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Abstract
We investigate structural properties of ω-automatic presentations of infinite structures in order
to sharpen our methods to determine whether a given structure is ω-automatic. We apply these
methods to show that no field of characteristic 0 admits an injective ω-automatic presentation,
and that uncountable fields with a definable linear order cannot be ω-automatic.
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1 Introduction

Automatic structures are (in general) infinite structures that admit a finite presenta-
tion by automata. Informally, an automatic presentation of a relational structure B =
(B,R1, . . . , Rm) consists of a language L, which must be recognisable by an automaton A,
and a surjective function π : L → B that associates every word of L with the element of
B that it represents. The function π must be surjective (every element of B is named by
some word in L) but need not be injective (elements may have more than one name). In
addition it must be recognisable by automata, reading their inputs synchronously, whether
two elements of L name the same element of B, and, for each relation Ri, whether a given
tuple of words in L names a tuple in Ri. Together, the automaton A and the automata
that recognise equality and the relations R1, . . . , Rm provide a finite representation of the
structure B. This concept has implicitly been known since the first days of automata theory,
but the systematic investigation of such presentations was mainly invoked by the work of
Khoussainov and Nerode [7] and later by the work of Blumensath and Grädel [1].

In principle we can use automata over finite words, infinite words, finite trees, or infinite
trees to obtain different classes of automatic structures. Indeed, any model of automata can
be used for this approach as long as it is effectively closed under all first-order operations
(union, intersection, complementation, and projection) and its emptiness problem is decidable.

As a consequence of these two properties it follows that
every automatic structure has a decidable first-order theory and, more generally,
given any automatic presentation of A and any first-order formula ϕ(x1, . . . , xk) one can
effectively construct an automaton that represents the relation ϕA = {ā ∈ Ak : A |= ϕ(ā)}.

Thus, all definable properties of automatic structures can be algorithmically investigated
using automata-theoretic methods based on appropriate finite presentations. This makes
automatic structures a domain of considerable interest for computer science.

While the case of word-automatic structures (with presentations based on automata
operating on finite words) is reasonably well understood, much less is known for presentations
based on other classes of automata. In particular, our methods to establish whether a given
structure admits an automatic presentation on, say, infinite words, or to classify all such
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structures inside a given domain, are still relatively weak. For countable structures, an
important achievement is the result by Kaiser, Rubin, and Bárány [6] that a countable
structure is ω-automatic if, and only if, it is word-automatic. Thus the recent result by
Tsankov [14] that the additive group of the rationals is not automatic immediately implies
that it is not ω-automatic either. Another interesting result for word-automatic structures is
due to Khoussainov, Nies, Rubin and Stephan. In [8] among others they show that there are
no infinite automatic fields.

One of the most prominent and important structures with a decidable first-order theory
is certainly the field of reals (R,+, ·). The decidability goes back to Tarski [13] and is based
on a quantifier elimination argument. Therefore, it is very natural to ask whether the field
of reals admits an automatic presentation. Of course, such a presentation cannot be based
on automata on finite words (or finite trees) because languages of finite words and trees are
countable. However, it might be the case that the field of reals is ω-automatic, i.e., admits
a presentation based on automata on infinite words, or that it is ω-tree-automatic, with a
presentation based on automata on infinite trees.

The question whether this is the case is closely related to classical problems raised
by Büchi and Rabin in the context of decidable first-order theories. The decidability of
Presburger arithmetic, the first-order theory of (N,+), had originally been proved by quantifier
elimination, but Büchi’s automata-based proof of the decidability of S1S (the monadic theory
of infinite words) easily carries over to an automata-theoretic decidability argument for
Presburger arithmetic. And indeed, (N,+) is now one of the standard examples for word-
automatic structures. In Rabin’s classical paper [11], where he proved the decidability of
S2S (the monadic theory of the infinite binary tree) and several other theories, he explicitly
raised the question whether also the decidability of the field of reals could be proved by
automata-theoretic methods.

In this paper we investigate the question whether the field of reals, and other fields
of characteristic 0, are ω-automatic. It is quite easy to see that both reducts (R,+) and
(R, · ) of the field of reals are ω-automatic but it has so far been open whether two such
presentations could be combined to one of the entire field. We shall prove that this is not
the case. More generally, we establish the following results.

I Theorem 1. No field of characteristic 0 admits an injective ω-automatic presentation.

I Theorem 2. No field of characteristic 0 with a definable linear order is ω-automatic.

In particular, the field of reals does not admit an ω-automatic presentation. Notice that
this does not completely settle Rabin’s question, since it might still be the case that the field
of reals is ω-tree-automatic. We do not expect this, but our current methods do not seem to
be powerful enough to settle this question.

We briefly outline our methodology. We shall make heavy use of the notion of end-
equivalence of infinite words: two words v, w ∈ Σω are end-equivalent, in short v ∼e w, if
they are equal from some position onwards, i.e. v[n, ω) = w[n, ω) for some n ∈ N, and we
analyse the size of ∼e-equivalent sets in ω-automatic structures.

