̄, ā) that is ∼m

e -equivalent to fb̄. More formally for every such
d̄ it holds that ρd̄ [0,m)ρb̄[m,ω) is an accepting run on

(vd̄ , vā, fd̄ )[0,m)(vb̄, vā, fb̄)[m,ω) = (vd̄ , vā, fd̄ )[0,m)(vd̄ , vā, fb̄)[m,ω)

= (
vd̄ , vā, fd̄ [0,m

)
fb̄[m,ω)).

This holds since vd̄ ∼m
e vb̄ and ρd̄ [m] = ρb̄[m] = i. Since A recognises f in (L,π)

it follows that π(fd̄ [0,m)fb̄[m,ω)) = f (d̄, ā). So, for every i ∈ Q there exists a
∼m

e -class such that for every vd̄ ∈ Mi the value f (d̄, ā) has an encoding in this
class. This implies that all the sets Ci defined by Ci := {f (b̄, ā) : vb̄ ∈ Mi} are
∼m

e -equivalent in (L,π), and that
⋃

0≤i≤q−1 Ci = f (Bk, ā). �

We shall apply this result to obtain certain restrictions on the behaviour of FOC-
definable k-ary functions f for structures that have an injective ω-automatic presen-
tation. Intuitively we show that the size of the set f (Bk) cannot be always much
larger than the set B itself. In order to formulate this idea precisely, we introduce the
notion of the minimal image size of a k-ary function f .

Definition 18 For every function f : Ak → A over an infinite set A we define the
minimal image size MISf : N → N by

MISf (n) = min
{∣∣f

(
Xk

)∣∣ : X ⊆ A, |X| = n
}
.

We now show that for injectively presentable structures the minimal image size of
every FOC-definable function grows at most linearly with n.

Lemma 19 Let A be an infinite structure with injective ω-automatic presentation.
Then for every FOC-definable function f it holds that MISf (n) = O(n).

Proof Suppose there is an injective automatic presentation (L,π) (over some alpha-
bet Σ ) of an infinite structure with FOC-definable function f : Ak → A such that
MISf grows super-linearly.

Let q be the constant from Lemma 17 with respect to f and (L,π). Now choose n

such that MISf (n) > |Σ | ·q ·n. This is possible since MISf grows super-linearly. By
Lemma 16 there is an infinite set M ⊆ A that is ∼e-equivalent in (L,π). Therefore
we can choose the smallest m such that there is a (∼m

e ,L,π)-equivalent set of size
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at least n. Let N be such a ∼m
e -equivalent set of maximal size. This is possible since

the size of every ∼m
e -class is bounded by |Σ |m. The size of N is bounded from above

|N | ≤ |Σ | · n. This holds since N can be partitioned into |Σ | many ∼m−1
e -equivalent

sets. So, if |N | > |Σ | · n then one such set must contain more than n elements, which
contradicts the choice of m.

By Lemma 17, f (Nk) can be partitioned into q many ∼m
e -equivalent sets. One of

these sets has size at least

|f (Nk)|
q

>
|Σ | · q · n

q
= |Σ | · n ≥ |N |.

But this contradicts the maximality of N among all ∼m
e -equivalent sets. �

Corollary 20 No infinite structure with an FOC-definable pairing function admits
an injective ω-automatic presentation.

Proof Note that, for a pairing function f , MISf (n) = n2. �

4 Non-injective Presentations with a Linear Order

For ω-automatic structures with a definable linear order, it is possible to transfer the
results of the previous section from injective presentations to general ω-automatic
presentations. The problem that we face when we consider non-injective presenta-
tions (L,π) is that, in general, infinite ∼e-equivalent sets do not need to exist. For
example, ∼e is an ω-automatic equivalence relation and thus the presentation (L,π)

might indeed identify all end-equivalent words.
In this section we show that this cannot happen for ω-automatic presentations

of uncountable linear orders. In [9] Kuske has already shown that ({0,1}ω,<lex)

is embeddable into any ω-automatic uncountable linear order. More specifically, he
constructs from a given ω-automatic presentation of such an order a sub-presentation
that is a presentation of ({0,1}ω,<lex). This sub-presentation is not ω-automatic but
its domain is the complement of a language

⋃
i≤n ViU

ω
i where the Vi are context

free and the Ui are regular. In particular his presentation does not contain any two
∼e-equivalent words.

We present here a strengthening of Kuske’s result. We show that every au-
tomatic presentation of an uncountable linear order contains an injective auto-
matic presentation of ({0,1}ω,<lex). The main techniques originate from [7]. For
a given ω-automatic presentation (L,≈,<) we construct finite words u,v0, v1
such that u{v0, v1}ω ⊆ L and for any two words α,β ∈ {0,1}ω it holds that
uvα[0]vα[1]vα[2] · · · < uvβ[0]vβ[1]vβ[2] · · · if, and only if, α <lex β . In other words
this shows that if one indentifies v0 with 0 and v1 with 1, then the natural encoding
of {0,1}ω by the language u{v0, v1}ω is compatible with the lexicographical order-
ing <lex . To construct these words we make use of the characterization of ω-regular
languages by morphisms to ω-semigroups. In this framework we can apply Ramsey’s
Theorem to obtain a suitable factorization of some given words which we can use to
construct u,v0 and v1. Finally, the algebraic structure of the underling ω-semigroups
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can be used to ensure that the elements encoded by the newly constructed words are
ordered as claimed.

