
Strategy Construction

for Parity Games with Imperfect Information⋆

Dietmar Berwanger1, Krishnendu Chatterjee2, Laurent Doyen3,
Thomas A. Henzinger3,4, and Sangram Raje5

1 RWTH Aachen, Germany
2 CE, University of California, Santa Cruz, U.S.A.

3 I&C, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
4 EECS, University of California, Berkeley, U.S.A.

5 IIT Bombay, India

Abstract. We consider imperfect-information parity games in which
strategies rely on observations that provide imperfect information about
the history of a play. To solve such games, i.e., to determine the win-
ning regions of players and corresponding winning strategies, one can use
the subset construction to build an equivalent perfect-information game.
Recently, an algorithm that avoids the inefficient subset construction
has been proposed. The algorithm performs a fixed-point computation
in a lattice of antichains, thus maintaining a succinct representation of
state sets. However, this representation does not allow to recover winning
strategies.
In this paper, we build on the antichain approach to develop an algorithm
for constructing the winning strategies in parity games of imperfect in-
formation. We have implemented this algorithm as a prototype. To our
knowledge, this is the first implementation of a procedure for solving
imperfect-information parity games on graphs.

1 Introduction

Parity games capture the algorithmic essence of fundamental problems in state-
based system analysis [11]. They arise as natural evaluation games for the µ-
calculus, an expressive logic that subsumes most specification formalisms for
reactive systems, and they are closely related to alternating ω-automata [7].

In the basic variant, a parity game is played on a finite graph with nodes
labeled by natural numbers denoting priorities. There are two players, Player 1
and Player 2, who take turns in moving a token along the edges of the graph
starting from a designated initial node. In a play, the players thus form an infinite
path, and Player 1 wins if the least priority that is visited infinitely often is even;
otherwise Player 2 wins. These are games of perfect information: during the play
each of the players is informed about the current position of the token. One key

⋆ This research was supported in part by the NSF grants CCR-0132780, CNS-0720884,
and CCR-0225610, by the Swiss National Science Foundation, by the European
COMBEST project, and by the Deutsche Forschungsgemeinschaft (DFG).

property of parity games is memoryless determinacy: from every initial node,
either Player 1 or Player 2 has a winning strategy that does not depend on the
history of the play [5]. As a consequence, a winning strategy can be represented
as a subset of the edges of the graph, and the problem of constructing a winning
strategy is in NP ∩ coNP.

The perfect-information setting is often not sufficient in practice. The need
to model uncertainty about the current state of a system arises in many situa-
tions. For instance in controller-synthesis applications, certain parameters of the
plant under control may not be observable by the controller. Likewise in multi-
component design, individual components of a complex system may have private
variables invisible to other components. As a way to handle state-explosion prob-
lems, one may accept a loss of information in a concrete model in order to obtain
a manageable abstract model of imperfect information.

One fundamental question is how to model imperfect information. In the
classical theory of extensive games, this is done by partitioning the game tree
into information sets signifying that a player cannot distinguish between different
decision nodes of the same information set [6]. Technically, this corresponds to
restricting the set of strategies available to a player by requiring a uniform choice
across all nodes of an information set. However, for the algorithmic analysis of
games of infinite duration on graphs, the information sets need to be finitely
represented. Such a model is obtained by restricting to strategies that rely on
observations corresponding to a partitioning of the game graph.

The model of imperfect information games that we consider here was origi-
nally introduced in [10]. Like in the perfect-information case, the game is played
by two opposing players on a finite graph. The nodes of the graph, called loca-
tions, are partitioned into information sets indexed by observations. Intuitively,
the only visible information available to Player 1 during a play is the observation
corresponding to the current location, whereas Player 2 has perfect information
about the current location of the game. The starting location is known to both
players. Following [2], the parity winning condition is defined in terms of priori-
ties assigned to observations.

The basic algorithmic problems about parity games are (1) to determine
the winning region of a player, that is, the set of initial locations from which
he has a winning strategy, and (2) to construct such a winning strategy. One
straightforward way to solve parity games of imperfect information is based on
the following idea [10, 2]: after an initial prefix of a play, Player 1 may not know in
which precise location the play currently is but, by keeping track of the history, he
can identify a minimal set of locations that is guaranteed to contain the current
location. Such a set, to which we refer as a cell, reflects the knowledge derived
by a player from past play. Via a subset construction that associates moves in
the game to transitions between cells, the original imperfect-information game
over locations is transformed into an equivalent game of perfect information over
cells. This approach, however, incurs an exponential increase in the number of
states and is therefore inefficient.

