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Abstract. Provenance analysis aims at understanding how the result
of a computational process with a complex input, consisting of multiple
items, depends on the various parts of this input. In database theory,
provenance analysis based on interpretations in commutative semirings
has been developed for positive database query languages, to under-
stand which combinations of the atomic facts in a database can be
used for deriving the result of a given query. In joint work with Val
Tannen, we have recently proposed a new approach for the provenance
analysis of logics with negation, such as first-order logic and fixed-point
logic. It is based on new semirings of dual-indeterminate polynomials
or dual-indeterminate formal power series, which are obtained by taking
quotients of traditional provenance semirings by congruences that are
generated by products of positive and negative provenance tokens. This
provenance approach has also been applied to fragments of first-order
logics such as modal and guarded logics. In this paper, we explore the
question whether, and to what extent, the provenance approach might
be useful in the field of description logics.

1 Introduction

This paper is intended as an account, written for the description logics com-
munity, of recent developments in semiring provenance, that make provenance
analysis applicable to logical formalisms with negation. In particular, we dis-
cuss the question whether provenance analysis could be a fruitful perspective for
description logics.

Provenance analysis is an algebraic approach to abstract from a compu-
tation with multiple input items, such as the evaluation of a database query,
mathematical information on how the result of the computation depends on
the various input data. In database theory, provenance analysis based on inter-
pretations in commutative semirings has been successfully developed for query
languages such as unions of conjunctive queries, positive relational algebra,
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nested relations, Datalog, XQuery, SQL-aggregates and several others, and it
has been implemented in software systems such as Orchestra and Propolis, see
e.g. [2,5,6,11,13,17]. In this approach, atomic facts are interpreted not just by
true or false, but by values in an appropriate semiring, where 0 is the value of
false statements, whereas any element a �= 0 of the semiring stands for some
shade of truth. These values are then propagated from the atomic facts to arbi-
trary queries in the language, which permits to answer questions such as the
minimal cost of a query evaluation, the confidence one can have that the result
is true, the number of different ways in which the result can be computed, or the
clearance level that is required for obtaining the output, under the assumption
that some facts are labelled as confidential, secret, top secret, etc. We refer to
[14] for a recent account on the semiring framework for database provenance.

We argue that provenance analysis may have a strong potential for useful
applications also in the context of description logics. We shall propose notions of
provenance semantics for ABoxes and TBoxes where concept and role assertions
take values in a commutative semiring, and concept inclusions C � D translate
into comparisons of such provenance values. The common reasoning problems in
description logics, such as subsumption, consistency, or query answering get a
new twist, generalizing Boolean reasoning to algebraic reasoning in a commuta-
tive semiring. Potential applications of this approach include cost computations
of concept assertions (by means of provenance evaluations in the tropical semir-
ing), the study of required clearance levels for accessing confidential or secret
data (using valuation in an access control semiring), or reasoning about confi-
dences achievable in ontology-mediated query evaluations. We shall discuss these
notions in more detail in Sects. 4 and 5 below.

For a long time, an essential limitation of the semiring provenance app-
roach has been its confinement to positive query languages. There have been
algebraically interesting attempts to cover difference of relations [1,7,8,12] but
they have not resulted in systematic tracking of negative information, and until
recently there has been no convincing provenance analysis for languages with
full negation. For applications to description logics, the inability to deal with
negation and absent information would certainly be a major obstacle. However,
a new approach for the provenance analysis of logics with negation, such as first-
order logic and fixed-point logic, has now been proposed in [9,10] based on the
following ingredients:

– Negation is dealt with by transformation to negation normal form. This is a
common approach in logic, but while this is often just a matter of convenience
and done for simplification, its seems indispensable for provenance semantics.
Indeed, beyond Boolean semantics, negation is not a compositional logical
operation: the provenance value of ¬ϕ is not necessarily determined by the
provenance value of ϕ.

– On the algebraic side, new provenance semirings of polynomials and formal
power series have been introduced, which take negation into account. They are
obtained by taking quotients of traditional provenance semirings by congru-
ences generated by products of positive and negative provenance tokens; they
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are called semirings of dual-indeterminate polynomials or dual-indeterminate
power series.

– Provenance analysis of logics is closely connected to provenance analysis of
games. In [10], the provenance approach to logics with negation is described
from the perspective of the associated model checking games. In fact prove-
nance analysis of games is of independent interest, and provenance values of
positions in a game provide detailed information about the number and prop-
erties of the strategies of the players, far beyond the question whether or not a
player has a winning strategy from a given position. However, in the interest of
a reasonably compact presentation, we do not use the game perspective in this
paper, but describe the approach in purely algebraic and logical terms.

In this paper we propose to study the potential of the semiring provenance
approach as a perspective for description logics. Although we ourselves are cer-
tainly not experts in description logics and their applications, we believe that
there are good reasons why this might be interesting and useful. Given that
most description logics use negation in an essential way, the new provenance
approach for dealing with negation could help to combine provenance analysis
and description logics in a fruitful way. A point in favour is that description
logics are, as it is put in the textbook [3], ‘cousins of modal logics’, and that
the new approach to provenance analysis has already been applied to modal and
guarded logics in [4]. On the other side, the application of provenance to descrip-
tion logics certainly also poses nontrivial problems. Indeed the standard scenario
of provenance analysis is formula evaluation in a fixed finite structure. In most
applications of description logics, however, a knowledge base is considered that,
logically speaking, axiomatizes a class of structures, and the main reasoning
problems are variants of satisfiability, validity, and entailment problems. Never-
theless, notions developed in [9] of provenance tracking interpretations by means
of dual-indeterminate polynomials permit to deal with multiple models, and with
reverse provenance analysis, constructing appropriate models from a given spec-
ification, at least in the case of a fixed universe. Further it also seems a quite
promising project to generalize the tableaux-based reasoning techniques that
are so popular in description logic to provenance semantics based on semirings.
Thus, while differences and difficulties exist, they do not seem unsolvable. We
thus hope that the description logic community will take an interest in these new
developments in provenance analysis, and that a fruitful collaboration between
the two fields will emerge.

This paper does not assume that the reader is already familiar with semiring
provenance. However, we do assume that the reader knows basic definitions and
results about description logics. Our notation and terminology is largely based
on [3].