Theorem 21 For any ω-automatic presentation (L,≈,<) of an uncountable linear
order there is a subset L′ of L such that (L′,<′), where <′ is the restriction of <

to L′, is an injective ω-automatic presentation of ({0,1}ω,<lex).

Proof Let L = (L,≈,<) be an ω-automatic presentation of an uncountable linear
order. Since L is automatic there are ω-semigroup morphisms to finite ω-semigroups
Sδ = (Sδ

f , Sδ
ω), for δ ∈ {L,≈,<},

()L : Σ∞ → SL,

()≈ : (Σ × Σ)∞ → S≈ and

()< : (Σ × Σ)∞ → S<

that recognise the corresponding relations. For δ ∈ {L,≈,<} we set Fδ := (δ)δ ⊆ Sδ
ω.

So an ω-word α ∈ Σω (α ∈ Σω × Σω, respectively) is in δ if, and only if,
(α)δ ∈ Fδ We define C := |SL × S≈ × S<| and k as the least common multiple of
the exponents of the semigroups SL,S≈, S<.

We start our construction by translating Ramsey’s Theorem into the language of
ω-semigroup morphisms.

Definition 22 Let h : Σ∞ → S = (Sf , Sω) be an ω-semigroup morphism, α ∈ Σω,
G = {g1 < g2 < g3 < · · · } ⊆ N and e ∈ Sf . We say that G is a h, e-homogeneous
factorization of α if, and only if, for all i < j ∈ N it holds that h(α[gi, gj )) = e.

Lemma 23 For 1 ≤ i ≤ n let hi : Σ∞
i → Si be morphisms into finite ω-semigroups

Si and αi ∈ Σω
i words over the corresponding alphabets. Then there is a G = {g1 <

g2 < g3 < · · · } ⊆ N such that for every i it holds that G is an hi ,ei -homogeneous
factorization of αi for some idempotent semigroup element ei ∈ Si .

Proof We color every {k, l} ⊂ N, k < l with the tuple of semigroup elements
hi(αi[k, l))1≤i≤n. With Ramsey’s Theorem we obtain a G = {g1 < g2 < g3 < · · · }
such that all {gi, gj }, i �= j have the same color. Having set ei := hi(αi[g1, g2)), G

obviously is a hi ,ei -homogeneous factorization of αi and the element ei is idempo-
tent since eiei = hi(αi[g1, g2))hi(αi[g2, g3)) = hi(αi[g1, g3)) = ei . �

Next, we show that there are two words α0 and α1 and a factorization H such that,
with respect to H , α0 and α1 are mapped to the same elements under every mentioned
morphism. Later on we use these words to obtain suitable candidates for u,v0 and v1.

Lemma 24 There are α0, α1 ∈ L with [αi]∼e ∩ [α1−i]≈ = ∅ and a factorization
G∗ = {g∗

1 < g∗
2 < g∗

3 < · · · } such that for some idempotent eL ∈ SL, G∗ is a ()L,
eL-homogeneous factorization of α0 and α1. For δ ∈ {≈,<} there are idempotents
eδ, e

01
δ and e10

δ in Sδ such that



Theory Comput Syst

– G∗ is a ()δ, eδ-homogeneous factorization of (α0, α0) and (α1, α1), and
– G∗ is a ()δ, e01

δ -homogeneous factorization of (α0, α1), and
– G∗ is a ()δ, e10

δ -homogeneous factorization of (α1, α0).

Proof Since L is a presentation of an uncountable structure, there is an infinite set
X such that for all α �= β ∈ X it holds that [α]∼e ∩ [β]≈ = ∅. To see this, note that
every ∼e-class contains only countably many elements. We choose distinct elements
β0, β1, . . . , βC from X and take a look at their images under the given morphisms.
For that we apply Lemma 23 simultaneously to the pairs

– (()L,βi) for 0 ≤ i ≤ C,
– (()≈, (βi, βj )) for 0 ≤ i, j ≤ C, and
– (()<, (βi, βj )) for 0 ≤ i, j ≤ C.

Then we obtain G∗ = {g∗
1 < g∗

2 < g∗
3 < · · · } ⊆ N such that for 0 ≤ i, j ≤ C there are

idempotents ei
L, e

ij
≈, e

ij
< for which G∗ is

– a ()L, ei
L-homogeneous factorization of βi ,

– a ()≈, e
ij
≈ -homogeneous factorization of (βi, βj ), and

– a ()<, e
ij
< -homogeneous factorization of (βi, βj ).

If we look at the tuples (ei
L, eii≈, eii

<) ∈ (SL
f × S≈

f × S<
f ),0 ≤ i ≤ C we find that

since |SL
f × S≈

f × S<
f | = C there are some i �= j with (ei

L, eii≈, eii
<) = (e

j
L, e

jj
≈ , e

jj
< ).