In the study of ω-automatic presentations, it is important to distinguish between injective
and non-injective presentations. Injective presentations are much easier to work with, and,
of course, they have the advantage that we do not need an automaton to determine whether
two words encode the same elements. In the case of word-automatic structures it is not
hard to see that we can always find an injective automatic presentation, which makes our
life much easier. On the other side, it had been open for some time whether ω-automatic
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structures always admit injective presentations, until Hjorth, Khoussainov, Montalbán and
Nies [5] were able to describe an ω-automatic structure that does not even permit an injective
Borel presentation (which is a much more general notion than an injective ω-automatic
presentation).

Nevertheless, many ω-automatic structures do admit injective presentations such as, for
instance, the reducts (R,+) and (R, ·) of the field of reals. Therefore it is also interesting to
ask what kind of structures admit an injective presentation.

Our first step will be the observation that every injective ω-automatic presentation of
an infinite structure necessarily produces an infinite set of ∼e-equivalent elements. On the
other side, we shall prove the following general fact on ω-automatic fields.

I Lemma 3. Whenever a field of characteristic 0 admits an ω-automatic presentation then
the size of all ∼e-equivalent subsets of the field is bounded by a constant.

To establish this, we shall combine an argument saying that the image of every set of
∼e-equivalent elements under a definable k-ary function can be partitioned into a small
number of sets, each of which consists of ∼e-equivalent elements only, with a result on
additive combinatorics, known as Freiman’s Theorem.

From these results, we immediately obtain Theorem 1 because on one side, an injective
presentation of an infinite filed would have to contain an infinite set of ∼e equivalent elements,
but on the other side, we have proved that every such set should be of bounded size.

To extend this result beyond injective presentations, more work is needed. We shall
assume that our fields admit a definable linear order, and prove a strengthening of Kuske’s
result [9] that ({0, 1}ω, <lex) is embeddable into every ω-automatic uncountable linear order.
In fact, we shall prove that every ω-automatic presentation of an uncountable linear order
contains an injective automatic presentation of ({0, 1}ω, <lex). This implies that every
ω-automatic presentation of an uncountable structure with a definable linear order contains
an infinite ∼e-equivalent set. Together with Lemma 3 this implies Theorem 2.

2 Preliminaries

First, we give a formal definition of an ω-automatic presentation.

I Definition 4. An ω-automatic presentation (over the alphabet Σ) of a structure A =
(A,RA

1 , . . . , R
A
n ) is a pair consisting of a structure L = (L,≈, RL1 , . . . , RLn) and a surjective

function π : L→ A such that the following holds:
L ⊆ Σω
≈ = {(v, w) : π(v) = π(w)}
RLi = {(v1, . . . , vri

) : (π(vi), . . . , π(vri
)) ∈ Ri} for i = 1, . . . , n

L,≈, RL1 , . . . , RLn are all ω-regular

We call a presentation injective if π is injective. In this case we will omit ≈ in the signature
of L. A structure is ω-automatic if it has an ω-automatic presentation.

Sometimes we are also not interested in the concrete labelling function π. In these cases
we will also omit π and just demand that that (L,R1, . . . , Rn)/ ≈ is isomorphic to A.

A relation R ⊆ Ln is called ω-regular if the language

LR = {〈v1, . . . , vn〉 : (v1, . . . , vn) ∈ R} ⊆ (Σn)ω

is ω-regular, where 〈v1, . . . , vn〉 ∈ (Σn)ω is the so called convolution, defined by

〈v1, . . . , vn〉[i] = (v1[i], . . . , vn[i]).
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2.1 ω-Semigroups
The fundamental correspondence between recognisability by finite automata and by finite
semigroups has been extended to ω-regular sets. This is based on the notion of ω-semigroups.
Rudimentary facts on ω-semigroups are well presented in [10], we only mention what is most
necessary.

An ω-semigroup S = (Sf , Sω, ·, ∗, π) is a two-sorted algebra, where (Sf , ·) is a semigroup,
∗ : Sf × Sω 7→ Sω is the mixed product satisfying, for every s, t ∈ Sf and every α ∈ Sω, the
equality s · (t ∗ α) = (s · t) ∗ α, and where π : Sωf 7→ Sω is the infinite product satisfying
s0 · π(s1, s2, . . .) = π(s0, s1, s2, . . .) as well as the associativity rule:

π(s0, s1, s2, . . .) = π(s0s1 · · · sk1 , sk1+1sk1+2 · · · sk2 , . . .)

for every sequence (si)i≥0 of elements of Sf and every strictly increasing sequence (ki)i≥0 of
indices. For s ∈ Sf we write sω for π(s, s, . . .).