2 Commutative Semirings

Definition 1. A commutative semiring is an algebraic structure (K,+, ·, 0, 1),
with 0 �= 1, such that (K,+, 0) and (K, ·, 1) are commutative monoids, · dis-
tributes over +, and 0 ·a = a ·0 = 0. A semiring is +-positive if a+ b = 0 implies
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a = 0 and b = 0. This excludes rings. A semiring is root-integral if a·a = 0 implies
a = 0. All semirings considered in this paper are commutative, +-positive and
root-integral. Further, a commutative semiring is positive if it is +-positive and
has no divisors of 0. The standard semirings considered traditionally in prove-
nance analysis are positive, but for the treatment of negation we need semirings
(of dual-indeterminate polynomials or power series) that have divisors of 0.

Notice that a semiring K is positive if, and only if, the unique function
h : K → {0, 1} with h−1(0) = {0} is a homomorphism from K into the Boolean
semiring B = ({0, 1},∨,∧, 0, 1). A semiring K is (+)-idempotent if a+a = a, for
all a ∈ K, and (+, ·)-idempotent if, in addition, a · a = a for all a. Further, K is
absorptive if a + ab = a, for all a, b ∈ K. Obviously, every absorptive semiring is
(+)-idempotent.

In provenance analysis, elements of a commutative semiring are used as truth
values for logical statements. The intuition is that + describes the alternative use
of information, as in disjunctions or existential quantifications whereas · stands
for the joint use of information, as in conjunctions or universal quantifications.
Further, 0 is the value of false statements, whereas any element a �= 0 of a
semiring K stands for a ‘nuanced’ interpretation of true.

2.1 Application Semirings

We briefly discuss some specific semirings that provide interesting information
about about a logical statement.

– The Boolean semiring B = ({0, 1},∨,∧, 0, 1) is the domain of standard logical
truth values.

– The semiring N = (N,+, ·, 0, 1) can be used for counting successful strategies
for query evaluation. It also plays an important role for bag semantics in
databases.

– T = (R∞
+ ,min,+,∞, 0) is called the tropical semiring. It has many applica-

tions for cost computations, for instance for query evaluation.
– The Viterbi semiring V = ([0, 1],max, ·, 0, 1) is isomorphic to T via x 	→ e−x

and y 	→ − ln y. We will think of the elements of V as confidence scores and
use it to describe the confidence assigned to a logical statement.

– The access control semiring is A = ({P < C < S < T < 0},min,max, 0,P)
where P is ‘public’, C is ‘confidential’, S is ‘secret’, T is ‘top secret’, and 0
is ‘so secret that nobody can access it!’. The valuation of a statement in A

describes the minimal clearance level that is needed to establish it.
– The max-min semiring on a totally ordered set (A,≤) with least element a

and greatest element b is the semiring (A,max,min, a, b). The class of max-
min semirings includes, of course, the Boolean semiring and the access control
semiring but also infinite ones, for instance the one on the real interval [0, 1]
which is sometimes called the fuzzy semiring.
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2.2 Provenance Semirings

Beyond such application semirings, there are important universal provenance
semirings of polynomials and formal power series that are used for a general
provenance analysis. They admit to compute provenance values once in a general
semiring and then to specialise these via homomorphisms to specific application
semirings as needed.

Let X be a set of abstract provenance tokens, i.e. variables that we use
to label atomic data (such as concept or role assertions in description logics).
The commutative semiring that is freely generated by the set X is N[X] =
(N[X],+, ·, 0, 1), the semiring of multivariate polynomials in indeterminates from
X and with coefficients from N.

Computing provenance values of a statement ϕ (from some appropriate log-
ical formalism) in N[X] gives us precise information about which combinations
of the atomic facts can be used to derive ϕ. Indeed, each monomial cxe1

1 . . . xek

k

that occurs in the provenance polynomial π[[ϕ]] ∈ N[X] indicates that we have
c different evaluation strategies that make use of precisely those atomic facts
that are labelled by x1, . . . xk and use the fact labelled by xi precisely ei times.
Evaluation strategies can be understood either as ‘proof trees’ (as in [9,13]) or
as winning strategies in the model checking game associated with ϕ (as in [10]).

There are a number of other polynomial semirings that can be obtained from
N[X] by dropping coefficients, dropping exponents, or absorption laws, in which
provenance polynomials are less informative, but possibly easier to compute.
This includes the +-idempotent semiring B[X], the so-called why semiring W[X],
the absorptive semiring S[X] and the free distributive lattice PosBool(X), see
e.g. [10,13,14] for more information.

However, in none of these semirings there is an adequate treatment of nega-
tion, or tracking of missing information, because either negative atoms are not
represented at all, or an atom and its negation are labelled by two different
tokens without any algebraic connection between them. To address this issue, a
new approach has been proposed in [9], and further developed in [10].

2.3 Dual-Indeterminate Polynomials and Formal Power Series

Here is the algebraic construction to make provenance analysis available for logics
with negation. Let X, X̄ be two disjoint sets of provenance tokens, together with
a bijection X → X̄, that maps each ‘positive’ token p ∈ X to a corresponding
‘negative’ token p̄ ∈ X̄. We call p and p̄ complementary tokens. By convention,
if we annotate an atomic fact by p then p̄ can only be used to annotate its
negation, and vice versa.

Definition 2. The semiring N[X, X̄] of dual-indeterminate polynomials is the
quotient of the semiring of polynomials N[X∪X̄] by the congruence generated by
the equalities p · p̄ = 0 for all p ∈ X. This is the same as quotienting by the ideal
generated by the polynomials pp̄ for all p ∈ X. Two polynomials f, g ∈ N[X ∪X̄]
are congruent if, and only if, they become identical after deleting from each of
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them the monomials that contain complementary tokens. Hence, the congruence
classes in N[X, X̄] are in one-to-one correspondence with the polynomials in
N[X ∪ X̄] such that none of their monomials contains complementary tokens.

Note that the semirings N[X ∪ X̄] are +-positive and root-integral, but not
positive, since they obviously admit divisors of 0.

The semirings N[X, X̄] turn out to be adequate for a general provenance
analysis of full first-order logic (with negation) [9], and hence also for full rela-
tional algebra (not just its positive fragment). This extends to fragments of first
order logic such as modal and guarded logics [4] and (as we propose in this
paper) description logics. However for logics with fixed points or with mech-
anisms of unbounded iteration, polynomial semirings are not sufficient. Even
for a formalism as simple as datalog (avoiding all complications arising from
universal quantification and negation) one has to impose additional conditions
on the semirings to guarantee the existence of least fixed points [5]. Of par-
ticular importance are ω-continuous semirings. Many application semirings are
ω-continuous, but N, and the polynomial semirings N[X] and N[X, X̄] are not.
The ω-continuous completion of N is N

∞ := N∪{∞} (with a+∞ = a ·∞ = ∞),
but the completion of N[X] is N

∞[[X]] which is not a semiring of polynomials, but
of formal power series (possibly infinite sums of monomials), with coefficients in
N

∞ and indeterminates in X, with addition and multiplication defined in the
standard way. We combine this with our approach for dealing with negation by
taking quotients.

