
Entanglement – A Measure for the Complexity

of Directed Graphs With Applications

to Logic and Games⋆

Dietmar Berwanger and Erich Grädel

Mathematische Grundlagen der Informatik, RWTH Aachen

Abstract. We propose a new parameter for the complexity of finite
directed graphs which measures to what extent the cycles of the graph
are intertwined. This measure, called entanglement, is defined by way of
a game that is somewhat similar in spirit to the robber and cops games
used to describe tree width, directed tree width, and hypertree width.
Nevertheless, on many classes of graphs, there are significant differences
between entanglement and the various incarnations of tree width.

Entanglement is intimately connected to the computational and descrip-
tive complexity of the modal µ-calculus. On the one hand, the number of
fixed point variables needed to describe a finite graph up to bisimulation
is captured by its entanglement. This plays a crucial role in the proof
that the variable hierarchy of the µ-calculus is strict.

In addition to this, we prove that parity games of bounded entangle-
ment can be solved in polynomial time. Specifically, we establish that
the complexity of solving a parity game can be parametrised in terms of
the minimal entanglement of a subgame induced by a winning strategy.

1 Entanglement: How to catch a thief

Let G = (V,E) be a finite directed graph. The entanglement of G, denoted
ent(G), measures to what extent the cycles of G are entangled. We define the
entanglement by way of a game, played by a thief against k detectives on G
according to the following rules. Initially the thief selects an arbitrary position
v0 of G and the detectives are outside the graph. In any move the detectives
may either stay where they are, or place one of them on the current position v

of the thief. The thief, in turn, has to move to a successor w ∈ vE that is not
occupied by a detective. If no such position exists, the thief is caught and the
detectives have won. Note that the thief sees the move of the detectives before
she decides on her own move, and that she has to leave her current position no
matter whether the detectives stay where they are or not. The entanglement of G
is the minimal number k ∈ N such that k detectives have a strategy to catch the
thief on G.

⋆ This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (games)

The entanglement is an interesting measure on directed graphs. To deal with
undirected graphs, we view undirected edges {u, v} as pairs (u, v) and (v, u) of
directed edges. In the following a graph is always meant to be directed.

To get a feeling for this measure we collect a few simple observations con-
cerning the entanglement of certain familiar graphs. The proofs are simple and
left to the reader.

Proposition 1. Let G be any finite directed graph.

(1) ent(G) = 0 if, and only if, G is acyclic.
(2) If G is the graph of a unary function, then ent(G) = 1.
(3) If G an undirected tree, then ent(G) ≤ 2.
(4) If G is the fully connected directed graph with n nodes, then ent(G) = n.

Let Cn denote the directed cycle with n nodes. Given two graphs G = (V,E)
and G′ = (V ′, E′) their asynchronous product is the graph G ×G′ = (V × V ′, F)
where F = {(uu′, vv′) : [(u, v) ∈ E ∧ u′ = v′] ∨ [u = v ∧ (u′v′) ∈ E′]}.

Note, that Tmn := Cm ×Cn is the (m× n)-torus or, to put it differently, the
graph obtained from the directed (m + 1) × (n + 1)-grid by identifying the left
and right border and the upper and lower border.

Proposition 2. (1) For every n, ent(Tnn) = n.
(2) For every m 6= n, ent(Tmn) = min(m,n) + 1.

Proof. On Tnn, n detectives can catch the thief by placing themselves on a
diagonal, thus blocking every row and every column of the torus. On the other
side, it is obvious that the thief can escape against n − 1 detectives.

On Tmn with m < n, m detectives are needed to block every row, and an
additional detective forces the thief to leave any row after at most n moves, so
that she finally must run into a detective. Again, it is obvious that the thief
escapes if there are less than m + 1 detectives. ⊓⊔

The following proposition characterises the graphs with entanglement one.

Proposition 3. The entanglement of a directed graph is one, if and only if, the
graph is not acyclic, and in every strongly connected component, there is a node
whose removal makes the component acyclic.

Proof. On any graph with this property, one detective catches the thief by plac-
ing himself on the critical node in the current strongly connected component
when the thief passes there. The thief will have to return to this node or leave
the current component. Eventually she will be caught in a terminal component.

Conversely if there is a strongly connected component without such a critical
node, then the thief may always proceed from her current position towards an
unguarded cycle and thus escape forever. ⊓⊔

Corollary 4. For k = 0 and k = 1, the problem whether a given graph has
entanglement k is Nlogspace-complete.

To compute upper bounds on the entanglement of certain interesting graphs,
we can use the following sufficient criterion for the existence of a winning strategy
for k detectives. For any k ∈ N, let [k] := {0, . . . , k − 1}.

Lemma 5. Let G = (V,E) be a finite directed graph such that, for some k ∈ N,
there exists a partial labelling i : V → [k] under which every strongly connected
subgraph C ⊆ G contains a vertex v whose label is unique in C, that is, i(v) 6= i(w)
for all w ∈ C. Then ent(G) ≤ k.