Morphisms of ω-semigroups are defined to preserve all three products as expected. There
is a natural way to extend finite semigroups and their morphisms to ω-semigroups. As in
semigroup theory, idempotents play a central role in this extension. An idempotent is a
semigroup element e ∈ S satisfying ee = e. For every element s in a finite semigroup, the
sub-semigroup generated by s contains a unique idempotent sk. The least k > 0 such that
sk is idempotent for every s ∈ Sf is called the exponent of the semigroup Sf . Another useful
notion is absorption: we say that s absorbs t (on the right) if st = s.

There is also a natural extension of the free semigroup Σ+ to the ω-semigroup (Σ+,Σω)
with ∗ and π determined by concatenation. An ω-semigroup S = (Sf , Sω) recognises a
language L ⊆ Σω via a morphism φ : (Σ+,Σω)→ (Sf , Sω) if φ−1(φ(L)) = L. This notion of
recognisability coincides with that by non-deterministic Büchi automata; constructions from
Büchi automata to ω-semigroups and back are also presented in [10].

I Theorem 5 ([10]).
A language L ⊆ Σω is ω-regular if, and only if, it is recognised by a finite ω-semigroup.

3 Freiman’s Theorem

On the algebraic side, we will use a result on additive combinatorics due to Freiman. It
has also been an essential ingredient in Tsankov’s recent proof that the additive group of
rationals is not automatic [14]. Freiman’s Theorem is concerned with subsets A of a group
G with small doubling A + A = {a + a′ : a, a′ ∈ A}, in the sense that |A + A| ≤ c|A| for
some constant c > 0. For example, consider the case G = (Z,+). Then, for every arithmetic
progression A, we have |A+A| < 2|A|. For larger values of c, more complicated sets than
simple arithmetic progressions are possible. To state Freiman’s Theorem we need the notion
of a generalised or multidimensional arithmetic progression.

I Definition 6. A d-dimensional arithmetic progression is a set P such that there exist
p0 ∈ P , p = (p1, . . . , pd) ∈ P d and n1, . . . , nd ∈ N with

P =
{
p0 +

d∑
i=1

mipi : 0 ≤ mi ≤ ni for i = 1, . . . , d
}
.

A progression is called proper if for some such p0, p, n it holds that |P | =
∏

1≤i≤d(ni + 1).

Freiman’s Theorem [3] states that every set A with |A + A| ≤ c|A| is contained in a
proper multidimensional progression P which is not much larger than A.
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I Theorem 7 (Freiman). Let (G,+) be a torsion free Abelian group. For every constant
c ∈ N, there exist d, k ∈ N such that every finite subset A ⊆ G with |A + A| ≤ c|A| is
contained in some proper d-dimensional arithmetic progression P of size at most k|A|.

For proofs we refer to [12] or to the very nice lecture notes [4]. In our analysis of ω-
automatic fields, we will need a consequence of Freiman’s Theorem which ensures that a fairly
large portion of such a set A is contained in an (one-dimensional) arithmetic progression.

I Lemma 8. Let (G,+) be a torsion free Abelian group. For every constant c there exist
d, k such that for every finite subset A ⊆ G with |A+ A| ≤ c|A| there exists an arithmetic
progression P with |P ∩A| ≥ d

√
|A|/k.

Proof. Since |A + A| ≤ c · |A|, by Freiman’s Theorem there is a proper progression Q ={
q0 +

∑d
i=1 miqi : 0 ≤ mi ≤ ni for i = 1, . . . , d

}
such that A ⊆ Q and |Q| ≤ k · |A|. We

may assume that nd ≥ ni for all i < d, which implies nd + 1 ≥ d
√
|A|.

We will now take a closer look at the representation of A in Q. For every tuple m =
(m1, . . . ,md−1) ≤ (n1, . . . , nd−1) we write Am for the set

Am :=
{
q0 +

d−1∑
i=1

miqi +mqd : m ≤ nd

}
∩A.

Clearly, every set Am is contained in the induced one dimensional arithmetic progression
Pm = {p0 + np1 : n ≤ nd} with p0 = q0 +

∑d−1
i=1 miqi and p1 = qd.

All we need to show now is that there is an m with |Am| ≥ d
√
|A|/k. Since Q is proper,

it holds that |Q| =
∏d
i=1(ni + 1). The sets Am with mi ≤ ni form a partition of A into∏d−1

i=1 (ni + 1) sets. It follows that there is a tuple m with

|Am| ≥
|A|∏d−1

i=1 (ni + 1)
≥ |Q|/k∏d−1

i=1 (ni + 1)
=

∏d
i=1(ni + 1)

k
∏d−1
i=1 (ni + 1)

= nd + 1
k

≥
d
√
|A|
k

.
J

4 End-Equivalence

Two words v, w ∈ Σω are end-equivalent, in short v ∼e w, if they are equal from some
position onwards, i.e. v[n, ω) = w[n, ω) for some n ∈ N. Making explicit a position m after
which the words are equal, we obtain refined relations ∼me ; two words are ∼me -equivalent
(m-end-equivalent) if v[m,ω) = w[m,ω). Clearly v ∼e w if, and only if, v ∼me w for some m
and the ∼me -classes partition any language into finite classes of size at most |Σ|m.