Definition 3. The semiring N
∞[[X, X̄]]] is the quotient of the semiring of power

series N
∞[[X ∪ X̄]] by the congruence generated by the equalities p · p̄ = 0 for all

p ∈ X. The congruence classes in N
∞[[X, X̄]] are in one-to-one correspondence

with the power series in N
∞[[X ∪ X̄]] such that none of their monomials contain

complementary tokens. We call these dual-indeterminate power series.

Every function f : X ∪ X̄ → K into an ω-continuous semiring K with the
property that f(p) · f(p̄) = 0 for all p ∈ X extends uniquely to an ω-continuous
semiring homomorphism h : N

∞[[X, X̄]] → K that coincides with f on X ∪ X̄.

3 Provenance for Model Checking Problems

Provenance analysis has been developed for query evaluation and, more generally,
model checking problems in logic, in particular first-order logic and its fragments.

Let τ be a vocabulary, which in the case of description logics contains only
unary predicates (concept names) and binary predicates (role names), and fix a
finite universe Δ. We denote by AtomsΔ(τ) the set of all atoms Rā with R ∈ τ
and ā ∈ Δk. Further, let NegAtomsΔ(τ) be the set of all negated atoms ¬Rā
where Rā ∈ AtomsΔ(τ), and consider the set of all τ -literals on A, LitΔ(τ) :=
AtomsΔ(τ) ∪ NegAtomsΔ(τ) ∪ {a op b : a, b ∈ A}, where op stands for = or �=.

Definition 4. Given any commutative semiring K, a K-interpretation (for τ
and Δ) is a function π : LitΔ(τ) → K that maps equalities and inequalities
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to their truth values 0 or 1. A K-interpretation is sound for negation if π[α] ·
π[¬α] = 0 for every atom α ∈ AtomsΔ(τ). In this paper, all K-interpretations
are assumed to be sound for negation.

The equality and inequality atoms are interpreted in K as 0 or 1, i.e., their
provenance is not tracked. One could give a similar treatment to other relations
with a fixed meaning, e.g., assuming a linear order on A. However, we do not
pursue this in this paper.

We have defined in [9] how a semiring interpretation extends to a full valu-
ation π : FO(τ) → K mapping any fully instantiated formula ψ(ā) to a value
π[[ψ]], by setting

π[[ψ ∨ ϕ]] := π[[ψ]] + π[[ϕ)]] π[[ψ ∧ ϕ]] := π[[ψ]] · π[[ϕ]]

π[[∃xϕ(x)]] :=
∑

a∈Δ

π[[ϕ(a)]] π[[∀xϕ(x)]] :=
∏

a∈Δ

π[[ϕ(a)]].

For negation, we set π[[¬ϕ]] := π[[nnf(¬ϕ)]] where nnf(ϕ) is the negation normal
form of ϕ.

As shown in [9], for positive semirings, and also for the interpretations
in semirings of dual indeterminate polynomials that we are interested in, the
soundness for negation extends from atoms to arbitrary first-order formulae and
implies that π[[ϕ]] ·π[[¬ϕ]] = 0 for all ϕ ∈ FO. However, since we admit semirings
with divisors of 0, soundness for negation does not necessarily imply that one of
π[[ϕ]] and π[[¬ϕ]] must be 0.

For modal and guarded logic similar definitions of provenance interpretations
have been given and analysed in [4]. It is not difficult to adapt these definitions
for description logics. Here is one for ALC. For simplicity of notation we identify
individual names with elements of the universe. Further, all concept assertions
of form a :C where C is a concept name or the negation of a concept name, and
all role assertions (a, b) : r for a role name r are viewed as literals in some set
LitΔ(τ).

Definition 5. Let π : LitΔ(τ) → K be a K-interpretation for a finite universe
Δ and a vocabulary τ of concept names and role names. Given a role name r
and an element a ∈ Δ, let r(a) := {b : π((a, b) :r) �= 0}. For shortness we define
π(rab) := π((a, b) : r). We extend π to concept assertions a : C consisting of an
ALC concept description C, assumed to be given in negation normal form, and
an element a ∈ Δ by

π[[a :⊥]] := 0 π[[a :�]] := 1
π[[a :C � D]] := π[[a :C]] + π[[a :D]] π[[a :C � D]] := π[[a :C]] · π[[a :D]]
π[[a :∃r.C]] :=

∑

b∈r(a)

(π(rab) · π[[b :C]]) π[[a :∀r.C]] :=
∏

b∈r(a)

(π(rab) · π[[b :C]]).

The close relationship between description logics and modal logics admits
to carry over the complexity results for computing provenance values of modal
formulae [4] to this setting.
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Proposition 1. Let K be an arbitrary semiring. Given a concept description
C in ALC, a K-interpretation π : LitΔ(τ) → K, and an element a ∈ Δ, the
provenance value π[[a :C]] can be computed with O(|C| · |π|) semiring operations.

Notice that for concept descriptions in full first-order logic rather than ALC,
the number of semiring operations needed to compute provenance values may be
much higher. Indeed, the straightforward approach requires an exponential num-
ber of operations with respect to the length of a first-order concept description,
and since even in the Boolean case, the model checking problem for first-order
logic is Pspace-complete, it is unlikely that polynomial bounds are possible.

Nevertheless, despite the relatively small number of semiring operations that
are needed to compute provenance values for ALC, the complexity of such com-
putations may, depending on the costs of representing elements in the given
semiring and the costs of addition and multiplication, still be rather high, in
fact doubly exponential in the length of the concept description. See [4] for a
detailed complexity analysis for the case of modal and guarded logic.

4 Provenance Semantics for ABoxes and TBoxes

We have described basic observations about the definition and computation of
provenance values for concept assertions in ALC. However the important rea-
soning tasks associated with description logics are not so much the evaluation
of a concept assertion in a given interpretation. Description logics are used as
knowledge representation languages. A knowledge base typically consists of a
TBox T which is a finite set of general concept inclusions C � D, describing
conceptual knowledge about the domain of application, and an ABox A, which
is a finite set of concept assertions a :C and role assertions (a, b) : r, describing
specific data. Relevant questions, given an ALC knowledge base (A, T ), concern
for instance the subsumption and equivalence of two given concepts in all mod-
els of T , the consistency of the knowledge base, or the question whether a given
concept assertion a :C is entailed by the knowledge base.