This means βi,βj and G∗ fulfill the properties that we were looking for. �

Since α0 �∼e α1, we may also assume that G∗ is coarse enough such that
α0[g∗

� , g∗
�+1) �= α1[g∗

� , g∗
�+1) for all � ∈ N. We need to modify α0, α1 a bit to ensure

all the properties we need in the following.

Lemma 25 There are β0, β1 ∈ L with β0 �≈ β1 and G = {g1 < g2 < g3 < · · · } ⊆ N

with the following properties:

– β0[0, g1) = β1[0, g1) and β0[gi, gi+1) �= β1[gi, gi+1) for all i ∈ N.
– for δ ∈ {≈,<} there is an element →δ∈ Sδ

f and idempotent elements �δ,↑δ,↓δ∈
Sδ

f such that

– (β0, β0)[0, g1)
δ =→δ ,

– (β0, β0)[gi, gi+1)
δ = (β1, β1)[gi, gi+1)

δ = �δ ,
– (β0, β1)[gi, gi+1)

δ =↑δ ,
– (β1, β0)[gi, gi+1)

δ =↓δ , and
– →δ,↑δ and ↓δ absorb �δ from the right.

Proof We first construct β0 and β1 and then show that these have the desired proper-
ties. We define β0 as

β0 := α1[0, g∗
2)α0[g∗

2 ,ω)

and β1 by
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β1[0, g∗
2) := α1[0, g∗

2) and

β1[g∗
2�, g

∗
2�+2) := α1[g∗

2�, g
∗
2�+1)α0[g∗

2�+1, g
∗
2�+2) for � ≥ 1.

Due to our assumptions about G∗ we have β0 �∼e β1. We set G = {g∗
2k�+2 =:

g�+1 : � ∈ N} (remember, k is the least common multiple of the exponents of the
involved semigroups). Then β0[0, g1) = β1[0, g1) and β0[gi, gi+1) �= β1[gi, gi+1) as
postulated. As eL is idempotent, G is a ()L, eL-homogeneous factorization of β0 and
β1 and therefore it holds for i ∈ {0,1} that (βi)

L = α1[0, g2)
L(eL)ω = (α1)

L which
implies that βi ∈ L. Next we show β0 �≈ β1:

(β0, β1)
≈ = (β0, β1)[0, g1)

≈ ∗ (
(β0, β1)[gi, gi+1

)≈
)i≥1

= (α1, α1)[0, g∗
1)≈

︸ ︷︷ ︸
:=s

(α1, α1)[g∗
1 , g∗

2)≈ ∗ (
(β0, β1)[gi, gi+1

)≈
)i≥1

= se≈ ∗ (
(α0, α1)[g∗

2i , g
∗
2i+1

)≈ · (α0, α0)[g∗
2i+1, g

∗
2i+2)

≈)i≥1

= se≈
(
e01≈ e≈

)ω

= se≈e≈
(
e01≈ e≈

)ω

= se≈
(
e≈e01≈

)ω

= (α1, α1)[0, g∗
2)≈ ∗ (

(α1, α1)[g∗
2i , g

∗
2i+1

)≈ · (α0, α1)[g∗
2i+1, g

∗
2i+2)

≈))i≥1

= (β1, α1)
≈

So if β0 ≈ β1 then also β1 ≈ α1 and therefore by transitivity β0 ≈ α1. But β0 ∼e α0
and therefore β0 ≈ α1 implies [α0]∼e ∩ [α1]≈ �= ∅, which is contradicting the initial
choice of α0 and α1.

We will now compute the values →δ,↑δ,↓δ and �δ for δ ∈ {≈,<}:
→δ = (

β0[0, g1
)
, β0[0, g1))

δ

= (
α1[0, g∗

2

)
, α1[0, g∗

2))δ

= (
α1[0, g∗

1

)
, α1[0, g∗

1))δeδ

�δ = (
β0[gi, gi+1

)
, β0[gi, gi+1))

δ

= (
α0[g∗

2ki+2, g
∗
2ki+2k+2

)
, α0[g∗

2ki+2, g
∗
2ki+2k+2))

δ
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= (eδ)
2k

= eδ.

By similar computations we get ↑δ= (e01
δ eδ)

k and ↓δ= (e10
δ eδ)

k . Since eδ is idem-
potent and k is a multiple of the exponent of Sδ

f , the elements �δ,↑δ and ↓δ are
idempotent and →δ,↑δ and ↓δ absorb �δ .

It remains to show that (β1[gi, gi+1), β1[gi, gi+1))
δ = �δ .

(
β1[gi, gi+1

)
, β1[gi, gi+1))

δ

= (β0, β0)[g∗
2ki+2, g

∗
2k(i+1)+2)

δ

= (α1, α1)[g∗
2ki+2, g

∗
2ki+3)

δ(α0, α0)[g∗
2ki+2, g

∗
2ki+4)

δ

· · ·
(α1, α1)[g∗

2k(i+1), g
∗
2k(i+1)+1)

δ(α0, α0)[g∗
2k(i+1)+1, g

∗
2k(i+1)+2)

δ

= (eδ)
2k

= �δ �

Now that we have β0 and β1 we are ready to construct u,v0 and v1. We set u :=
β1[0, g1), v0 := β0[g1, g2) and v1 := β1[g1, g2). From this definition we immediately
get for δ ∈ {≈,<}:

(u,u)δ = →δ,

(v0, v0)
δ = (v1, v1)

δ = �δ,

(v0, v1)
δ = ↑δ and

(v1, v0)
δ = ↓δ .