Proof. We may interpret the labelling i as a memoryless strategy for the detec-
tives, indicating at every position v occurring in a play, that detective i(v) shall
be posted there, or that no detective shall move if i(v) is undefined. Towards
a contradiction, suppose that although the detectives move according to strat-
egy i, the thief can escape, that is, she succeeds to form an infinite path without
meeting any detective. Let C be the set of positions visited infinitely often by
this path. Clearly, C induces in G a strongly connected subgraph. Let v ∈ C be a
node whose label i(v) is unique in C. According to the strategy described by i,
detective i(v) remains at v once the play has stabilised in C. But since the thief
visits every position in C infinitely often, she is caught at v. ⊓⊔

Proposition 6. For every n, the undirected (n × n)-grid has entanglement at
most 3n.

Proof. Consider the labelling i : [n] × [n] → [3n] obtained by first assigning
the values 0, . . . , n to the horizontal median of the grid, i.e., i(⌊n

2 ⌋, j) := j for
all j ∈ [n]. For the two n

2 × n grids obtained when removing the positions
already labelled, we proceed independently and assign the values n, . . . , n+ n

2 to
their vertical medians, and so on, in step k applying the procedure to the still
unlabelled domain consisting of 2k many n

2k ×
n
2k disconnected grids. It is easy to

verify that the labelling obtained this way satisfies the criterion of Lemma 5. ⊓⊔

2 Entanglement versus tree width

The definition of entanglement is reminiscent of robber and cops games intro-
duced by Seymour and Thomas in [10] for characterising tree width, and John-
son, Robertson, Seymour, and Thomas [6] for directed tree width. However,
entanglement is a quite different, and for some purposes more accurate, measure
than tree width and directed tree width.

This becomes apparent on trees with back-edges which also play an important
role in our analysis of the variable hierarchy of the modal µ-calculus. It is easy to
see that the directed tree width of any tree with back-edges is one. However, we
will see that the entanglement of trees with back-edges can be arbitrarily large.

We now discuss the relationship between (undirected) tree width and entan-
glement. First, we observe that acyclic graphs (that have entanglement 0) can
of course have arbitrary tree width. On the other hand we prove that the entan-
glement of a graph can be bounded by its tree width times the logarithm of its
size.

Proposition 7. For any finite undirected graph G of tree width k, we have that
ent(G) ≤ (k + 1) · log |G|.

Proof. By definition, every graph G = (V,E) of tree width k can be decomposed
as a tree T labelled with subsets of at most k + 1 elements of V , called blocks,
such that (1) every edge {u, v} ∈ E is included in some block and (2) for any
element v ∈ V the set of blocks containing v is connected.

In every subtree S of such a decomposition tree, there exists a node s, we may
call it the centre of S, which balances S in the sense that the subtree rooted at s

and its complement carry almost the same number of vertices (differences up to k

are admissible). Consider now the following memoryless detective strategy. First,
all vertices in the centre s of the decomposition tree receive indices 0, . . . , k. Then,
we repeat the process independently for the two subtrees (i.e., the one rooted in s

and its complement) and assign to the vertices in their respective centres indices
from k+1, . . . , 2k+2. The process ends when all vertices of G are labelled. In this
way, at most (k + 1) log |V | detective indices are assigned. Since the blocks of a
tree decomposition separate the graph, every strongly connected subgraph of G
will contain at least one unique label. This shows that the constructed labelling
indeed represents a memoryless strategy for at most (k+1) log |V | detectives. ⊓⊔

However, bounded tree width does not imply bounded entanglement.

Proposition 8. There exist graphs with tree width two that have arbitrarily
large entanglement.

Proof. Let T ↓
k be the full binary tree of depth k with edges oriented downwards,

and let T ↑
k be the same tree with edges oriented upwards. Every node v↓ ∈ T ↓

k

has a double v↑ ∈ T ↑
k , and vice versa. The graph G(2, k) is constructed by taking

the union T ↓
k ∪T ↑

k , adding edges from each leaf to its double (in both directions),

and adding the edges (u↑, v↓) for each edge (u↑, v↑) of T ↑
k . It is easy to see that

G(2, k) has tree width 2.
We claim that ent(G(2, k)) > k. To prove this we describe a strategy by

which the thief escapes against k detectives. We call a path in G(2, k) free if all
nodes on the path and all their doubles are unguarded by the detectives. We say
that a node is blocked if both the node and its double are guarded. The thief
moves according to the following strategy: at a leaf w↑, she selects an ancestor
u↓ of w↓ from which there is a free path to a leaf v↓. She goes to v↓ by moving
upwards through T ↑

k , stepping over to u↓ and moving downwards through T ↓
k .