2

For computing the winning region of a game, an algorithm that avoids the
explicit subset construction has been proposed recently in [2]. The algorithm
exploits a monotonicity property of imperfect-information games: if a cell is
winning for Player 1, that is, if he wins from every location of the cell, then he
also wins from every subset of the cell. Intuitively, the subcell represents more
precise knowledge than the entire cell. It is therefore sufficient to manipulate
sets of cells that are downward-closed in the sense that, if a cell belongs to
the set, then all its subcells also belong to it. As a succinct representation for
downward-closed sets of cells, the algorithm maintains antichains that consist of
maximal elements in the powerset lattice of cells. The winning region can now be
computed symbolically by evaluating its characterization as a µ-calculus formula
over the lattice. One particular effect of this procedure is that the discovery
of winning cells propagates backwards, rather than forwards from the initial
location, and thus avoids the construction and exploration of cells that are not
relevant for solving the game.

On many instances, the antichain algorithm performs significantly better
than the subset construction for computing winning regions. However, in con-
trast to the latter, the antichain algorithm does not construct winning strategies.
Indeed, we argue that there is no direct way to extract a winning strategy from
the symbolic fixed-point computation. In terms of logic, the algorithm evaluates
a µ-calculus formula describing the winning region, which corresponds to eval-
uating a monadic expression with second-order quantifiers that range over (sets
of) nodes in the game graph. On the other hand, strategies are not monadic ob-
jects; already memoryless location- or observation-based strategies are composed
of binary objects, namely, edges of the graph or pairs of cells. In particular, we
show that already in parity games of perfect information knowing the winning
region of a game does not make the problem of constructing a winning strategy
easier. In imperfect-information games there are additional sources of complex-
ity: the size of a winning strategy may be exponentially larger than the winning
region, already for reachability objectives. Nevertheless, the construction of win-
ning strategies is crucial for many applications such as controller synthesis or
counterexample-guided abstraction-refinement [8].

In this paper, we present an algorithm for constructing winning strategies
in parity games of imperfect information. One main concern is to avoid the
subset construction. To accomplish this, our algorithm works with symbolic rep-
resentations of set of cells and builds on the antichain technique. It is based on
an elementary algorithm proposed by McNaughton [9] and presented for parity
games by Zielonka [13]. This algorithm works recursively: from the viewpoint
of Player 1, in each stage a smaller game is obtained by removing the attractor
region from which Player 2 can ensure to reach the minimal odd priority. This
operation of removal marks the main difficulty in adapting the algorithm to an-
tichains, as the residual subgame is in general not downward-closed. Intuitively,
switching between the sides of the two players breaks the succinct representa-
tion. We overcome this difficulty by letting, in a certain sense, Player 1 simulate
Player 2. Technically, this amounts to replacing two alternating reachability

3

computations by the computation of a strategy that simultaneously satisfies a
reachability and a safety objective.

We have implemented the algorithm as a prototype. To our knowledge, this
is the first automatic tool for solving imperfect-information parity games on
graphs. A full version of this paper with detailed proofs is available in [1].

2 Definitions

Let Σ be a finite alphabet of actions and let Γ be a finite alphabet of obser-
vations. A game structure of imperfect information over Σ and Γ is a tuple
G = (L, l0, ∆, γ), where L is a finite set of locations (or states), l0 ∈ L is the ini-
tial location, ∆ ⊆ L×Σ×L is a set of labelled transitions, and γ : Γ → 2L \∅ is
an observability function that maps each observation to a set of locations. Abus-
ing notation, we usually identify the set γ(o) with the observation symbol o. We
require the following two conditions on G: (i) for all ℓ ∈ L and all σ ∈ Σ, there
exists ℓ′ ∈ L such that (ℓ, σ, ℓ′) ∈ ∆, i.e., the transition relation is total, and (ii)
the set {γ(o) | o ∈ Γ} partitions L. For each ℓ ∈ L, let obs(ℓ) = o be the unique
observation such that ℓ ∈ γ(o). In the special case where Γ = L and obs(ℓ) = ℓ,
for all ℓ ∈ L, we say that G is a game structure of perfect information over Σ. For
infinite sequences of locations π = ℓ1ℓ2 . . . , we define obs(π) = o1o2 . . . where
obs(ℓi) = oi for all i ≥ 1, and similarly for finite sequences of locations. For
σ ∈ Σ and s ⊆ L, we define postσ(s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ ∆} as the
set of σ-successors of locations in s.