Can semiring provenance provide any additional insights for knowledge rep-
resentation by description logics? To discuss such questions, we first discuss what
provenance semantics might mean for ABoxes and TBoxes.

Provenance Semantics for an ABox. Since an ABox defines a set of state-
ments that are asserted to be true, a natural possibility to define its provenance
semantics could be to assign to every assertion in the ABox a non-zero value in
the semiring, defining its precise ‘shade of truth’. However, we propose a defini-
tion that is a little more general, which gives us also the possibility to declare
that a :C just has some shade of truth ≥ k or > k without a commitment to a
precise value.

Definition 6. A K-valued ABox is a finite set of statements of form π[[α]] op k
where α is a concept assertion or role assertion, k is an element of the semiring
K, and op is =,≥, or >.
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In DL one sometimes restricts attention to simple ABoxes admitting only
concept assertions a :C where C is a concept name, and simple K-valued ABoxes
are defined analogously. This comes with no loss of expressive power since one
can replace each assertion a :C by a :AC , where AC is a new concept name, and
then add an equivalence AC ≡ C to the TBox.

Provenance Semantics for a TBox. For a given TBox T , let τ be a vocab-
ulary containing all concept names and role names appearing in T , let Δ be
a finite universe and K a commutative semiring. We want to discuss what it
means that a K-interpretation π : LitΔ(τ) → A is consistent with T .

There are two main possibilities. For the stronger one we assume, without
loss of generality, that T is given as a finite set of concept inclusions C � D.

Definition 7. A K-interpretation π : LitΔ(τ) → K is strongly consistent with
T , if for every concept inclusion C � D in T and every a ∈ Δ, we have that
π[[a :C]] ≤ π[[a :D]].

Recall that the natural order in a semiring K is defined by x ≤ y :⇐⇒
∃z(x + z = y). The requirement that our semirings are naturally ordered means
that ≤ is antisymmetric (i.e. x ≤ y ∧ y ≤ x only for x = y). Hence, if T contains
both C � D and D � C, and thus imposes an equivalence C ≡ D, strong
consistency means that π[[a :C]] = π[[a :D]] for all a.

This strong notion of consistency is rather restrictive. In many applications
it may not be adequate to require that a subsumption between two concepts
translates in this precise way into an ordering between their truth values. A less
restrictive possibility is to view a concept inclusion C � D as a requirement that
whenever a : C has a positive ‘shade of truth’ then so has a : D. On the other
side, this does not seem right in the case of concept definitions A ≡ C, where A
is a concept name; in this case we should, of course, require that all provenance
values of A and C are the same.

For the weaker notion of consistency that we have in mind we therefore
rewrite a TBox as a disjoint union T = T0 ∪ T1 where T0 is an acyclic TBox,
consisting of concept definitions A ≡ C, without cyclic dependencies among
them, and T1 is written as a finite set of equations C �D = ⊥. Notice that in the
Boolean case, this is just an equivalent rewriting because any concept inclusion
C � D is equivalent to C � ¬D = ⊥.

Definition 8. A K-interpretation π : LitΔ(τ) → K is weakly consistent with a
TBox T0 ∪ T1, if

(1) for every concept definition A ≡ C in T0 and every a ∈ Δ, we have that
π[[a :A]] = π[[a :C]], and

(2) for every equation C � D = ⊥ in T1 we have that
∑

a∈Δ

π[[a :C]] · π[[a :D]] = 0.
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As a sanity check for these definitions, we prove

Proposition 2. If π is strongly consistent with a TBox T = T0 ∪ T1, then it is
also weakly consistent with T .

Proof. We just have to show that, for every equation C �D = ⊥ in T1 and every
a ∈ Δ, we have that π[[a : C]] ≤ π[[a : ¬D]] implies π[[a : C]] · π[[a : D]] = 0. But
π[[a :C]] ≤ π[[a :¬D]] implies that also π[[a :C]]·π[[a :D]] ≤ π[[a :¬D]]·π[[a :D]] = 0 by
distributivity and soundness for negation. Further, since the semiring is assumed
to be +-positive, it follows that π[[a :C]] · π[[a :D]] = 0. ��

Definition 9. A provenance knowledge base consists of a K-valued ABox A
and a TBox T . We say that a K-interpretation π : LitΔ(τ) → K is strongly (or
weakly) consistent with (A, T ) if τ contains all role names and concept names
occuring in A and T and T , if Δ contains all individual names occurring in A
and

(1) π satisfies all assertions occurring in A,
(2) π is strongly (or weakly) consistent with T .

Such a K-interpretation is also called a K-model (or a weak K-model) of (A, T ).

5 Reasoning Problems for Provenance Knowledge Bases

The distinction between strong and weak consistency corresponds with a distinc-
tion between strong and weak subsumption between two concept descriptions.
We say that C is strongly subsumed by D, in a K-interpretation π, in symbols
C �π D, if π[[a : C]] ≤ π[[a : D]] for all elements a of π. Similarly C is weakly
subsumed by D in π, in symbols C �w

π D if π[[a :C]] ·π[[a :¬D]] = 0 for all a. This
also implies two notions of strong and weak equivalence between two concept
descriptions, denoted C ≡π D, and C ≡w

π D. Further, we write C �T D and
C �(A,T ) D to denote that such a subsumption holds in all models of a TBox
T or in all models of a provenance knowledge base (A, T ), and analogously for
the other subsumption and equivalence properties.

In analogy to and generalisation of the standard reasoning problems in DL we
propose the following problems, for a given provenance knowledge base (A, T ).

Subsumption. What kind of subsumption and equivalence properties hold
between concept descriptions in K-models of T ? In particular, describe the
subsumption hierarchy and the weak subsumption hierarchy entailed by T .

Consistency. Do there exist K-interpretations that are (strongly or weakly)
consistent with (A, T )?

Provenance values. Given a concept assertion a : C, what are the possible
provenance values π[[a :C]] in (weak) models of (A, T )? In particular is there
a possible provenance value π[[a :C]] �= 0 in some such model; this generalizes
the satisfiability problem.
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Query answering. Given a (Boolean) query q, formulated in some appropriate
query language, what are the possible provenance values π[[q]] in models of
(A, T )? In particular, is π[[q]] �= 0 in all such models?