Finally she steps over to v↑.
With this strategy, the thief is never below a blocked node. A leaf has (in-

cluding itself) k + 1 ancestors in T ↓
k , so there is always an ancestor with a free

path to a leaf. Thus, the thief can maintain this strategy and escape forever. ⊓⊔

3 Trees with back-edges and partial unravellings

Let T = (V,E) be a directed tree. We write ¹E for the associated partial order
on T . Note that ¹E is just the reflexive transitive closure of E.

Definition 9. A directed graph T = (V, F) is a tree with back-edges if there is
a partition F = E ∪ B of the edges into tree-edges and back-edges such that
(V,E) is indeed a directed tree, and whenever (u, v) ∈ B, then v ¹E u.

The following observation shows that, up to the choice of the root, the de-
composition into tree-edges and back-edges is unique.

Lemma 10. Let T = (V, F) be a tree with back-edges and v ∈ V . Then there
exists at most one decomposition F = E ∪B into tree-edges and back-edges such
that (V,E) is a tree with root v.

Definition 11. Let T = (V, F) be a tree with back-edges, with decomposition
F = E ∪B into tree-edges and back-edges. The feedback of a node v of T is the
number of ancestors of v that are reachable by a back-edge from a descendant
of v. The feedback of T , denoted fb(T) is the maximal feedback of nodes on G.
More formally,

fb(T) = max
v∈V

|{u ∈ V : ∃w(u ¹E v ¹E w ∧ (w, u) ∈ B)}|.

We call a back edge (w, u), and likewise its target u, active at a node v in T , if
u ¹E v ¹E w.

Note that the feedback of T may depend on how the edges are decomposed
into tree-edges and back-edges, i.e. on the choice of the root. Consider, for in-
stance the following graph C+

3 (the cycle C3 with an additional self-loop on one
of its nodes). Clearly, for every choice of the root, C+

3 is a tree with two back-
edges. If the node with the self-loop is taken as the root, then the feedback is 1,
otherwise it is 2.

Lemma 12. Let T = (V,E,B) be a tree with back-edges of feedback k. Then
there exists a partial labelling i : V 7→ {0, . . . , k − 1} assigning to every target
u of a back edge an index i(u) in such a way that no two nodes u, u′ that are
active at the same node v have the same index.

Proof. The values of this labelling are set while traversing the tree in breadth-
first order. Notice that every node u with an incoming back-edge is active at
itself. As T has feedback k, there can be at most k − 1 other nodes active at u.
All of these are ancestors of u, hence their index is already defined. There is
at least one index which we can assign to u so that no conflict with the other
currently active nodes arises.

Lemma 13. The entanglement of a tree with back-edges is at most its feedback:
ent(T) ≤ fb(T).

Proof. Suppose that fb(T) = k. By Lemma 12 there is a labelling i of the targets
of the back-edges in T by numbers 0, . . . , k − 1 assigning different values to any
two nodes u, u′ that are active at the same node v. This labelling induces the
following strategy for the k detectives: at every node v reached by the thief, send

detective number i(v) to that position or, if the value is undefined, do nothing.
By induction over the stages of the play, we can now show that this strategy
maintains the following invariant: at every node v occurring in a play on T ,
all active nodes u 6= v are occupied and, if the current node is itself active, a
detective is on the way. To see this, let us trace the evolution of the set Z ⊆ T

of nodes occupied by a detective. In the beginning of the play, Z is empty. A
node v can be included into Z if it is visited by the thief and active with regard
to itself. At this point, our strategy appoints detective i(v) to move to v. Since,
by construction of the labelling, the designated detective i(v) must come from
a currently inactive position and, hence, all currently active positions except v

remain in Z. But if every node which becomes active is added to Z and no active
node is ever given up, the thief can never move along a back edge, so that after
a finite number of steps she reaches a leaf of the tree and loses. But this means
that we have a winning strategy for k detectives, hence ent(T) ≤ k. ⊓⊔

Note however, that the entanglement of a tree with back-edges can be much
smaller than its feedback. A simple example are paths with back-edges: let Pn =
({0, . . . , n − 1}, En, Bn) be the path with n nodes and all possible back-edges,
i.e., En = {(i, i+1) : i < n−1} and Bn = {(i, j) : i ≥ j}. Obviously, fb(Pn) = n,
but two detectives suffice to catch the thief on Pn.

It is well-known that every graph G can be unravelled from any node v to a
tree TG,v whose nodes are the paths in G from v. Clearly TG,v is infinite unless G
is finite and no cycle in G is reachable from v. A finite unravelling of a (finite)
graph G is defined in a similar way, but rather than an infinite tree, it produces a
finite tree with back-edges. To construct a finite unravelling we proceed as in the
usual unravelling process with the following modification: whenever we have a
path v0v1 . . . vn in G with corresponding node v = v0v1 . . . vn in the unravelling,
and a successor w of vn that coincides with vi (for any i ≤ n), then we may,
instead of creating the new node vw (with a tree-edge from v to vw) put a back-
edge from v to its ancestor v0 . . . vi. Clearly this process is nondeterministic. In
this way, any finite graph can be unravelled, in many different ways, to a finite
tree with back-edges.