The game on G is played in rounds. In each round, Player 1 chooses an
action σ ∈ Σ, and Player 2 chooses a successor ℓ′ of the current location ℓ such
that (ℓ, σ, ℓ′) ∈ ∆. A play in G is an infinite sequence π = ℓ1ℓ2 . . . of locations
such that (i) ℓ1 = l0, and (ii) for all i ≥ 0, there exists σi ∈ Σ such that
(ℓi, σi, ℓi+1) ∈ ∆.

A strategy for Player 1 in G is a function α : Γ+ → Σ. The set of possible
outcomes of α in G is the set Outcome(G, α) of plays π = ℓ1ℓ2 . . . such that
(ℓi, α(obs(ℓ1 . . . ℓi)), ℓi+1) ∈ ∆ for all i ≥ 1. We say that a strategy α is mem-
oryless if α(ρ · o) = α(ρ′ · o) for all ρ, ρ′ ∈ Γ ∗. We say that a strategy uses
finite memory if it can be represented by a finite-state deterministic transducer
(M, m0, λ, δ) with finite set of states M (the memory of the strategy), initial
state m0 ∈M , where λ : M → Σ labels states with actions, and δ : M ×Γ →M

is a transition function labeled by observations. In state m, the strategy rec-
ommends the action λ(m), and when Player 2 chooses a location with observa-
tion o, it updates the internal state to δ(m, o). Formally, (M, m0, λ, δ) defines

the strategy α such that α(ρ) = λ(δ̂(m0, ρ)) for all ρ ∈ Γ+, where δ̂ extends δ

to sequences of observations in the usual way. The size of a finite-state strategy
is the number |M | of states of its transducer.

An objective for a game structure G = (L, l0, ∆, γ) is a set φ ⊆ Γ ω of infinite
sequences of observations. A strategy α for Player 1 is winning for an objective φ

if obs(π) ∈ φ for all π ∈ Outcome(G, α). We say that set of locations s ⊆ L is
winning for φ if there exists a strategy α for Player 1 such that α is winning

4

for φ in Gℓ := (L, ℓ, ∆, γ) for all ℓ ∈ s. A game is a pair (G, φ) consisting of a
game structure and a matching objective. We say that Player 1 wins the game,
if he has a winning strategy for the objective φ.

We consider the following classical objectives. Given a set T ⊆ Γ of target
observations, the safety objective Safe(T) requires that the play remains within
the set T , that is, Safe(T) = {o1o2 . . . | ∀k ≥ 1 : ok ∈ T }. Dually, the reachability
objective Reach(T) requires that the play visits the set T at least once, that is,
Reach(T) = {o1o2 . . . | ∃k ≥ 1 : ok ∈ T }. The Büchi objective Buchi(T) requires
that an observation in T occurs infinitely often, that is, Buchi(T) = {o1o2 . . . |
∀N · ∃k ≥ N : ok ∈ T }. Dually, the coBüchi objective coBuchi(T) requires that
only observations in T occur infinitely often. Formally, coBuchi(T) = {o1o2 . . . |
∃N · ∀k ≥ N : ok ∈ T }. Finally, given a priority function p : Γ → N that
maps each observation to a non-negative integer priority, the parity objective
Parity(p) requires that the minimum priority that appears infinitely often is even.
Formally, Parity(p) = {o1o2 . . . | min{p(o) | ∀N · ∃k ≥ N : o = ok} is even}. We
denote by coParity(p) the complement objective of Parity(p), i.e., coParity(p) =
{o1o2 . . . | min{p(o) | ∀N · ∃k ≥ N : o = ok} is odd}. Parity objectives are
a canonical form to express all ω-regular objectives [12]. In particular, they
subsume safety, reachability, Büchi and coBüchi objectives.

Notice that objectives are defined as sets of sequences of observations, and
they are therefore visible to Player 1. A game with a safety (resp. reachability)
objective defined as a set of plays can be transformed into an equivalent game
with a visible safety (resp. reachability) objective in polynomial time.