Depending on the choice of the semiring, this permits to answer questions
about issues such as cost, confidences, or required clearance levels for statements
that we derive from the knowledge base. Here are a few examples:

(1) Consider a provenance knowledge base (A, T ) with interpretations in the
tropical semiring T = (R∞

+ ,min,+,∞, 0). We view π[[a : A]] as the cost of
using the assertion a :A. If (A, T ) entails a strong subsumption C � D then
this means that for all a, it is less expensive to establish the assertion a :C
than a :D. If (A, T ) entail such a subsumption only in the weak sense, then
this means that whenever a : D can be established for free (with cost 0),
then this is also the case for a :C.

(2) Given a TBox T and an A-valued ABox A (i.e. with valuations in the access
control semiring), the consistency of the provenance knowledge base (A, T )
means that the clearance levels required by the A are compatible with the
hierarchy of access restrictions as imposed by the TBox. For instance, (A, T )
would be inconsistent if the TBox imposes a subsumption C � D, but A
declares a :C to be top secret and a :D only confidential.

(3) Given a provenance knowledge base (A, T ) with interpretations in the
Viterbi semiring of confidence scores, the maximal provenance value π[[q]]
of a Boolean query q in models π of (A, T ) describes the confidence we can
have that q holds in some model of (A, T ).

The question arises to what extent, with what algorithmic and complex-
ity theoretic consequences, the common reasoning techniques, such as tableaux,
automata based methods, query rewriting, and so on extend to the semiring
provenance setting.

6 Tableaux Rules for Provenance Knowledge Bases

A standard approach in description logics for checking the consistency of a knowl-
edge base or an ABox is based on tableaux. A tableaux algorithm uses a system
of rules to extend a given ABox by more and more assertions; for instance if an
ABox A contains the assertion a :C � D, but not both a :C and a :D, then one
extends A to A′ = A ∪ {a : C, a : D}. This process of adding new assertions is
iterated until one can either read off a model from the incremented ABox, or it
contains a clash of the form a :C and a :¬C, so that that one can conclude that
the original ABox is inconsistent. See for instance [3] for a full description of a
tableaux algorithm for ALC.

The question arises whether the tableaux approach also works for provenance
knowledge bases. We show that this is indeed the case if we restrict ourselves to
the class of absorptive semirings for which the natural order is a linear order.
For this class, we can present a tableaux algorithm which correctly determines
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whether the given provenance knowledge base is consistent, provided the ABox
does not contain equality statements. Moreover, for the subclass of max-min-
semirings our tablaux rules do not only check consistency but also produce
more detailed descriptions of the K-models. Additionally for max-min semirings
we can allow equality statements in the ABox.

We call a K-valued ABox A normalized if each assertion in A is in negation
normal form and for each α = a :C or α = (a, b) :r there is at most one statement
about the K-value of α in A. Additionally we disallow trivial statements π[[α]] ≥
0. We can normalize any K-valued ABox A by simply deleting all assertions
π[[α]] ≥ k and π[[α]] > k for which k is not maximal and by deleting π[[α]] ≥ k if
π[[α]] > j ∈ A for some j ≥ k or if k = 0.

Tableaux Rules for K-valued ABox Consistency. For simplicity we will not
define rules for assertions of the form π[[α]] > k because they are easy adaptations
of the rules for assertions of the form π[[α]] ≥ k. However we have to exclude
assertions of the form π[[α]] = k, because for most semirings we cannot guarantee
to satisfy for instance p ·q = k by requirements on p and q that do not depend on
the value of the respective other factor. Though this is a significant restriction,
it is fair to assume that in many cases it suffices to require that a concept or role
assertion has ‘at least truth value k’ instead of requiring the provenance value
to be an exact k ∈ K.

So let A be a K-valued ABox consisting of assertions of the form π[[a :C]] ≥ k
or π[[(a, b) : r]] ≥ k, where C is not necessarily atomic and k is a value from a
provenance semiring K, which we assume to be absorptive and totally ordered
by its natural order. In particular this implies that addition in K is max and that
multiplication in K is deflationary in both arguments with respect to the natural
order, i.e. a ·c = c ·a ≤ a for any a, c ∈ K. The reason for this requirement is that
we would like to be able to deduce form π[[a :C�D]] ≥ k that one of the assertions
π[[a :C]] ≥ k and π[[a :D]] ≥ k also has to hold, and from π[[a :C � D]] ≥ k that
both of them are true. In a general semiring, this is not necessarily the case and
in fact we might not get any useful information about π[[a :C]] and π[[a :D]] from
π[[a :C � (�)D]] ≥ k. With these restrictions we are able to define tableaux rules
for consistency checking of K-valued ABoxes:

�-rule: if
1. π[[a :C � D]] ≥ k ∈ A, and
2. {π[[a :C]] ≥ i, π[[a :D]] ≥ j} � A for all i, j ≥ k

then A −→ A ∪ {π[[a :C]] ≥ k, π[[a :D]] ≥ k}
�-rule: if

1. π[[a :C � D]] ≥ k ∈ A, and
2. {π[[a :C]] ≥ j, π[[a :D]] ≥ j} ∩ A = ∅ for all j ≥ k

then A −→ A ∪ {π[[a :X]] ≥ k} for some X ∈ {C,D}
∃-rule: if

1. π[[a :∃r.C]] ≥ k ∈ A, and
2. there is no b and no i, j ≥ k such that {π[[(a, b) :r]] ≥ i, π[[b :C]] ≥ j} ⊆ A

then A −→ A ∪ {π[[(a, d) :r]] ≥ k, π[[d :C]] ≥ k}, where d is new in A
∀-rule: if
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1. {π[[a :∀r.C]] ≥ k, π[[(a, b) :r]] ≥ 	} ⊆ A for some 	 ∈ K, 	 > 0, and
2. there are no i, j ≥ k such that {π[[(a, b) :r]] ≥ i, π[[b :C]] ≥ j} ⊆ A

then A −→ A ∪ {π[[(a, b) :r]] ≥ k, π[[b :C]] ≥ k}

The tableaux rules are then applied in an algorithm which works as follows. It
receives a normalized K-valued ABox as input and chooses one applicable rule.
Then it applies that rule, creating an extended ABox which is then transformed
into a normalized one. This continues until either a clash occurs, i.e. A contains
assertions π[[a :C]] ≥ j and π[[a :¬C]] ≥ k for j, k > 0, or no more tableaux rules
are applicable. If the algorithm registers a clash, it returns ‘inconsistent’, and
if it does not and no more rules are applicable, it returns ‘consistent’ and the
ABox that has been constructed.