Observe that different finite unravellings of a graph may have different feed-
back and different entanglement. Clearly the entanglement of a graph is bounded
by the entanglement of its finite unravellings. Indeed a winning strategy for k de-
tectives on a finite unravelling of G immediately translates to a winning strategy
on G.

Proposition 14. The entanglement of a graph is the minimal feedback (and the
minimal entanglement) of its finite unravellings:

ent(G) = min{fb(T) : T is a finite unravelling of G}

= min{ent(T) : T is a finite unravelling of G}.

Proof. For any finite unravelling T of a graph G, we have ent(G) ≤ ent(T) ≤
fb(T). It remains to show that for any graph G there exists some finite unravel-
ling T with fb(T) ≤ ent(G).

To prove this, we view winning strategies for the detectives as descriptions of
finite unravellings. A strategy for k detectives tells us, for any finite path πv of
the thief whether a detective should be posted at the current node v, and if so,
which one. Such a strategy can be represented by a partial function g mapping
finite paths in G to {0, . . . , k − 1}. On the other hand, during the process of
unravelling a graph to a (finite) tree with back edges, we need to decide, for
every successor v of the current node, whether to create a new copy of v or
to return to a previously visited one, if any is available. To put this notion
on a formal ground, we define an unravelling function for a rooted graph G, v0

as a partial function ρ between finite paths from v0 through G, mapping any
path v0, . . . , vr−1, vr in its domain to a strict prefix v0, v1, · · · , vj−1 such that
vj−1 = vr. Such a function gives rise to an unravelling of G in the following way:
we start at the root and follow finite paths through G. Whenever the current
path π can be prolonged by a position v and the value of ρ at πv is undefined, a
fresh copy of v corresponding to πw is created as a successor of π. In particular,
this always happens if v was not yet visited. Otherwise, if ρ(π v) is defined, then
the current path π is bent back to its prefix ρ(π) which also corresponds to
a copy of v. Formally, the unravelling of G driven by ρ is the tree with back
edges T defined as follows:

– the domain of T is the smallest set T which contains v0 and for each path
π ∈ T , it also contains all prolongations πv in G at which ρ is undefined;

– the tree-edge partition is

ET := { (v0, . . . , vr−1, v0, . . . , vr−1, vr) ∈ T × T | (vr−1, vr) ∈ EG };

– for all paths π := v0, . . . , vr−1 ∈ T where ρ(πv) is defined, the back-relation
BT contains the pair (π, ρ(πv)) if (vr−1, v) ∈ EG .

We are now ready to prove that every winning strategy g for the k detectives
on G, v0 corresponds to an unravelling function ρ for G, v0 that controls a finite
unravelling with feedback k.

Note that the strategy g gives rise to a k-tuple (g0, . . . , gk−1) of functions
mapping every initial segment π of a possible play according to g to a k-tuple
(g0(π), . . . , gk−1(π)) where each gi(π) is a prefix of π recording the state of the
play (i.e., the current path of the thief) at the last move of detective i.

Now, for every path π and possible prolongation by v, we check whether,
after playing π, there is any detective posted at v. If this is the case, i.e, when,
for some i, the end node of gi(π) is v, we set ρ(π v) := πi. Otherwise we leave the
value of ρ undefined at π, v. It is not hard to check that, if g is a winning strategy
for the detectives, the associated unravelling is finite and has feedback k. ⊓⊔

4 Descriptive complexity

The modal µ-calculus Lµ introduced by Kozen [8] is a highly expressive formal-
ism which extends basic modal logic with monadic variables and binds them to
extremal fixed points of definable operators.

Syntax. For a set act of actions, a set prop of atomic propositions, and a set
var of monadic variables, the formulae of Lµ are defined by the grammar

ϕ ::= false | true | p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ

where p ∈ prop, a ∈ act, and X ∈ var. An Lµ-formula in which no universal
modality [a]ϕ occurs is called existential.

The number of variables occurring in a formula provides a relevant measure
of its conceptual complexity. For any k ∈ N, the k-variable fragment Lµ[k] of the
µ-calculus is the set of formulae ψ ∈ Lµ that contain at most k distinct variables.

Semantics. Formulae of Lµ are interpreted on transition systems, or Kripke
structures. Formally, a transition system K =

(

V, (Ea)a∈act, (Vp)p∈prop

)

is a
coloured graph with edges labelled by action and vertices labelled by atomic
propositions. Given a sentence ψ and a structure K with state v, we write K, v |=
ψ to denote that ψ holds in K at state v. The set of states v ∈ K such that
K, v |= ψ is denoted by [[ψ]]K.