3 Antichain Algorithm

Let Σ be an alphabet of actions and let Γ be an alphabet of observations. We
consider the problem of deciding, given a game structure G = (L, l0, ∆, γ) and
a parity objective φ, whether Player 1 has a winning strategy for φ in G. If
the answer is Yes, we ask to construct such a winning strategy. This problem
is known to be Exptime-complete already for reachability objectives [10, 2].
The basic algorithm proposed in [10] constructs a game (GK, φ′) such that (i)
GK = (S, s0, ∆

′, γ′) is a game structure of perfect information over the action
alphabet Σ, and (ii) Player 1 has a winning strategy for φ in G if and only
if Player 1 has a winning strategy for φ′ in GK. The game structure GK is
obtained by a subset construction where S = 2L \ {∅} and (s1, σ, s2) ∈ ∆′ if
and only if there exists an observation o ∈ Γ such that s2 = postσ(s1) ∩ γ(o)
and s2 6= ∅. In the sequel, we call a set s ⊆ L a cell. A cell summarizes the
current knowledge of Player 1, i.e., the set of possible locations in which the
game G can be after the sequence of observations seen by Player 1. Notice that
every cell reachable in GK is a subset of some observation, and so the parity
objective φ′ is defined by extending to cells in the natural way the priority
function p that defines φ. Notice that an objective for GK is a set of infinite
sequences of cells, since locations and observations coincide in games of perfect
information. In (GK, φ′), memoryless winning strategies always exist. Hence,

5

they can be converted into winning strategies in (G, φ) that depend only on the
current cell in GK. Due to the explicit construction of GK, this approach involves
an exponential blow-up of the original game structure.

In [2], an alternative algorithm is proposed to solve games of imperfect in-
formation. Winning cells are computed symbolically, avoiding the exponential
subset construction. The algorithm is based on the controllable predecessor op-
erator CPre : 2S → 2S which, given a set of cells q, computes the set of cells q′

from which Player 1 can force the game into a cell of q in one round. Formally,

CPre(q) = {s ∈ S | ∃σ ∈ Σ · ∀s′ : if (s, σ, s′) ∈ ∆′ then s′ ∈ q}.

The key of the algorithm is that CPre(·) preserves downward-closedness, which
intuitively means that if Player 1 has a strategy from s to force the game to be
in q in the next round, then he also has such a strategy from all s′ ⊆ s because
then Player 1 has a more precise knowledge in s′ than in s. Formally, a set q of
cells is downward-closed if s ∈ q implies s′ ∈ q for all s′ ⊆ s. If q is downward-
closed, then so is CPre(q). Since parity games can be solved by evaluating a µ-
calculus formula over the powerset lattice (S,⊆,∪,∩), and since CPre(·), ∩ and ∪
preserve downward-closedness, it follows that a symbolic algorithm maintains
only downward-closed sets q of cells, and can therefore use a compact represen-
tation, namely their maximal elements ⌈q⌉ = {s ∈ q | s 6= ∅ and ∀s′ ∈ q : s 6⊂ s′},
forming antichains of cells, i.e., sets of ⊆-incomparable cells. The set A of an-
tichains is partially ordered as follows: for q, q′ ∈ A, let q ⊑ q′ iff ∀s ∈ q ·∃s′ ∈ q′ :
s ⊆ s′. The least upper bound of q, q′ ∈ A is q ⊔ q′ = ⌈{s | s ∈ q or s ∈ q′}⌉, and
their greatest lower bound is q⊓ q′ = ⌈{s ∩ s′ | s ∈ q and s′ ∈ q′}⌉. The partially
ordered set (A,⊑,⊔,⊓) forms a complete lattice. We view antichains of location
sets as a symbolic representation of ⊆-downward-closed sets of cells.

The advantage of the symbolic antichain approach over the explicit subset
construction has been established in practice for different applications in model-
checking (e.g. [3, 4]). The next lemma shows that the antichain algorithm may
be exponentially faster than the subset construction.

Lemma 1 (See also [3]). There exists a family (Gk)k≥2 of reachability games
of imperfect information with k locations such that, on input Gk the subset-
construction algorithm runs in time exponential in k whereas the antichain al-
gorithm runs in time polynomial in k.

The antichain algorithm computes a compact representation of the set of win-
ning cells. However, it does not produce a winning strategy. We point out that,
already for parity games with perfect information, if there exists a polynomial-
time algorithm that, given a game and the set of winning locations for Player 1,
constructs a memoryless winning strategy, then parity games can be solved in
polynomial time.