Similarily to the algorithm for a classical (non-provenance) ABox described
in [3] this algorithm is non-deterministic in two ways. Firstly, it does not specify
in which order the rules are applied. This is not a problem, since these choices do
not affect the outcome of the algorithm, nor the ABox that is returned. The other
form of non-determinism lies in choosing the concept X in the �-rule. This is a
relevant choice but one can determinize the algorithm by simultaneously tracking
all ABoxes one could construct at once and checking that not all of them contain
a clash.

The tableaux rules are based on the implications that in K if p · q ≥ k, then
p ≥ k and q ≥ k and if p + q ≥ k, then p ≥ k or q ≥ k, which hold in absorptive
semirings with linear natural order. Thus it is easy to check that if the algorithm
observes a clash, then the original ABox was already inconsistent. However the
implication for multiplication is not an equivalence. As a consequence, not every
K-model of the set of atomic assertions in the final ABox A will be a K-model of
the original ABox. Still we can construct a K-model from these atomic assertions
by setting π[[α]] = 1 and π[[α]] = 0 if π[[α]] ≥ k ∈ A for some k. Here, α
describes the complementary statement (in negation normal form) to α, for
instance a :¬C = a : C. If there is no k such that either π[[α]] ≥ k ∈ A or
π[[α]] ≥ k ∈ A, we assign 0 to non-negated statements α and 1 to negated ones.
It is important to note that in an absorptive semiring, 1 is always the maximal
element with respect to the natural order. And since 1 + 1 = 1 and 1 · 1 = 1
in these semirings, all nonatomic β which occur in assertions in A will also
have K-value 1 and thus satisfy their respective assertions. Thus the tableaux
algorithm is sound and complete and it terminates because each step simplifies
the formulae which can only be done a finite number of times.

Notice that if the algorithm returns ‘consistent’, we also return A. This is
because while not every K-model of the atomic assertions in A is a K-model
of the ABox, they still are necessary conditions for satisfying the ABox. Thus
the new K-valued ABox gives us some information about the K-models of the
original one. This is of course not new information as the new ABox has exactly
the same K-models as the old one, but it gives us some requirements for the
K-values of the atomic statements.

In max-min-semirings this information on the atomic statements is even more
useful. In these semirings p · q ≥ k is equivalent to (p ≥ k and q ≥ k) and
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p+q ≥ k is equivalent to (p ≥ k or q ≥ k). Hence we do not lose any information
by applying the tableaux rules and discarding the initial assertion while keeping
the added ones. It follows that if our tableaux algorithm returns ‘consistent’, any
K-model of the atomic assertions in the newly constructed ABox that sets all
K-values of positive statements not in the ABox to 0 and negative statements
to 1 will also be a K-model of the assertions from the original ABox. Thus we
do not only get the one model where every relevant fact is set to 1, but possibly
many more K-models. Additionally for max-min semirings we can define rules
for assertions of the form π[[α]] = k by introducing assertions using ≤ k for which
we can in turn define rules. This is because any addition and multiplication will
always take the value of one of its summands or factors. For example p+q = k is
equivalent to (p = k and q ≤ k) or (q = k and p ≤ k). We will not write down the
resulting rules here, but they can be easily constructed from such equivalences.

Tableaux Rules for Provenance Knowledge Base Consistency. A more
general problem than K-valued ABox consistency, is the consistency of a given
provenance knowledge base (A, T ). For an acyclic TBox T we can do this by
adding a rule for �. This rule depends on wether we require weak or strong
consistency with T with respect to �. For strong consistency this looks as follows.
Again we require A to be normalized and K to be absorptive and to have a linear
natural order.

strong �-rule: if
1. π[[a :C]] ≥ k ∈ A, C � D ∈ T , and
2. π[[a :D]] ≥ j /∈ A for all j ≥ k

then A −→ A ∪ {π[[a :D]] ≥ k}

If we now adjust the tableaux algorithm to check a provenance knowledge
base instead of an ABox and add the strong �-rule to the tableaux rules, we get
an algorithm that checks consistency for acyclic knowledge bases.

If we consider weak consistency, we first need an equivalence rule.

≡-rule: if
1. π[[a :C]] ≥ k ∈ A, {C ≡ D,D ≡ C} ∩ T �= ∅, and
2. π[[a :D]] ≥ j /∈ A for all j ≥ k

then A −→ A ∪ {π[[a :D]] ≥ k}

For the weak �-rule we encounter a small issue, which has to do with the
fact that we restricted ourselves to assertions of the form π[[α]] ≥ k instead of
also allowing > k. As mentioned, this restriction is not necessary and it is easy
to define the corresponding rules for > for all tableaux rules defined so far. So
if we allow assertions π[[α]] > k, the �-rule for weak consistency looks like this:

weak �-rule: if
1. {π[[a :C]] ≥ k, π[[a :C]] > k} ∩ A �= ∅, C � D = ⊥ ∈ T , and
2. {π[[a :¬D]] op j, π[[a :¬D]] > 0 | op ∈ {≥, >}} ∩ A = ∅ for all j ∈ K

then A −→ A ∪ {π[[a :D]] > 0}
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The problem with defining this rule with only ≥ is that we cannot express
that some value is non-zero. While using ≥ might seem more intuitive at first
glance, this is a reasonable argument for using > if one wants to restrict to only
one kind of comparison. It is still possible to define a weak �-rule using only ≥
but this adds some additional non-determinism. This time, it does not lie in the
choice of the concept, as in the �-rule, but in the choice of semiring value.

weak �-rule, ≥-version: if
1. π[[a :C]] ≥ k ∈ A, C � D = ⊥ ∈ T , and
2. π[[a :¬D]] ≥ ε /∈ A for all ε ∈ K

then A −→ A ∪ {π[[a :D]] ≥ ε} for some ε ∈ K

With one of the weak �-rules added to the algorithm in place of the strong
�-rule we again get a consistency checking algorithm for acyclic provenance
knowledge bases. This time it checks weak consistency within the TBox. If we use
the ≥-version of the rule however, this algorithm is not only non-deterministic
but it can in general not be determinised in the same way as the algorithm
containing only the �-rule. The reason is that unlike for the �-rule we might
have infinitely many choices for ε in the weak �-rule which we cannot track all
at once. With the weak �-rule allowing > we do not run into this issue.