End-equivalence plays an important role in the study of ω-regular languages. We first
observe that every infinite regular language has an infinite ∼e-class.

I Lemma 9. Let L be an infinite ω-regular language. Then there is an infinite ∼e-class
X ∈ L/ ∼e.

Proof. Since L is an ω-regular language, by [2] it has the form L =
⋃

1≤i≤n UiV
ω
i for some

(finite-word) regular languages Ui, Vi which are not empty. We consider two cases.
Suppose that V ωi = {vωi } for each i, in which case L is countable. Since L is infinite there

is an i such that Uivωi is also infinite.
Observe that the words in Uivωi need not be pairwise ∼e-equivalent. For example consider

U = 1∗, v = 01. Here it holds that (01)ω ∈ Uvω and (10)ω ∈ Uvω but (01)ω 6∼e (10)ω.
Nevertheless, all w ∈ Uiv

ω
i fall into one of at most |vi| many ∼e-classes and therefore

Uiv
ω
i / ∼e must contain an infinite class.
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In the other case, there is a Vi which contains two words w, v such that wω 6= vω. Set
U ′i := Uiw

∗, then U ′ivω ⊆ (UiV ∗i )V ωi = UiV
ω
i . The language U ′ivω is infinite. Otherwise the

language w∗vω would also be finite and therefore wivω = wjvω for some i 6= j. But then
wl = vk for some k, l ∈ N and therefore wω = vω, contradiction. Since U ′ivω is infinite, we
know from the first part of the proof that U ′ivω/ ∼e contains an infinite ∼e-class. J

In the following we examine which elements of a structure can be encoded in the same
end-class. For this undertaking, it is handy to consider elements of the original structure
∼e-equivalent with respect to some given presentation.

I Definition 10. Let A be a structure with ω-automatic presentation (L, π) and ∼ an
equivalence relation on the domain of the presentation. We say B ⊆ A is (∼,L, π)-equivalent
or ∼-equivalent in (L, π) iff B ⊆ π(X) for some X ∈ L/∼.

If the presentation that is considered is clear from the context we will often just write
that the set is ∼-equivalent without mentioning the presentation explicitly.

Observe that an equivalence relation ∼ on L does not need to induce an equivalence
relation on A. Indeed, an element of A can have several encodings in L and can thus occur
in the image of more than one ∼-class. However, if a set B is ∼-equivalent in (L, π), then
there are encodings of the elements of B such that these codings are pairwise ∼-equivalent.

As a first application, we use Lemma 9 to make a quick observation about injective
ω-automatic presentations.

I Lemma 11. Let A be an infinite structure. Then, for every injective ω-automatic present-
ation (L, π) of A, there is an infinite set M ⊆ A that is ∼e-equivalent in (L, π).

Proof. Since A is infinite, L must also be infinite and therefore by Lemma 9 there must be
an infinite class X ∈ L/ ∼e. Since π is injective, it follows that π(X) is an infinite set that
is ∼e-equivalent in (L, π). J

The following lemma gives us a useful property of sets that are ∼me -equivalent in an
ω-automatic presentation. Intuitively, it states that the image of an ∼me -equivalent set B
under a definable k-ary function can always be partitioned into a constant number of sets
which are also ∼me -equivalent and this constant only depends on the presentation but not
on B.

I Lemma 12. Let A be a structure with ω-automatic presentation (L, π) and let f : Ak+` → A

be a function that is FO-definable in A. Then there is a constant q such that, for every
m ∈ N, every (∼me ,L, π)-equivalent subset B ⊆ A and every tuple a ∈ A`, the image f(Bk, a)
admits a partition into q (∼me ,L, π)-equivalent sets C0, . . . , Cq−1.

Proof. Let A be a Büchi automaton with states Q = {0,..., q− 1} that recognises f in (L, π).
First, choose a tuple of words va ∈ π−1(a). Since B is ∼me -equivalent in (L, π), there is a

set M ⊆ L of pairwise ∼me -equivalent words such that π �M is a bijection between M and B.
For every tuple b ∈ Bk we denote by vb the unique tuple in Mk with π(vb) = b. Now choose,
for every tuple b ∈ Bk, a word fb ∈ π

−1(f(b, a)). This means that the word 〈vb, va, fb〉 is
accepted by A for every tuple b ∈ Bk. Let ρb be an accepting run of A on 〈vb, va, fb〉.

We obtain a partition of Mk into sets M0, . . . ,Mq−1 by defining Mi := {vb : ρb[m] = i}.
For every nonempty Mi fix a tuple vb ∈Mi. We will now show that, for any d with vd ∈Mi,
there is an encoding of f(d, a) that is ∼me -equivalent to fb.