Here, we only define [[ψ]]K for fixed-point formulae ψ. Towards this, note that
a formula ψ(X) with a monadic variable X defines on every transition structure
K (providing interpretations for all free variables other than X occurring in
ψ) an operator ψK : P(K) → P(K) assigning to every set X ⊆ K the set
ψK(X) := [[ψ]]K,X = {v ∈ K : (K,X), v |= ψ}. As X occurs only positively
in ψ, the operator ψK is monotone for every K, and therefore, by a well-known
theorem due to Knaster and Tarski, has a least fixed point lfp(ψK) and a greatest
fixed point gfp(ψK). Now we put

[[µX.ψ]]K := lfp(ψK) and [[νX.ψ]]K := gfp(ψK).

As a modal logic, the µ-calculus distinguishes between transitions structures
only up to behavioural equivalence, captured by the notion of bisimulation.

Definition 15. A bisimulation between two transition structures K and K′ is
a simulation Z from K to K′ so that the inverse relation Z−1 is a simulation
from K′ to K. Two transition structures K, u and K′, u′ are bisimilar , denoted
K, u ∼ K′, u′, if there is a bisimulation Z between them, with (u, u′) ∈ Z.

An important model-theoretic feature of modal logics is the tree model prop-
erty meaning that every satisfiable formula is satisfiable in a tree. This is a
straightforward consequence of bisimulation invariance, since K, u is bisimilar to
its infinite unravelling, i.e., a tree whose nodes correspond to the finite paths
in K, u. Every such path π inherits the atomic propositions of its last node v;
for every node w reachable from v in K via an a transition, π is connected to
its prolongation by w via an a-transition. Notice that in terms of our notion of
unravelling defined in the proof of Proposition 14, the infinite unravelling of a
system is just the unravelling driven by a function defined nowhere.

The entanglement of a transition system K =
(

V, (Ea)a∈act, (Vp)p∈prop

)

is
the entanglement of the underlying graph (V,E) where E =

⋃

a∈act Ea. We now
show that every transition structure of entanglement k can be described, up to
bisimulation, in the µ-calculus using only k fixed-point variables.

Proposition 16. Let K be a finite transition system with ent(K) = k. For any
node v of K, there is a formula ψv ∈ Lµ[k] such that

K′, v′ |= ψv ⇔ K′, v′ ∼ K, v.

Proof. According to Proposition 14, the system K can be unravelled from any
node v0 to a finite tree T with back-edges, with root v0 and feedback k. Clearly
T , v0 ∼ K, v0. Hence, it is sufficient to prove the proposition for T , v0. For every
action a ∈ act, the transitions in T are partitioned into tree-edges and back-
edges Ea ·∪ Ba.

Let i : T 7→ {0, . . . , k− 1} be the partial labelling of T defined in Lemma 12.
At hand with this labelling, we construct a sequence of formulae (ψv)v∈T over
fixed-point variables X0, . . . ,Xk−1 while traversing the nodes of T in reverse
breadth-first order.

The atomic type of any node v is described by the formula

αv :=
∧

p∈prop

v∈Vp

p ∧
∧

p∈prop

v 6∈Vp

¬p.

To describe the relationship of v with its successors, let

ϕv := αv ∧
∧

a∈act

(

∧

(v,w)∈Ea

〈a〉ψw ∧
∧

(v,w)∈Ba

〈a〉Xi(w)

∧ [a]

(

∨

(v,w)∈Ea

ψw ∨
∨

(v,w)∈Ba

Xi(w)

))

.

If v has an incoming back-edge, we set ψv := νXi(v) . ϕv, if this is not the case
we set ψv := ϕv. Note that since we proceed from the leaves of T to the root,
this process is well-defined, and that in ψv the variables Xi(u) occur free, for any
node u 6= v that is active at v. In particular the formula ψv0

, corresponding to
the root of T , is closed.

It remains to prove that K′, v′ |= ψv0
⇔ K′, v′ ∼ T , v0. We first show that

T , v0 |= ψv0
, and hence K′, v′ |= ψv0

for any K′, v′ ∼ T , v0. To see this we prove
that Verifier has a winning strategy for the associated model checking game.

Note that, since ψv0
has only greatest fixed points, any infinite play of the

model checking game is won by Verifier. It thus suffices to show that from any
position of form (v, ϕv), Verifier has a strategy to make sure that the play pro-
ceeds to a next position of form (w,ϕw), unless Falsifier moves to position (v, αv)
and then loses in the next move. But by the construction of the formula, it is
obvious that Verifier can play so that any position at which she has to move has
one of the following three types:

(1) (v, 〈a〉ψw), where (v, w) ∈ Ea. In this case, Verifier moves to position (w,ψw).
(2) (v, 〈a〉Xi(w)), where (v, w) ∈ Ba. In this case Verifier moves to (w,Xi(w)).
(3) (w,

∨

(v,w)∈Ea
ψw∨

∨

(v,w)∈Ba
Xi(w)) where w ∈ vEa∪vBa. In this case, Veri-

fier selects the appropriate disjunct and moves to either (w,ψw) or (w,Xi(w)).

In all cases the play will proceed to (w,ϕw). Hence, Falsifier can force a play to
be finite only by moving to a position (v, αv). Otherwise the resulting play is
infinite and thus also won by Verifier.