Lastly, we can consider general TBoxes, which are not necessarily acyclic.
Here we encounter the same challenge as in the Boolean case that we have
to guarantee termination. Consider for instance strong TBox consistency and
assume we use the rules as they are defined right now. If T contains C � ∃r.C
and π[[a :C]] ≥ k ∈ A then we will add π[[a :∃r.C]] ≥ k to A. After that we will
apply their ∃-rule and add π[[(a, d) : r]] ≥ k, π[[d : C]] ≥ k for a new symbol d
and then we will repeat the same process with d. This will repeat over and over
again and never terminate.

In order to avoid this issue, we need to introduce an additional termination
condition for the ∃-rule. In the Boolean case this is done by the concept of a
blocked individual name (see for instance [3]). We call a an ancestor of b if there
is a sequence of relations r1, . . . , rl and of individual names c1, . . . , cl−1 such that
(a, c1) : r1 ∈ A, (c1, c2) : r2 ∈ A, . . . , (cl−1, b) : rl ∈ A. An individual name b is
called blocked by a if a is an ancestor of b and {C | b :C ∈ A} ⊆ {C | a :C ∈ A}.
To put it less technically this means that b can be reached from a via some
relation assertions in A and a has to satisfy any concept assertion that b has to
satisfy. If we think of constructing a model, this means that if we reach such a
point with the Boolean tableaux rules, we can set b = a and form a loop at that
point. A detailed explanation on why this is possible can be found in [3].

Now we need to adapt this termination condition to the provenance setting.
We call a a K-ancestor of b if there is a sequence of relations r1, . . . , rl and of
individual names c1, . . . , cl−1 such that π[[(a, c1) : r1]] ≥ k1 ∈ A, π[[(c1, c2) : r2]] ≥
k2 ∈ A, . . . , π[[(cl−1, b) : rl]] ≥ kl ∈ A for some k1, . . . , kl > 0. We define an
individual name b to be K-blocked by a if a is a K-ancestor of b and for each
C such that π[[b : C]] ≥ k ∈ A we have π[[a : C]] ≥ j ∈ A for some j ≥ k. Again
the intuition is that a has to satisfy all constraints on b, also taking into account
the lower bound on the K-value. We say that b is K-blocked if b is K-blocked by
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some a. Again if b is blocked by a this makes it possible to form a loop. Hence
we can define the new ∃-rule as follows.

∃-rule: if
1. π[[a :∃r.C]] ≥ k ∈ A, and
2. there is no b and no i, j ≥ k such that {π[[(a, b) :r]] ≥ i, π[[b :C]] ≥ j} ⊆ A,

and
3. a is not K-blocked

then A −→ A ∪ {π[[(a, d) :r]] ≥ k, π[[d :C]] ≥ k}, where d is new in A

In order to ensure termination with the help of this rule, we need to check that
none of the rules will again and again increase the lower bounds that occur in A.
This would avoid the blocking condition as it would further and further restrict
the conditions on the individual names that are introduced. But almost all rules
do not introduce a bound which is larger than the bound of the original assertion.
Only the weak �-rule in the ≥-version has to be adapted slightly. Intuitively the
ε which can be chosen as lower bound in that rule should be as small as possible
but theoretically it may be set to a value larger than k. We can simply fix this
issue by requiring that ε ≤ k since the only information we want to reflect is
that the value is larger than 0. In this new version, the algorithm is guaranteed
to terminate both for strong and weak consistency because as in the Boolean
case, there will be only finitely many assertions about non-blocked names if the
values from the semiring, which are introduced, do not grow. Soundness and
completeness can also be proved similarly to the Boolean case for which a proof
can be found in [3].

7 Provenance-Tracking Interpretations

Also for classical reasoning problems in DL, for purely Boolean knowledge bases
K = (A, T ) a provenance approach might be helpful, at least over a fixed uni-
verse. Provenance interpretations in polynomial semirings can track precisely
which combinations of atomic facts are responsible for the truth and falsity of
a statement, and thus may help to ‘repair’ an interpretation that is inconsistent
with some requirement.

Definition 10. An N[X, X̄]-interpretation is provenance-tracking if it is
induced by a mapping π : LitΔ(τ) → X ∪ X̄ ∪ {0, 1} such that π(AtomsΔ(τ)) ⊆
X ∪ {0, 1} and π(NegAtomsΔ(τ)) ⊆ X̄ ∪ {0, 1}. Further, π maps equalities and
inequalities to their truth values 0 or 1.

The idea is that if π annotates a positive or negative atom with a token, then
we wish to track that literal through the model-checking computation. On the
other hand annotating with 0 or 1 is done when we do not track the literal, yet
we need to recall whether it holds or not in the model. See [9] for more details
and potential applications of provenance-tracking interpretations.

Consider now a simple ABox A and some fixed, but sufficiently large, uni-
verse Δ that in particular contains all individual constants appearing in A. Any
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concept or role assertion in A is identified with an atom α ∈ AtomsΔ(τ) for an
appropriate vocabulary τ . Further, let X be the set of provenance tokens pα, for
α ∈ AtomsΔ(τ), and let X̄ be the corresponding set of negative tokens p̄α. We
say that a knowledge base K = (A, T ) is consistent over Δ if it has a model with
universe Δ.

We define the provenance tracking interpretation πA : LitΔ(τ) → N[X, X̄]
by

πA(α) :=

{
1 if α ∈ A
pα otherwise

πA(¬α) :=

{
0 if α ∈ A
p̄α otherwise

Notice that for each assertion a : C the provenance value πA[[a : C]] is a
polynomial in N[X, X̄] with indeterminates pα and p̄α for α �∈ A. An equation
system in N[X, X̄] is a set E of equations of form f = 0 with f ∈ N[X, X̄].
A solution of E in a semiring K is a function h : X ∪ X̄ → K, making all
equations in E true, such that for each token p ∈ X we have that h(p) = 0
if, and only if, h(p̄) �= 0. In particular, such a solution is a model-defining K-
interpretation [9], defining the unique structure over Δ making precisely those
atoms α ∈ AtomsΔ(τ) true for which h(pα) �= 0.

Definition 11. We associate with every knowledge base K = (A, T ) and every
universe Δ the equation system EΔ

K consisting of the equations

πA[[a :C]] · πA[[a :¬D]] = 0

for all concept inclusions C � D ∈ T and all a ∈ Δ.

Proposition 3. A knowledge base K = (A, T ) is consistent over Δ if, and only
if, the equation system EΔ

K has a solution (in any semiring K).