In the following we omit the subscripts and just write →,↑,↓ and � since it will be
clear from the context which one is meant. Further we write vα with α ∈ {0,1}ω for
the word vα[1]vα[2]vα[3] · · · ∈ Σω.

We proceed by showing that u{v0, v1}ω has all the properties that were announced
at the beginning of the proof.

Lemma 26 u{v0, v1}ω ⊆ L

Proof Let α be any sequence from {0,1}ω.

(uvα)L = β1[0, g1)
L
(
βα[i][g1, g2

)L
)i∈N

= α1[0, g1)
L(eL)ω

= (α1)
L ∈ FL

This means every uvα is in L and therefore u{v0, v1}ω ⊆ L. �
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Next we show that at least some words from u{v0, v1}ω do encode distinct ele-
ments.

Lemma 27 → (↑↓)ω �∈ F≈.

Proof In a first step we see that →↑ω �∈ F≈ since (β0, β1)
≈ =→↑ω and β0 �≈ β1.

We will make use of the transitivity of ≈ to show that also → (↑↓)ω �∈ F≈. Suppose
→ (↑↓)ω ∈ F≈, then consider the words u(v0v1v0)

ω,u(v1v0v1)
ω and u(v1v1v0)

ω.
We have

(
u(v0v1v0)

ω,u(v1v0v1)
ω
)≈ = → (↑↓↑)ω =→ (↑↓)ω and

(
u(v1v0v1)

ω,u(v1v1v0)
ω
)≈ = → (� ↑↓)ω =→ (↑↓)ω.

Hence u(v0v1v0)
ω ≈ u(v1v0v1)

ω and u(v1v0v1)
ω ≈ u(v1v1v0)

ω and therefore, by
transitivity, u(v0v1v0)

ω ≈ u(v1v1v0)
ω , but

(
u(v0v1v0)

ω,u(v1v1v0)
ω
)≈ =→ (↑ ��)ω =→↑ω �∈ F≈,

which yields a contradiction. �

We conclude our proof by showing that < is indeed the lexicographic order on
u{v0, v1}ω.

Lemma 28 Either it holds for every α �= β ∈ {0,1}ω uvα < uvβ if, and only if,
α <lex β or it holds for every α �= β ∈ {0,1}ω uvα < uvβ if, and only if, β <lex α.

Proof First observe that u(v0v1)
ω �≈ u(v1v0)

ω since (u(v0v1)
ω,u(v1v0)

ω)≈ =→
(↑↓)ω �∈ F≈. With this fact we know that either u(v0v1)

ω < u(v1v0)
ω or u(v1v0)

ω <

u(v0v1)
ω holds. We carry out the proof for the case that u(v0v1)

ω < u(v1v0)
ω holds,

which means (u(v0v1)
ω,u(v1v0)

ω)< =→ (↑↓)ω ∈ F<. In this case, we show that
for every α �= β ∈ {0,1}ω uvα < uvβ if, and only if, α <lex β . For the other case it
can analogously be shown that uvα < uvβ if, and only if, β <lex α. One only needs
to interchange the roles of v0 and v1 as well as the roles of ↑ and ↓ in the following.

Take a look at the images of (uvα,uvβ), α �= β ∈ {0,1}ω under ()<. If we take the
infinite product (u,u)<(vα[0], vβ[0])<(vα[1], vβ[1])<(vα[2], vβ[2])<, . . . and use idem-
potence and absorption to eliminate multiple successive occurrences of ↑, ↓ and �
(except for occurrences in ↑ω,↓ω and �ω at the end) we get a product of one of the
following forms.

1. → (↑↓)ω

2. → (↑↓)n ↑ω , n ≥ 0
3. → (↑↓)n�ω, n > 0
4. → (↑↓)n ↑ ·{�ω,↓ω}, n ≥ 0
5. → (↓↑)ω

6. → (↓↑)n ↓ω , n ≥ 0
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7. → (↓↑)n�ω, n > 0
8. → (↓↑)n ↓ ·{�ω,↑ω}, n ≥ 0

The product we obtain has one of the first four forms if, and only if, on the first
position i where α and β differ we have α[i] = 0 and β[i] = 1 i.e. α <lex β . It
has one of the last four forms if, and only if, the “reversed” product obtained from
(uvβ,uvα)< has one of the first four forms. Since < is a linear order it follows that
if we can show that every product of the form 1,2,3 and 4 is in F<, it follows that
the products of the form 5 to 8 are not in F< and we get that u{v0, v1}ω is ordered as
desired by <.

We already know that → (↑↓)ω ∈ F<. Once again we will use a transitivity argu-
ment to show that the products of the forms 2,3 and 4 also belong to F<. More pre-
cisely we will show that for every product ρ of the forms 2,3 and 4 there are words
w1,w2 and w3 such that (w1,w2)

< = (w2,w3)
< =→ (↑↓)ω and (w1,w3)

< = ρ.
Since → (↑↓)ω ∈ F< it holds that w1 < w2 and w2 < w3 and so by transitivity
w1 < w3, but this means ρ ∈ F<.