The intuition is that we can simply replace the tail of 〈vd, va, fd〉 by the tail of 〈vb, va, fb〉
and obtain a new word that is accepted by A. This will give us a new encoding of f(d, a)
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that is ∼me -equivalent to fb. More formally, for every such d it holds that ρd[0,m)ρb[m,ω) is
an accepting run on

〈vd, va, fd〉[0,m)〈vb, va, fb〉[m,ω) = 〈vd, va, fd〉[0,m)〈vd, va, fb〉[m,ω)
= 〈vd, va, fd[0,m)fb[m,ω)〉.

This holds since 〈vd〉 ∼
m
e 〈vb〉 and ρd[m] = ρb[m] = i. But since A recognises f in L, π, it

follows that π(fd[0,m)fb[m,ω)) = f(d, a).
So there is a ∼me -class such that, for every vd ∈ Mi, the function value f(d, a) has an

encoding in this class. This implies that all the sets C ′i defined by C ′i := {f(b, a) : vb ∈Mi}
are ∼me -equivalent in (L, π). Obviously it holds that

⋃
0≤i≤q−1 C

′
i = f(Bk, a). We can now

simply define Ci to be the set C ′i−
⋃

0≤j<i C
′
j and obtain a partition C0, . . . , Cq−1 of f(Bk, a)

with the desired properties. J

From this result we infer that, in injectively ω-automatic structures, no FO-definable
k-ary function can guarantee that the image of a finite set is always much larger than the set
itself. We can make this precise by the notion of the minimal image size.

I Definition 13. The minimal image size of a function f : Ak → A over an infinite set A,
MISf : N→ N, is given by MISf (n) = min{|f(Xk)| : X ⊆ A, |X| = n}.

We now show that, for injectively presentable structures, the minimal image size of every
FO-definable function grows at most linearly with n.

I Lemma 14. Let A be an infinite structure with an injective ω-automatic presentation.
Then, for every FO-definable function f , it holds that MISf (n) = O(n).

Proof. Suppose there is an injective automatic presentation (L, π) of an infinite structure
with FOdefinable function f : Ak → A such that MISf grows in a superlinear way.

Let A = (Q,Σk+1, q0,∆, F ) be a Büchi automaton that recognizes f in (L, π) and
c the constant from Lemma 12 with respect to f and (L, π). Now choose n such that
MISf (n) > c|Σ| · n. This is possible since MISf grows in a superlinear way. By Lemma 11
there is an infinite set M ⊆ A that is ∼e-equivalent in (L, π). Therefore we can choose m
such that there is a (∼me ,L, π)-equivalent set of size at least n. Choose m minimal and let
N be a ∼me -equivalent set of maximal size. Then n ≤ |N | ≤ |Σ|n, otherwise we could have
chosen m smaller.

Observe that if MISf (n) = a then for all sets X with |X| ≥ n it holds that |f(X)| ≥ a.
By Lemma 12, f(Nk) can be partitioned into c ∼me -equivalent sets. One of these sets has
size at least |f(Nk)|/c > |Σ|n ≥ |N |. But this contradicts the maximality of N among all
∼me -equivalent sets. J

Since pairing functions grow in a quadratic way, we obtain the following corollary.

I Corollary 15. No infinite structure with an FO-definable pairing function admits an
injective ω-automatic presentation.

5 Fields of Characteristic 0

Every field of characteristic 0 contains, in a canonic way, a copy of (N,+, ·). We first show
that, whenever a field of characteristic 0 admits an ω-automatic presentation, the size of
every ∼e-equivalent set of natural numbers is bounded by a constant.
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I Lemma 16. Let (K,+, ·) be a field of characteristic 0 with an ω-automatic presentation
(K, π). Then there exists a constant q such that no (∼e,K, π)-equivalent set N of natural
numbers has size |N | > q.

Proof. Consider the function p : K ×K → K defined by

p(x, y) := (x+ y)(x+ y + 1)
2 + y.

Note that p restricted to the natural numbers is the Cantor pairing function. Now let
q be the constant from Lemma 12 associated with the function p with respect to (K, π).
Towards a contradiction, assume there exist sets of natural numbers that are ∼e-equivalent
in (K, π) and have more than q elements. This implies that, for some m, there exists a
(∼me ,K, π)-equivalent set of natural numbers of size larger than q.

Fix such an m and let N be one of the largest such sets, i.e. such that |N | ≥ |M | for
every M ⊆ N that is ∼me -equivalent in (K, π). Now apply Lemma 12 and obtain a partition
M1, . . . ,Mq of p(N2) ⊆ N such that every Mi is ∼me -equivalent in (K, π). Since p is a pairing
function on N, we have

|p(N2)| = |N |2 > q · |N |.

It follows, by the pigeonhole principle, that there must be a Mi of size at least |N |2/q > |N |.
But, since Mi is a set of natural numbers that is (∼me ,K, π)-equivalent, this contradicts the
choice of N as one of the largest sets. J

We will now generalise this statement from sets of natural numbers to arbitrary subsets
of the field. The key here is the use Freiman’s Theorem and Lemma 8 derived from it.