Due to the assumption that our semirings are +-positive, we can expand the
equation system EΔ

K into a single polynomial

fΔ
K (X, X̄) :=

∑

C�D∈T

∑

a∈Δ

πA[[a :C]] · πA[[a :¬D]]

and we have that the solutions of the equation fΔ
K (X, X̄) = 0 are in correspon-

dence with the models of the knowledge base K on the universe Δ. Notice that
for just finding the zeros of fΔ

K (X, X̄), it makes no difference whether we write it
as a polynomial in N[X, X̄], or in a simpler semiring such as B[X, X̄], W[X, X̄],
S[X, X̄], or even the semiring of positive Boolean functions. Notice further, that
the problem whether such zeros exist is NP-complete.

However, provenance polynomials allow us to do more. We can compare
solutions, and we can use this approach to find solutions that describe models
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that are close to a given interpretation. Assume for instance that we have an
interpretation I that is a model of a given knowledge base, but then, after adding
further facts to the to ABox and/or making changes to the TBox, it happens
that I is no longer consistent with (A, T ). We may want to get back a model by
a set of changes that has minimal costs in some sense. This approach is related
to work in [15] on missing query answers and integrity repairs for databases.

By dualizing fΔ
K (X, X̄), we obtain the polynomial

gΔ
K (X, X̄) :=

∏

C�D∈T

∏

a∈Δ

(πA[[a :¬C]] + πA[[a :D]])

and we have that gΔ
K (X, X̄) = 0 (as a polynomial in N[X, X̄]) if, and only if, K is

inconsistent on Δ. More interestingly, if this is not the case, then by writing out
gΔ

K (X, X̄) as a sum of monomials pe1
1 . . . pek

k , we see that, for each such monomial,
every interpretation that makes all those literals true that are associated with
the tokens p1, . . . pk is a model of K. In general, such a monomial does not define
a specific model, but a whole class of models, because those literals α for which
neither pα nor p̄α occur in the monomial can be interpreted in any way. Choices
between different classes of models can then be made on the basis of any (partial)
order between monomials in N[X, X̄], and this can then be refined on the basis of
selection criteria between different interpretations that make the same monomial
true.

Coming back to the example of defining a model that is close to a given
interpretation I (that itself is not anymore consistent with K) we may for
instance define a cost interpretation ρ : LitΔ(τ) → T into the tropical semir-
ing T = (R∞

+ ,min,+,∞, 0) that associates with the addition of a fact to I a
cost c ∈ R, and with the deletion of a fact a cost d ∈ R. More precisely, for each
atom α ∈ AtomsΔ(τ), we would put ρ(α) = 0 and ρ(¬α) = d if I |= α, and
ρ(α) = c and ρ(¬α) = 0 if I |= ¬α. By setting ρ̂(pα) := ρ(α) and ρ̂(p̄α) := ρ(¬α),
we obtain a semiring homomorphism ρ̂ : N[X, X̄] → T. We would then select
the monomial m in gΔ

K (X, X̄) with minimal value ρ̂[[m]]; notice that this coin-
cides with the provenance value ρ̂[[gΔ

K (X, X̄)]]. Given the original interpretation
I and the monomial m, we can then define a new interpretation I(m) with
I(m) |= α whenever pα occurs in m, I(m) |= ¬α whenever p̄α occurs in m, and
I(m) |= α ⇐⇒ I |= α for all other atoms α ∈ AtomsΔ(τ).

We can view I(m) as a model of (A, T ) which, among all interpretations
with universe Δ, is obtained from I by a set of additions and deletions of facts
that leads to minimal costs for establishing the consistency with (A, T ). Notice
in this context, that in case K = (A, T ) is inconsistent, and hence gΔ

K (X, X̄) is
the zero polynomial, then ρ̂[[gΔ

K (X, X̄)]] = ∞.
Instead of such a cost based choice, by means of an interpretation in the

tropical semiring, the semiring framework permits also choices by other crite-
ria, for instance by maximizing consistency scores, using an interpretation into
the Viterbi semiring V, or by minimizing the required clearance level, by an
interpretation into the access control semiring A.
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Notice that all this is algorithmically nontrivial. First of all it assumes that
we have determined a universe Δ on which we evaluate the provenance polyno-
mials. This is a separate, nontrivial, problem, but for most description logics, we
can determine bounds on the size of minimal models without too much effort,
so this seems not infeasible. Second, neither the problem of finding zeros, nor
the computation of a provenance polynomial in standard form, as a sum of
monomials, are computationally easy, in general. However, it is a fact, that at
least for reasonably expressive description logics, the common reasoning prob-
lems do have a rather high complexity anyway. It is thus not at all the case that
provenance analysis makes easy problems complicated. To the contrary, we hope
that it actually may help to provide a more principled approach to a number of
interesting questions.

8 Conclusion and Outlook

We have reported on an algebraic framework for the provenance analysis of logics
with negation that we believe to be suitable and interesting also for applications
in description logics. As a first step, we have seen that provenance values of con-
cept assertions from ALC on a fixed interpretation can be computed with a mod-
erate number of semiring operations. We have then discussed which variations
of the traditional reasoning problems for description logics may be interesting
when we evaluate concept and role assertions in a commutative semiring, and
what kind of new questions might be investigated with such an approach. We
have further discussed the issue of extending the familiar tableaux based algo-
rithmic methods to provenance knowledge basis, and we have illustrated this
for certain specific cases. Finally we have investigated how provenance tracking
interpretations in semirings of dual-indeterminate polynomials may also help to
give a new approach to traditional (purely Boolean) reasoning problems such as
the consistency of a knowledge base, by means of provenance polynomials that
describe multiple models, and allow us to repair inconsistencies and to make
choices between different models on a principled basis. Of course, this work so
far is rather preliminary, and proposes more definitions and questions than that
it provides answers.

An interesting area that we have left largely untouched so far is query rewrit-
ing. This is the problem of rewriting a (say, conjunctive or first-order) query q for
a given TBox T as a new query qT that evaluated on any given ABox A should
provide the same answers as the (certain) answers of the original query q on
(models of) the knowledge base (A, T ). First-order rewritings are only possible
for rather inexpressive description logics, but for certain somewhat more expres-
sive ones, rewritings in Datalog are possible (see [3, Chap. 7]). A provenance
approach to this problem has recently been explored in [16], but it is rather
different from our methods and does not make use of dual-indeterminate poly-
nomials. It should be interesting to combine these methods with ours, taking also
into account the semirings of dual-indeterminate formal power series that pro-
vide the algebraic framework for a provenance analysis of languages that include
both recursion and negation.
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