– → (↑↓)n ↑ω, n ≥ 0:

w1 := u(v0v1)
n(v0v0v1)

ω

w2 := u(v1v0)
n(v0v1v0)

ω

w3 := u(v1v0)
n(v1v0v1)

ω

(w1,w2)
< =→ (↑↓)n(� ↑↓)ω =→ (↑↓)ω

(w2,w3)
< =→ �2n(↑↓↑)ω =→ (↑↓)ω

(w1,w3)
< =→ (↑↓)n(↑ ��)ω =→ (↑↓)n ↑ω

– → (↑↓)n�ω , n > 0:

w1 := u(v0v1)
n(v0v1)

ω

w2 := u(v0v1)
n(v1v0)

ω

w3 := u(v1v0)
n(v0v1)

ω

(w1,w2)
< =→ �2n(↑↓)ω =→ (↑↓)ω

(w2,w3)
< =→ (↑↓)n(↓↑)ω =→ (↑↓)ω

(w1,w3)
< =→ (↑↓)n(��)ω =→ (↑↓)n�ω

– → (↑↓)n ↑ �ω , n ≥ 0:

w1 := u(v0v1)
nv0(v0v1)

ω

w2 := u(v0v1)
nv0(v1v0)

ω

w3 := u(v1v0)
nv1(v0v1)

ω

(w1,w2)
< =→ �2n+1(↑↓)ω =→ (↑↓)ω
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(w2,w3)
< =→ (↑↓)n ↑ (↓↑)ω =→ (↑↓)ω

(w1,w3)
< =→ (↑↓)n ↑ (��)ω =→ (↑↓)n ↑ �ω

– → (↑↓)n ↑↓ω, n ≥ 0:

w1 := u(v0v1)
nv0(v1v0v1)

ω

w2 := u(v0v1)
nv0(v1v1v0)

ω

w3 := u(v1v0)
nv1(v0v0v1)

ω

(w1,w2)
< =→ �2n+1(� ↑↓)ω =→ (↑↓)ω

(w2,w3)
< =→ (↑↓)n ↑ (↓↓↑)ω =→ (↑↓)ω

(w1,w3)
< =→ (↑↓)n ↑ (↓ ��)ω =→ (↑↓)n ↑↓ω �

Taking all together we get that L restricted to u{v0, v1}ω is an injective ω-
automatic-presentation of ({0,1}ω,<lex). �

Corollary 29 (Kuske [9]) ({0,1}ω,<lex) is embeddable into every uncountable ω-
automatic linear order.

Note that for the construction of u,v0, v1 we did not make use of the linear order,
but only of the equivalence relation of the structure. Indeed, the semigroup elements
found in the previous Lemmas 24, 25, 26 and 27 for ≈ still have the stated proper-
ties indedependet of the presence of a linear order, which allows us to re-prove the
following theorem, already mentioned in [7].

Theorem 30 Let L = (L,≈, . . .) be an ω-automatic presentation of an uncountable
structure. Then there are u,v0, v1 ∈ Σ+ with |v0| = |v1|, v0 �= v1 and u{v0, v1}ω ⊆ L

such that for all α,β ∈ u{v0, v1}ω it holds that α �∼e β ⇒ α �≈ β .

Proof By Lemma 27 → (↑)ω �∈ F≈ and → (↑↓)ω �∈ F≈. Now for α �∼e β ∈ {0,1}ω
consider the product (u,u)≈ ∗ ((vα[1], vβ[1])≈)i≥0. Because of the symmetry of ≈
we might assume that the first position i with α[i] �= β[i] we have α[i] = 0 and
β[i] = 1. As described in the proof of Lemma 28 we can use the idempotence and
absorption properties to cancel out multiple successive occurrences of �,↑,↓. We
end up with a sequence that has one the following forms → (↑↓)ω or → (↑↓)n ↑ω or
→ (↑↓)n ↓ω. We use the same strategy as in Lemma 27 to show that neither one of
these sequences is in F≈. For sequences of the form → (↑↓)n ↑ω consider the words
w1 = u(v0v1)

n(v0)
ω,w2 = u(v1v0)

n(v1v0)
ω,w3 = uv1(v1v0)

n(v1)
ω. Then

(w1,w2)
≈ = → (↑↓)n(↑ �)ω =→ (↑↓)n(↑)ω and

(w2,w3)
≈ = → �(↑↓)n(↑ �)ω =→ (↑↓)n(↑)ω.

If → (↑↓)n(↑)ω ∈ F≈ then by transitivity also (w1,w3)
≈ ∈ F≈. But this is impos-

sible, since (w1,w3)
≈ =→↑ �2n ↑ω=→↑ω �∈ F≈. For the product → (↓↑)n(↑)ω
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consider the words w1 = u(v1v0)
n(v0)

ω,w2 = u(v0v1)
n(v1)

ω,w3 = (v1v0)
n(v0v1)

ω.
We have

(w1,w2)
≈ = → (↓↑)n(↑)ω and

(w2,w3)
≈ = → (↑↓)n(↓ �)ω =→ (↑↓)n(↓)ω.