For the converse, suppose that K′, v′ 6∼ T , v0. Since T is finite, the non-
bisimilarity it witnessed by a finite stage. That is, there is a basic modal formula
separating K′, v′ from T , v0, and Falsifier can force the model checking game for
ψv0

on K′, v′ in finitely many moves to a position of form (w′, αw) such that w

and w′ have distinct atomic types. This proves that K′, v′ 6|= ψv0
. ⊓⊔

As the entanglement of a transition system regards only the underlying graph,
one can easily find examples of high entanglement that can be described with
very few variables. For instance, in a transition structure over a strongly con-
nected finite graph with no atomic propositions and only a single action a, all
states are bisimilar, and can be described by νX.(〈a〉X ∧ [a]X), regardless of
the entanglement of the underlying graph. Nevertheless, the following theorem
establishes a strong relationship between the notion of entanglement and the
descriptive complexity of Lµ.

Theorem 17 ([2]). Every strongly connected graph of entanglement k can be
labelled in such a way that no µ-calculus formula with less than k variables can
describe the resulting transition structure, up to simulation.

This theorem, which generalises a result of [3], provides the witnesses for the
expressive strictness of the µ-calculus variable hierarchy proved in [4].

5 Computational complexity

An intriguing open problem related to the µ-calculus regards the computational
complexity of its evaluation problem: Given a formula ψ and a finite transition
structure K, v, decide whether ψ holds in K, v. Equivalently, this problem can
be phrased in terms of parity games, the natural evaluation games for Lµ [11].

Parity games are path-forming games played between two players on labelled
graphs G = (V, V0, E,Ω) equipped with a priority labelling Ω : V → N. All plays
start from a given initial node v0. At every node v ∈ V0, the first player, called
Player 0, can move to a successor w ∈ vE; at positions v ∈ V1 := V \ V0, his
opponent Player 1 moves. Once a player gets stuck, he loses. If the play goes on
infinitely, the winner is determined by looking at the sequence Ω(v0), Ω(v1), . . .
of priorities seen during the play. In case the least priority appearing infinitely
often in this sequence is even, Player 0 wins the play, otherwise Player 1 wins.

A memoryless strategy for Player i in a parity game G is a function σ that
indicates a successor σ(v) ∈ vE for every position v ∈ Vi. A strategy for a player
is winning, if he wins every play starting in which he moves according to this
strategy. The Memoryless Determinacy Theorem of Emerson and Jutla states
that parity games are always determined with memoryless strategies.

Theorem 18 (Memoryless Determinacy, [5]). In any parity game, one of the
players has a memoryless winning strategy.

Any memoryless strategy σ induces a subgraph Gσ of the original game graph.
If σ is a winning strategy for a player, he wins every play on Gσ. Since these
subgames are small objects and it can be checked efficiently whether a player
wins every play on a given graph, the winner of a finite parity game can be
determined in NP∩ co-NP. In general, the best known deterministic algorithms
to decide the winner of a parity game have running times that are polynomial
with respect to the size of the game graph, but exponential with respect to
the number of different priorities occurring in the game [7]. However, for game
graphs of bounded tree width, Obdrzalek has showed in [9], that the problem
can be solved in polynomial time with respect to the the size of the graph,
independently of the number of priorities.

In the remainder of this paper we will show that the entanglement of a parity
game graph is a pivotal parameter for its computational complexity. To maintain
the relationship between games and algorithms conceptually close, we base our
analysis on alternating machines (for a comprehensive introduction, see e.g. [1]).

5.1 Alternating cycle detection

Many algorithmic issues in graph theory are related to the problem of cycle de-
tection, typically, to determine whether a given graph contains a cycle satisfying
certain properties. When alternation comes into play, that is, when we consider
paths formed interactively, the questions become particularly interesting but of-
ten rather complex, too. In this framework, we will study the entanglement of
a graph as a measure of how much memory is needed to determine whether a
path formed on-the-fly enters a cycle.

As a basis for later development, let us first consider a procedure for deciding
whether k detectives are sufficient to capture the thief on a given graph. The
following algorithm represents a straightforward implementation of the game as
an alternating algorithm, where the role of the thief is played by the existential
player while the detectives are controlled by the universal player.

procedure Entanglement(G, v0, k)
input graph G = (V, E), initial position v0, candidate k ≤ |V |
// accept iff ent(G, v0) ≤ k

v := v0, (di)i∈[k] := ⊥; // current position of thief and detectives
do

existentially guess i ∈ [k] ∪ {pass} // appoint detective i or pass
if i 6= pass then di := v // guard current node
if vE \ {di : i ∈ [k]} = ∅ then accept

else universally choose v ∈ vE;
repeat

Since this algorithm requires space only to store the current positions of the
thief and the k detectives, it runs in alternating space O((k + 1) log |V |) which
corresponds to deterministic polynomial time.

Lemma 19. The problem of deciding, for a fixed parameter k, whether a given
graph G has ent(G) ≤ k can be solved in polynomial time.