I Lemma 3. Whenever a field (K,+, ·) of characteristic 0 admits an ω-automatic presentation
(K, π) then the size of all ∼e-equivalent subsets of K is bounded by a constant r.

Proof. We show that every set M ⊆ K that is ∼e-equivalent in K, π has size |M | ≤ r.
Let q1 be the constant q from Lemma 12 with respect to the function (x − y1)/y2, let

q2 be the constant q from Lemma 12 with respect to +, and let q3 be the constant q from
Lemma 16. We then set c := max{q1, q2, q3} and let k, d be the constants from Freiman’s
Theorem with respect to c. Finally, we choose r = c2d · kd.

Suppose there is a set M that is ∼e-equivalent in (K, π) with |M | > r. Then we can also
choose an m such that there are ∼me -equivalent sets of size larger than r. Choose such a
∼me -equivalent set M of maximal size.

It is easy to see that |M +M | ≤ c|M |. Otherwise we could argue analogously to the proof
of Lemma 16 and obtain a set C that is larger than M and also ∼me -equivalent in (K, π).

By Lemma 8 there is an arithmetic progression P = {p0 +mp1 : m < n,m ∈ N} such
that N := M ∩ P has size at least

d
√
|M |
k . Now, by Lemma 12, we can partition the set

{(a − p0)/p1 : a ∈ N} ⊆ N into at most c sets and obtain a ∼me -equivalent set of natural
numbers of size at least

d
√
|M |/k
c

>
d
√
c2dkd

ck
= c.

But this contradicts Lemma 16. J

For injective presentations, Lemma 11 ensures infinite ∼e-equivalent sets, but Lemma 3
forbids such sets, and therefore we directly obtain Theorem 1. For Theorem 2, more work is
necessary. In the next section we show a result that will enable us to lift the above argument
from injective presentations to general ones for fields with a definable linear order.
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6 ω-Automatic Linear Orders

For uncountable fields of characteristic 0 with a definable linear order, we transfer the result
of the previous section from injective presentations to general ω-automatic ones. The problem
that we face if we consider non-injective presentations (L, π) is that we cannot simply infer
that there are infinite ∼e-equivalent sets. For example, ∼e is an ω-automatic equivalence
relation and identifies all ultimately equal words.

But, as we will see, this cannot happen for ω-automatic presentations of uncountable
linear orders. To prove this, it suffices to show that every ω-automatic presentation of an
uncountable linear order (A,<) contains an infinite regular subset such that the presentation,
restricted to this subset, is an injective presentation of a suborder of (A,<). In [9] Kuske
had already shown that ({0, 1}ω, <lex) is embeddable into any ω-automatic uncountable
linear order. He constructs, from a given ω-automatic presentation of such an order, a
subpresentation that is a presentation of ({0, 1}ω, <lex). This subpresentation, however, is
not ω-automatic: its domain is the complement of a language

⋃
i≤n ViU

ω
i where the Vi are

context free and and the Ui are regular. In particular, his presentations do not contain two
∼e-equivalent words.

We will therefore present here a strengthening of Kuske’s result. We show that every
automatic presentation of an uncountable linear order contains an injective automatic
presentation of ({0, 1}ω, <lex).

The main techniques originate from [6]. For a given ω-automatic presentation (L,≈, <) we
construct finite words u, v0, v1 such that u{v0, v1}ω ⊆ L and, for any two words α, β ∈ {0, 1}ω,
it holds that

uvα[0]vα[1]vα[2] . . . < uvβ[0]vβ[1]vβ[2] . . . if, and only if, α <lex β.

This means v0 encodes 0, v1 encodes 1 and the language u{v0, v1}ω encodes {0, 1}ω in a
natural way.

To handle these constructions, it is convenient to use an algebraic characterisation of
ω-regular languages. More precisely, we use that a language L is ω-automatic if, and only if,
there is an ω-semigroup morphism g : Σ∞ → S from the free ω-semigroup Σ∞ = (Σ∗,Σω)
into some finite ω-semigroup S = (Sf , Sω) with g−1(g(L)) = L. A broader introduction to
the topic can be found in [10]. The advantage of having such a morphism g is that we know,
whenever g(u) = g(v) for two words u and v, that u ∈ L if, and only if, v ∈ L. With this
property it is much easier to ensure that the elements we construct have the properties that
we want than by cutting apart and rearranging runs of automata.

I Theorem 17. For every ω-automatic presentation (L,≈, <) of an uncountable linear order
there exists a subset L′ of L such that (L′, <∩(L′)2) is an injective ω-automatic presentation
of ({0, 1}ω, <lex).