By symmetry of ≈, if → (↑↓)n ↓ω∈ F≈ then also → (↓↑)n ↑ω∈ F≈, and therefore
w1 ≈ w2 ≈ w3. But this is not possible since (w1,w3)

≈ =→ �2n(� ↑)ω =→↑ω �∈
F≈. �

As mentioned before, in the presence of a linear order, the results of the last section
carry over to the class of all ω-automatic structures.

Corollary 31 Let f be an FOC-definable function on a linearly ordered ω-automatic
structure. Then MISf (n) = O(n).

Proof For countable structures this follows from Theorem 5, since ω-automatic
countable structures have injective presentations. For uncountable structures Theo-
rem 21 implies the existence of an infinite ∼e-equivalent set in every ω-automatic
presentation. Therefore the proof of Lemma 19 can be reused. �

In particular no linearly ordered ω-automatic structure admits an FOC-definable
pairing function.

5 Parameterised Functions

We shall now extend our techniques by considering definable functions (with param-
eters) on uncountable ω-automatic structures. Our main technical result shows that
there is no ω-automatic structure with FOC-definable parameterised functions of un-
bounded arity such that all pairs of different functions agree on at most countably
many inputs.

Lemma 32 (cf. [6, Lemma 3.10]) Let R ⊆ Σω ×Γ ω be an ω-regular relation recog-
nised by a Büchi-automaton A = (Q,Σ ×Γ,q0,	,F ). Further let α ∈ Σω be some
ultimately periodic word with period length p ∈ N. Then if αR �= ∅ then there is a
word β ∈ αR with period length at most |Q| · p.

Theorem 33 Let A = (A,R1, . . . ,Rn) be an uncountable ω-automatic structure.
Then there is a k ∈ N such that for every definable (k + 1)-ary function f (x̄, y)

there exist uncountable sets M ⊆ Ak and N ⊆ A with f (ā, b) = f (ā′, b) for all
ā, ā′ ∈ M,b ∈ N .

Proof Fix an ω-automatic presentation (L,π) over the alphabet {0,1}. Since A is
uncountable, we can apply Theorem 30 and obtain a language L′ = w{v0, v1}ω ⊆ L

such that |v0| = |v1| and for all α,β ∈ L′ it holds that α �∼e β implies α �≈ β .
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Set k = |v0| + 1 and let f (x̄, y) be a definable (k + 1)-ary function. Let Af =
(Q, {0,1}k+1, q0,	,F ) be an automaton that recognises f in (L,π) and let p denote
the number of possible transition profiles of Af i.e. p = |{	(w) : w ∈ ({0,1}k+2)∗}|.

We proceed as follows: first we define two languages Lp and Lid of ultimately
periodic words. In Lp and Lid respectively, we will find suitable encodings of pairs
of distinct tuples which can be combined to encodings of uncountably many pairwise
distinct tuples. These will then be the encodings for our sets M and N . To ensure
that the combinations of tuples from Lp and the combinations of tuples from Lid do
not interfere with each other, we define these languages in such a way that the set of
positions where the words of Lp “encode their information” is disjoint from the set
of positions where this is the case for the words in Lid . More precisely we are going
to guarantee that whenever two words of Lp differ at a given position i ∈ N, then all
pairs of words in Lid have the same “dummy letter” at position i, and vice versa. We
set

Lp := {
wvω : v ∈ {v0, v1}p�

}
and Lid := {

wvω : v ∈ �{v0, v1}2kp+p
}

where � := (v0)
2kp+p and � := (v0)

p . Then Lp,Lid ⊆ L′ and every word in Lp ∪
Lid represents a distinct element from the domain A, i.e. for every pair of words
α,β ∈ Lp ∪ Lid we have α �≈ β if α �= β . Furthermore, every word α ∈ Lp ∪ Lid

is completely determined by the unique finite word v[α] ∈ {v0, v1}p ∪ {v0, v1}2kp+p

with α = w(v[α]�)ω or α = w(�v[α])ω , respectively. We extend this notation to
tuples of words α ∈ (Lp)k as words v̄[α] ∈ ({v0, v1}2kp+p)k in the obvious way. In
particular we have |Lp| = 2p and |Lid | = 22kp+p .

Let us now consider (k + 1)-tuples of the form (α,β) with α ∈ (Lp)k and β ∈ Lid

as inputs of the automaton Af . We note that all words in (Lp)k × Lid are peri-
odic from position |w| onwards and that the length of their periods divides r :=
(2k + 1)p|v0|. Both values |w| and r are independent of the particular word in
(Lp)k × Lid .

By Lemma 32 we can infer that for every α ∈ (Lp)k,β ∈ Lid the element
f (π(α),π(β)) has an ultimately periodic encoding γ [α,β] with the following prop-
erties:

– the length of the non-periodic prefix of γ [α,β] is s = |w| + c · r for c ∈ N, and
– the length of the period of γ [α,β] is � = d · r for some d ∈N, and
– both constants c and d are independent of the particular choice of α,β .