Notice that if we regard k as part of the input, the algorithm gives an
Exptime upper bound for deciding the entanglement of a graph.

5.2 Parity games

Similar to the thief and detective game, the dynamics of a parity game consists
in forming a path through a graph. However, while in the former game the de-
tectives can influence the forming process only indirectly, by obstructing ways
of return, in a parity game both players determine directly how the path is pro-
longed in their turn. Besides this dynamic aspect, also the objectives of players
are quite different at a first sight. While the detectives aim at turning the play
back to a guarded position, each player of a parity game tries to achieve that
the least priority seen infinitely often on the path is of a certain parity.

The key insight which brings the two games to a common ground is the
Memoryless Determinacy Theorem for parity games: whichever player has a
winning strategy in a given game G = (V, V0, E,Ω), also has a memoryless one.
This means, that either player may commit, for each reachable position v ∈ V

which he controls, to precisely one successor σ(v) ∈ vE and henceforth follow
this commitment in every play of G without risking any chance to win. It follows
that, whenever a play returns to a previously visited position v, the winner can
be established by looking at the least priority seen since the first occurrence of v.
Therefore can view parity games on finite game graphs as path forming games
of finite duration where the objective is to reach a cycle with minimal priority
of a certain parity.

We obtain an immediate method to determine the winner of a parity game by
simulating the players’ moves while maintaining the history of visited positions
in order to detect whether a cycle has been reached. To store the full history, an
implementation of this method requires space O(|V | log |V |) in the worst case;
since the procedure uses alternation to simulate the single game moves, this
situates us in Aspace(O(|V | log |V |)), or Dtime(|V |O(|V |)).

What makes this approach highly impractical is its extensive representation
of the play’s history. In fact, the power of alternation is limited to the formation
of the path, while the history is surveyed in a deterministic way. We can signifi-
cantly improve this by interleaving thief and detective games with parity games
in such a way that the formation of cycles in history is surveyed interactively.

Intuitively, we may think of a parity game as an affair between three agents,
Player 0 and 1, and a referee who wishes to establish which of the two indeed
wins the game. In our initial approach, the referee memorises the entire history
of the game. But as we have seen, the occurrence of a cycle in a path-forming
game on G can be detected by storing at most ent(G) many positions. Hence, if
we could provide the referee with the power of sufficiently many detectives, this
would reduce the space requirement. The crux of the matter is how to fit such a
three-player setting into the two-player model of alternating computation.

Our proposal to overcome this difficulty is to let one of the players act as a
referee who challenges the other player in the parity game, but in the same time

controls the detectives in an overlying thief and detective game which regards
the interactively formed path as if it would be formed by the thief alone.

Formally, this leads to a new game. For a game graph G = (V, V0, E,Ω),
a player i ∈ {0, 1}, and a number k, the superdetective game G[i, k] is played
between the Superdetective controlling k detectives and the positions of Vi, and
the Challenger in hold of the positions in V1−i. Starting from an initial position
position v0, in any move the Superdetective may place one of the k detectives
on the current position v, or leave them in place. If the current position v be-
longs to V1−i, Challenger has to move to some position w ∈ vE, otherwise the
Superdetective moves. (If a player gets stuck, he immediately loses.) The play
ends if a position w occupied by a detective is reached and the Superdetective
wins if, and only if, the least priority seen since the detective was placed there
is even, for i = 0 respectively odd, for i = 1.

The following lemma states that parity games can be reduced to Superde-
tective games with an appropriate number of detectives.

Lemma 20. (1) If Player i has a winning strategy for the parity game G, then
the Superdetective wins the superdetective game G[i, k] with k = ent(G).

(2) If for some k ∈ N, the Superdetective wins the game G[i, k], then Player i

has a winning strategy for the parity game G.

Proof. Let σ be a memoryless winning strategy of Player i for the game G and
let Gσ be the subgame of G induced by this strategy. Then, the least priority
seen on any cycle of Gσ is favourable to Player i. This remains true for any cycle
formed in G[i, k] where Player i acting as a Superdetective follows the same
strategy σ. On the other hand, obviously ent(Gσ) ≤ ent(G) = k, which means
that the Superdetective also has a strategy to place the k detectives so that
every path through Gσ will finally meet a guarded position v and hence form a
cycle, witnessing that he wins. This proves (1).