Proof. Let L = (L,≈, <) be an ω-automatic presentation of an uncountable linear order.
Since L is automatic, for each δ ∈ {L,≈, <} there are ω-semigroup morphisms to finite
ω-semigroups Sδ = (Sδf , Sδω):

()L : Σ∞ → SL, ()≈ : (Σ× Σ)∞ → S≈, ()< : (Σ× Σ)∞ → S<

that recognise the corresponding relations. We set FL := (L)L and for ∼∈ {≈, <} we
define F∼ := ({〈u, v〉 : u ∼ v})∼. We define c to be the size of the largest ω-semigroup
among SL, S≈, S<, set C := c3 and k as the least common multiple of the exponents of these
semigroups.
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As mentioned before, our goal is to show that there are u, v0, v1 ∈ Σ+ with v0 6= v1,
|v0| = |v1| such that u{v0, v1}ω ⊆ L and for all α, β ∈ {0, 1}ω it holds that uvα < uvβ iff
α <lex β (here vα stands for vα[0]vα[1]vα[2] . . .). This obviously means, that L restricted to
u{v0, v1}ω is an injective ω-automatic presentation of ({0, 1}ω, <lex).

Before we start we need to fix some notions. We call an infinite set H = {h0 < h1 <

h2 < . . .} ⊆ N a factorisation. For a given ω-semigroup morphism g : Σ∞ → S and w ∈ Σω,
we say that H is a g, e-homogeneous factorisation of w if g(w[hi, hi+1)) = e for all i ∈ N.

The following lemma is basically a reformulation of Ramsey’s theorem for countably
infinite graphs to the language of ω-semigroup morphisms. It ensures the existence of
factorisations that are homogeneous for several words and morphisms.

I Lemma 18. For i ∈ {1, . . . , n} let hi : Σ∞i → Si be a morphism into a finite ω-semigroup
Si and wi a word over the corresponding alphabet. There exists a G = {g1 < g2 < g3 . . .} ⊆ N
such that, for every i, G is an hi,ei-homogeneous factorisation of wi for some idempotent
semigroup element ei ∈ Si.

Proof. This lemma is more or less a direct consequence of Ramsey’s theorem: We colour
every {k, l} ⊂ N, k < l with the tuple of semigroup elements [hi(wi[k, l))]1≤i≤n. From
Ramsey’s theorem we obtain a G = {g1 < g2 < g3 . . .} such that all {gi, gj}, i 6= j have the
same colour. Having set ei := hi(wi[g1, g2)), G obviously is a hi,ei-homogeneous factorisation
of wi and ei is idempotent since eiei = hi(wi[g1, g2))hi(wi[g2, g3)) = hi(wi[g1, g3)) = ei. J

Now we are ready to start the construction. As a first step, we show that there are two
words x0 and x1 and a factorisation H such that, regarding H, x0 and x1 are mapped to the
same elements under every mentioned morphism. Later on we will use the obtained words to
cut out suitable candidates for u, v0 and v1.

I Lemma 19. There exist x0, x1 ∈ L with [xi]∼e
∩ [x1−i]≈ = ∅ and a factorisation H =

{h1 < h2 < h3 < . . .} such that, for some idempotent eL ∈ SL, H is a ()L, eL-homogeneous
factorisation of x0 and x1. For δ ∈ {≈, <} there are idempotent eδ, e01

δ and e10
δ such that

H is a ()δ, eδ-homogeneous factorisation of 〈x0, x0〉 and 〈x1, x1〉 and
H is a ()δ, e01

δ -homogeneous factorisation of 〈x0, x1〉 and
H is a ()δ, e10

δ -homogeneous factorisation of 〈x1, x0〉.

Proof Sketch. Since L is a presentation of an uncountable structure, there are elements
y0, . . . , yC such that [yi]∼e

∩ [yj ]≈ = ∅ for i 6= j. With Lemma 18 we obtain an H that
is a homogeneous factorisation of all yi and respectively all 〈yi, yj〉 under all mentioned
morphisms. Since we have more elements yi than triples (a, b, c) ∈ SL × S≈ × S< there
must be some i 6= j such that H is a ()L, eL-homogeneous factorisation of yi and yj and for
δ ∈ {≈, <} a ()δ, eδ-homogeneous factorisation of 〈yi, yi〉 and 〈yj , yj〉. J

We may also assume that H is coarse enough that x0[hl, hl+1) 6= x1[hl, hl+1) for all l ∈ N.
We need to modify x0, x1 a bit to ensure all the properties required later.

I Lemma 20. There exist y0, y1 ∈ LA with y0 6≈ y1 and a factorisation G = {g1 < g2 <

g3 < . . .} with the following properties:
y0[0, g1) = y1[0, g1) and y0[gi, gi+1) 6= y1[gi, gi+1) for all i ∈ N.
for δ ∈ {≈, <} there is an element →δ∈ Sδf and idempotents �δ, ↑δ, ↓δ∈ Sδf such that
〈y0, y0〉[0, g1)δ = →δ,
〈y0, y0〉[gi, gi+1)δ = 〈y1, y1〉[gi, gi+1)δ = �δ,
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〈y0, y1〉[gi, gi+1)δ = ↑δ,
〈y1, y0〉[gi, gi+1)δ = ↓δ and
→δ, ↑δ and ↓δ absorb �δ.