We illustrate the situation in figure below.
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By the choice of k, the number of tuples in (Lp)k is 2pk ≥ 2p|v0| · 2p > 2p|v0| · p,
hence the number of tuples in (Lp)k exceeds the number of tuples of words in Σp|v0|
and transition profiles of the automaton Af . Therefore, for every β ∈ Lid there exist
two distinct words α,α′ ∈ (Lp)k such that for some δ ∈ Σp|v0|

– the finite words (v[α],�, δ) and (v[α′],�, δ) occur at positions s + i�, i ∈ N in
(α,β, γ [α,β]) and (α′, β, γ [α′, β]), respectively, and

– these infixes (v[α],�, δ) and (v[α′],�, δ) have the same Af -transition profiles.

For every β ∈ Lid we fix such a pair (α,α′). Furthermore, we recall that the num-
ber of words in Lid is 22kp+p . Since the number of pairs of (Lp)k-tuples is 22pk there
are at least 22kp+p/22pk = 2p > p words β ∈ Lid to which the same pair (α,α′) is
assigned. Hence, we can also find two distinct β,β ′ ∈ Lid with this property such that

for some λ,λ′ ∈ Σ(2kp+p)|v0| the finite words (�k
, v[β], λ) and (�k

, v[β ′], λ′) have
the same Af -transition profile, and occur at positions hi = (s + |v0|p) + i�, i ∈ N in
(α,β, γ [α,β]) and (α,β ′, γ [α,β ′]), respectively.

The proof now follows by examining the properties of α,α′ ∈ (Lp)k and
β,β ′ ∈ Lid . Let us consider the input (α,β, γ [α,β]) which is accepted by Af . By
the properties stated above we can replace the infix (v[α],�, δ) in (α,β, γ [α,β]) by
(v[α′],�, δ) at infinitely many positions. In this way we can obtain an uncountably
infinite set LM ⊆ (L′)k with

– α0 �≈ α1 if α0 �= α1 (i.e. α0 and α1 encode different elements from Ak) for all
α0, α1 ∈ LM , and

– (α0, β, γ [α,β]) is accepted by the automaton Af for all α0 ∈ LM .

This is done in the following way: choose a set X ⊆ {0,1}ω of the size 2ω such that
x �∼e y for all x, y ∈ X. This is possible since ∼e partitions {0,1}ω into countable
equivalence classes and {0,1}ω has continuum many elements. For every x ∈ X we
define αx by

αx[0, s) := α[0, s)

αx[hi, hi+1) :=
{

α[hi, hi+1) if x[i] = 0

α′[hi, hi+1) if x[i] = 1.

We then define LM := {αx : x ∈ X}. It is easy to check that LM has the claimed prop-
erties: αx,αx′ ⊆ L′ and αx �∼e αx′ for all αx �= αx′ ∈ LM and therefore αx �≈ αx′ .
Since 	((v[α],�, δ)) = 	((v[α′],�, δ)), by Lemma 1, (αx,β, γ [α,β]) is ac-

cepted by Af . In particular, we can still interchange the infixes (�k
, v[β], λ) and

(�k
, v[β ′], λ′) in every input (αx,β, γ [α,β]) in any way without affecting the ac-

ceptance behaviour of Af . We obtain a set LN ⊆ L′ of uncountably many different
tuples with the following properties

– β �≈ β ′ if β �= β ′ (i.e. β and β ′ encode different elements from A), and
– for every β ∈ LN there exists γ ∈ Σω such that (α,β, γ ) is accepted by the au-

tomaton Af for all for all α ∈ LM .
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Altogether for M = π(LM) ⊆ Ak and N = π(LN) ⊆ A, we have f (m,n) =
f (m′, n) for all m,m′ ∈ M and n ∈ N . Since both sets M and N are uncountable,
the claim follows. �

To illustrate the applications of this result, consider the case of an integral domain.
Recall that an integral domain is a commutative ring that has no zero divisors. It turns
out that there exist no infinite ω-automatic integral domains.

Theorem 34 An integral domain is ω-automatic if, and only if, it is finite.

Proof One direction is trivial since all finite structures are ω-automatic. For the other
direction, we recall from [8] that the (finite word) automatic integral domains are
exactly the finite ones. Hence, by Theorem 5, there exist no countably infinite ω-
automatic integral domains. Suppose now that A = (A,+, ·) is an uncountable ω-
automatic integral domain. Fix a presentation of A and let k be the constant from
Theorem 33 with respect to this presentation. Consider the family of polynomials of
degree k − 1, i.e. the family of functions of the form x �→ ∑k

i=0 aix
i with k param-

eters a0, . . . , ak−1 ∈ A and input x. It is obvious that this family of functions can be
defined in FOC by using the k coefficients a0, . . . , ak−1 as parameters.

On one hand, it is a well-known fact from algebra that, on an integral domain,
two different polynomials of degree at most k − 1 agree on at most k − 1 inputs.
On the other hand, A is uncountable and therefore Theorem 33 implies that there are
ā �= b̄ ∈ Ak such that

∑k−1
i=0 aix

i = ∑k−1
i=0 bix

i for even uncountably many x ∈ A. �

Corollary 35 ([1]) The field of reals is not ω-automatic.