For (2) assume that Player 1 − i has a memoryless winning strategy τ in
the parity game G. But then he could follow this strategy when acting as a
Challenger in the G[i, k], so that the play would actually remain in Gτ where no
cycle is favourable to Player i. Hence, regardless of the number of detectives, the
Superdetective cannot win G[i, k]. ⊓⊔

Note that computing the winner of a superdetective game G[i, k] requires
alternating space (2k + 1) log |V |. Indeed, one just plays the game recording the
current position of the thief, and the current position of each detective along
with the minimal priority that has been seen since he was last posted.

procedure Superdetective(G, v0, j, k)
input parity game G = (V, V0, E, Ω), initial position v0 ∈ V , player j, k detectives
// accept iff Superdetective has a winning strategy in G[j, k] with k detectives
v := v0 // current position
(di)i∈[k] := ⊥ // positions guarded by detectives
(hi)i∈[k] := ⊥ // most significant priorities

repeat

if j = 0 then

existentially guess i ∈ [k] ∪ {pass} // appoint detective i or pass
else

universally choose i ∈ [k] ∪ {pass} // other player’s detective
if i 6= pass then

di := v; hi := Ω(v) // guard current node
v := Move(G, v) // simulate a game step
forall i ∈ [k] do // update history

hi := min(hi, Ω(v))
repeat

until (v = di for some i) // cycle detected
if (j = 0 and hi is even) or (j = 1 and hi is odd) then accept

else reject

We are now ready to prove that parity games of bounded entanglement can be
solved in polynomial time. In fact, we establish a more specific result, taking into
account the minimal entanglement of subgames induced by a winning strategy.

Theorem 21. The winner of a parity game G = (V, V0, E,Ω) can be determined
in Aspace(O(k log |V |)), where k is the minimum entanglement of a subgame
Gσ induced by a memoryless winning strategy σ in G. ⊓⊔

Proof. We first describe the procedure informally, by way of a game. Given
a parity game G = (V, V0, E,Ω) and an initial position v0, each player i se-
lects a number ki and claims that he has a winning strategy from v0 such that
ent(Gσ) ≤ ki. The smaller of the two numbers k0, k1 is then chosen to verify that
Superdetective wins the game G[i, ki]. If this is the case the procedure accepts
the claim of Player i, otherwise Player (1 − i) is declared the winner.

Here is a more formal description of the procedure:

procedure SolveParity(G, v)
input parity game G = (V, V0, E, Ω), initial position v ∈ V

// accept iff Player 0 wins the game
existentially guess k0 ≤ |V |
universally choose k1 ≤ |V |
if k0 ≤ k1 then

if Superdetective(G, v, 0, k0) then accept

else reject

else

if Superdetective(G, v, 1, k1) then reject

else accept

We claim that Player 0 has a winning strategy in a parity game G, v if, and
only if, the alternating procedure ParitySolve(G, v) accepts.

To see this, assume that Player 0 has a memoryless winning strategy σ from v.
Then, the guess k0 := ent(Gσ) leads to acceptance. Indeed, for k1 ≥ k0, Player 0
wins the superdetective game G[0, k0] by using the strategy σ as a parity player
together with the detective strategy for Gσ. On the other hand, for k1 < k0, the

procedure accepts as well, since Player 1 cannot win the superdetective game
G[1, k1] without having a winning strategy for the parity game. The converse
follows by symmetric arguments exchanging the roles of the two players. ⊓⊔

Corollary 22. Parity games of bounded entanglement can be solved in polyno-
mial time.

Literature

[1] J. L. Balcazar, J. Diaz, and J. Gabarro, Structural complexity 2, Springer-
Verlag, 1988.

[2] D. Berwanger, Games and Logical Expressiveness, Ph. D. Thesis, RWTH Aachen
(2005).

[3] D. Berwanger, E. Grädel, and G. Lenzi, On the variable hierarchy of the

modal mu-calculus, in Computer Science Logic, CSL 2002, J. Bradfield, ed.,
vol. 2471 of LNCS, Springer-Verlag, 2002, pp. 352–366.

[4] D. Berwanger and G. Lenzi, The variable hierarchy of the µ-calculus is strict,
in STACS 2005, Proceedings of the 22nd Symposium on Theoretical Aspects of
Computer Science, LNCS, Springer-Verlag, 2005.

[5] A. Emerson and C. Jutla, Tree automata, mu-calculus and determinacy, in
Proc. 32nd IEEE Symp. on Foundations of Computer Science, 1991, pp. 368–377.

[6] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas, Directed tree-

width, J. Comb. Theory Ser. B, 82 (2001), pp. 138–154.
[7] M. Jurdziński, Small progress measures for solving parity games, in STACS 2000,

17th Annual Symposium on Theoretical Aspects of Computer Science, Proceed-
ings, vol. 1770 of Lecture Notes in Computer Science, Springer, 2000, pp. 290–301.

[8] D. Kozen, Results on the propositional µ-calculus, Theoretical Computer Science,
27 (1983), pp. 333–354.

[9] J. Obdrzalek, Fast mu-calculus model checking when tree-width is bounded, in
CAV’03, vol. 2725 of LNCS, Springer-Verlag, 2003, pp. 80–92.

[10] P. D. Seymour and R. Thomas, Graph searching and a min-max theorem for

tree-width, J. Comb. Theory Ser. B, 58 (1993), pp. 22–33.
[11] C. Stirling, Bisimulation, modal logic and model checking games, Logic Journal

of the IGPL, 7 (1999), pp. 103–124.