Proof Sktech. We first construct y0 and y1 and then show that these have the desired
properties. We define y0 as y0 := x1[0, h2)x0[h2, ω) and y1 by

y1[0, h2) := x1[0, h2) and
y1[h2l, h2l+2) := x1[h2l, h2l+1)x0[h2l+1, h2l+2) for l ≥ 1.

We set G = {h2kl+2 : l ∈ N} (remember k is the least common multiple of the exponents of
the involved semigroups). It holds that 〈y0, y1〉≈ = 〈y1, x1〉≈. So if y0 ≈ y1 then also y1 ≈ x1
and therefore y0 ≈ x1. But y0 ∼e x0 in contradiction to [x0]∼e

∩ [x1]≈ = ∅. That the other
postulated properties hold can be established by straightforward calculations. J

Now that we have y0 and y1, we are ready to construct u, v0 and v1. We set

u := y1[0, g0), v0 := y0[g0, g1) and v1 := y1[g0, g1).

From this definition we immediately get for δ ∈ {≈, <}:

〈u, u〉δ = →δ , 〈v0, v0〉δ = 〈v1, v1〉δ = �δ, 〈v0, v1〉δ = ↑δ and, 〈v1, v0〉δ = ↓δ .

In the following we will omit the subscripts and just write →, ↑, ↓ and � since it will be
obvious from the context which δ is meant.

We will now show that u{v0, v1}ω has all the properties that were announced at the
beginning of the proof.

I Lemma 21. u{v0, v1}ω ⊆ L

Proof. Let α be any sequence from {0, 1}ω.

(uvα)L = y1[0, g0)L(yα[i][g0, g1)L)i∈N = x1[0, g0)L(eL)ω = (x1)L ∈ FL

This means every uvα is in L and therefore u{v0, v1}ω ⊆ L. J

Next we show that at least some words from u{v0, v1}ω do encode distinct elements.

I Lemma 22. → (↑↓)ω 6∈ F≈.

Proof. First we see that →↑ω 6∈ F≈ since 〈y0, y1〉≈ =→↑ω and y0 6≈ y1. We will make use of
the transitivity of ≈ to show that also → (↑↓)ω 6∈ F≈. Suppose → (↑↓)ω ∈ F≈, then consider
the words u(v0v1v0)ω,u(v1v0v1)ω and u(v1v1v0)ω. We have
〈u(v0v1v0)ω, u(v1v0v1)ω〉≈ = → (↑↓↑)ω = → (↑↓)ω and 〈u(v1v0v1)ω, u(v1v1v0)ω〉≈ = →

(� ↑↓)ω = → (↑↓)ω.
Hence u(v0v1v0)ω ≈ u(v1v0v1)ω and u(v1v0v1)ω ≈ u(v1v1v0)ω and so by transitivity

u(v0v1v0)ω ≈ u(v1v1v0)ω, but 〈u(v0v1v0)ω, u(v1v1v0)ω〉≈ = → (↑ ��)ω = →↑ω 6∈ F≈, con-
tradiction. J

We conclude our proof by showing that < is indeed the lexicographic order on u{v0, v1}ω.

I Lemma 23. Either it holds for every α 6= β ∈ {0, 1}ω uvα < uvβ iff α <lex β or it holds
for every α 6= β ∈ {0, 1}ω uvα < uvβ iff β <lex α.
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Proof Sketch. First observe that u(v0v1)ω 6≈ u(v1v0)ω since 〈u(v0v1)ω, u(v1v0)ω〉≈ = →
(↑↓)ω 6∈ F≈. Therefore either u(v0v1)ω < u(v1v0)ω or u(v1v0)ω < u(v0v1)ω holds. In the first
case, we can show, for every α 6= β ∈ {0, 1}ω, that uvα < uvβ iff α <lex β. The other case
leads to the other part of the lemma’s statement and can be shown analogously.

Using the idempotence and absorption properties of ↑, ↓ and → it is possible to write
all elements 〈uvα, uvβ〉< as infinite products with no consecutive occurrences of two ↑, ↓
or � (except for infinite occurrences at the end). For every such infinite product ρ that
originates from the image of a word 〈uvα, uvβ〉 with α <lex β, it is possible to find words
w1, w2, w3 ∈ u{v0, v1}ω with 〈w1, w2〉< = 〈w2, w3〉< =→ (↑↓)ω and 〈w1, w3〉< = ρ. But, by
transitivity of <, this implies ρ ∈ F< and therefore we get that u{v0, v1}ω is ordered as
desired. J

Taking all together, we get that L restricted to u{v0, v1}ω is an injective ω-automatic
presentation of ({0, 1}ω, <lex), which completes the proof of Theorem 17. J

Combining the above Theorem 17 and Lemma 3 proves Theorem 2 for uncountable fields
of characteristic 0 with definable linear orders. Since countable ω-automatic structures have
injective presentations [6], these are covered by Theorem 1, and Theorem 2 follows.
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