Sometimes it is convenient to apply Theorem 33 in the following simplified ver-
sion.

Lemma 36 Let A = (A,R1, . . . ,Rn) be an uncountable ω-automatic structure. Then
there is an � ∈ N such that for every definable �-ary function f (x̄) there is an un-
countable set M ⊆ A� with f (ā) = f (ā′) for all ā, ā′ ∈ M .

Proof Let k be the constant from Theorem 33. We set � = k + 1. Let f be an �-ary
function that is definable in A. Then by Theorem 33 there exist uncountably infinite
sets M ′ ⊆ Ak,N ′ ⊆ A with f (ā, b) = f (ā, b′). Hence, we can simply choose the
uncountably infinite set M = {(ā, b) : ā ∈ M ′, b ∈ N ′} to satisfy the claim. �

Theorem 37 There is no infinite ω-automatic structure with an FOC-definable pair-
ing function.

Proof Towards a contradiction, suppose there is an ω-automatic structure A in which
a pairing function f is definable. First we note that A cannot be countable. Other-
wise, by Theorem 5, A would have an injective presentation. But MISf (n) = n2 in
contradiction to Lemma 19. Therefore A must be uncountable. In this case we ob-
tain a contradiction to Corollary 36 by constructing a family of definable injective
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functions of unbounded arity. We let

f1(x, y) := f (x, y) and

fn+1(x1, . . . , x2n , y1, . . . , y2n) := f
(
fn(x1, . . . , x2n), fn(y1, . . . , y2n)

)
.

It is easy to see that fn is injective and FOC-definable in A for fixed n ≥ 1. �

Another interesting example to which we can apply our techniques are lattices.

Lemma 38 Every uncountable ω-automatic lattice contains an element such that
uncountably many elements are smaller than this element, and contains an element
such that uncountably many elements are greater than this element.

Proof Let A = (A,<,∧,∨) be an uncountable ω-automatic lattice. Fix an ω-
automatic presentation and let c be the constant from Lemma 36. We consider the
definable functions f (x1, . . . , xk) := ∧

1≤i≤k xi and g(x1, . . . , xk) := ∨
1≤i≤k xi . By

Corollary 36 there must be elements a, b ∈ A such that f −1(a) and g−1(b) are un-
countable. But this is only possible if the sets {x : x appears in some (x1, . . . , xc) ∈
f −1(a)} ⊆ {x : x ≤ a} and {x : x appears in some (x1, . . . , xc) ∈ g−1(b)} ⊆ {x : x ≥
b} are uncountable. �

As a consequence we can reprove Kuske’s theorem that no uncountable ordinal is
ω-automatic.

Theorem 39 (Kuske [9]) There is no uncountable ω-automatic ordinal.

Proof First note that Lemma 38 directly implies that ω1, the first uncountable ordinal,
is not ω-automatic. Every ordinal is a lattice (∧ and ∨ can be defined) and for every
element of ω1 the number of elements below it is countable. But this implies that no
larger ordinal α can be automatic either, since ω1 is definable in all of these ordinals
by the formula ϕ(x) := ∃≤ℵ0y(y < x). �

Note that this result also follows from Theorem 21, which is more closely related
to the original proof of Kuske.

6 Future Work

A naturally arising question is whether our techniques, or similar ones, can be ap-
plied to characterise ω-automatic structures in other algebraic classes. One candidate
could be the class of Boolean algebras, since Boolean algebras can be understood as
special rings of characteristic 2. There are ω-automatic Boolean algebras that are not
automatic (for cardinality reasons) and even theories, such as the theory of all atom-
less Boolean algebras, that have no automatic models, but an ω-automatic model. So
far characterizations of all ω-automatic models are known only for classes where the
ω-automatic model coincide with the finite word automatic ones.
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Another area of application for the results of Sect. 3 is the notion of automaticity
with advice. In this setting, the automata that recognise the domain and the rela-
tions of the structure are allowed to access a fixed infinite advice string ρ. Solving
the theory of a structure represented in this way reduces to the ρ-acceptance prob-
lem, that is given a Büchi-automata A, decide whether A accepts ρ. A prominent
example is given by the rational numbers with addition, which are known to be not
automatic [17], but automatic with a certain advice string [11]. This shows that in the
presence of an advice string, non-automatic structures might become representable.

However, our techniques can also be applied with additional fixed parameters, and
therefore they seem suitable to be used in this setting. Some first investigations let us
hope that for many of the structures known to be not automatic it is possible to show
that they are not automatic with advice either. Also the results of Sects. 4 and 5 might
(at least to some extent) be lifted to this new setting, but here a closer inspection of
the proofs, especially of Theorem 21 and of Theorem 33, will be necessary.

Another important direction is the consideration of ω-tree automatic presentations.
Especially the question whether the field of reals is ω-tree-automatic is of consider-
able interest. However, our current techniques do not seem to be powerful enough to
deal with this case. For ω-tree-automatic presentations, a technical result similar to
Theorem 33 is very unlikely to hold. Indeed, in contrast to the case of ω-automatic
structures, there is a tree-automatic (and therefore also ω-tree-automatic) structure
with a pairing function, e.g. the free term algebra over countably many generators.
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