Proposition 2. The following two problems on parity games with perfect infor-
mation in which Player 1 wins are polynomial-time equivalent.

(i) Given a game, construct a memoryless winning strategy.

6

ℓ0 ℓ1 ℓ2

b a

a b

Fig. 1. A reachability game G.

(ii) Given a game and the set of winning locations for Player 1, construct a
memoryless winning strategy.

Proof. For any instance of problem (i), that is, a game G where Player 1 wins
from the initial location l0, we construct an instance (G′, W) of problem (ii)
in such a way that every memoryless winning strategy in G′ corresponds to a
winning strategy for G. (The converse is trivial.)

Without loss, we assume that no priorities in G are less than 2. The game G′

is obtained by adding to G a “reset” location z of priority 1, with transitions
that allow Player 1 to reach z from any location of G where he moves, and
with one transition from z back to l0. In the new game, Player 1 wins from
any location by first moving via z to l0 and then following the winning strategy
he has in G. Thus, G′ together with the set of all locations is an instance of
problem (ii). Obviously this can be constructed in polynomial time. Let now α

be a memoryless winning strategy in G′. No play starting from l0 that follows
α can reach z, otherwise Player 1 loses. Thus, α is readily a winning strategy in
the original game G. �

We also argue that, in games with imperfect information, even for simple
reachability objectives the antichain representation of the set of winning cells
may not be sufficient to construct a winning strategy. Consider the game G

depicted in Fig. 1, with reachability objective Reach({ℓ2}). The observations
are {ℓ0, ℓ1} and {ℓ2}. Since CPre({{ℓ2}}) = {{ℓ1}} (by playing action b) and
CPre({{ℓ1}, {ℓ2}}) = {{ℓ0, ℓ1}} (by playing action a), the fixed-point computed
by the antichain algorithm is {{ℓ2}, {ℓ0, ℓ1}}. However, from {ℓ0, ℓ1}, after play-
ing a, Player 1 reaches the cell {ℓ1} which is not in the fixed-point (however, it is
subsumed by the cell {ℓ0, ℓ1}). Intuitively, the antichain algorithm has forgotten
which action is to be played next. Notice that playing a again, and thus forever,
is not winning. The next lemma formalizes this intuition.

Lemma 3. There exists a family of games Gk with O(p(k)) many locations for
a polynomial p, and a reachability objective φ, such that the fixed point computed
by the antichain algorithm for (Gk, φ) is of polynomial size in k, whereas any
finite-memory winning strategy for (Gk, φ) is of exponential size in k.

We first present the ingredients of the proof informally. Let p1, p2, . . . be
the list of prime numbers in increasing order. For k ≥ 1, let Σk = {1, . . . , k}.

7

The action alphabet of the game Gk is Σk ∪ {#,⊥}. The game is composed of
subgames Hi, each consisting of a loop over pi many locations ℓ1, . . . , ℓpi

. From
a location ℓj all actions in Σk lead to ℓj+1 and from the last location ℓpi

Player 1
can return to the initial location ℓ1 with any action in Σk except i. Formally, for
all 1 ≤ i ≤ k, we define the subgame Hi with location space Li = {ℓ1, . . . , ℓpi

},
initial location ℓ1, and transition relation Ei = {(ℓj, σ, ℓj+1) | 1 ≤ j ≤ pi−1∧σ ∈
Σk} ∪ {(ℓpi

, σ, ℓ1) | σ ∈ Σk \ {i}}. In the sequel, we assume that the location
spaces of all Hi are disjoint, e.g. by adding a superscript i to the locations of Li

(Li = {ℓi
1, . . . , ℓ

i
pi
}).

Fig. 2 shows the game Gk for k = 2. In general, in Gk, there is a unique trivial
observation, so it is a blind game. We also assume that playing a particular action
in a location where it is not allowed leads to a sink location from which Goal is
not reachable. The plays start in location ℓ0 where every move in Σk is allowed.
The next location can be any of the initial locations of the subgames Hi. Thus,
Player 1 can henceforth play any action σ ∈ Σk, except in the last location
ℓpi

where playing σ = i would lead to the sink. As he does not know in which
of the Hi the play currently is, he should avoid playing σ = i whenever his
knowledge set contains qi

pi
. However, after a certain number of steps (namely

p∗k =
∏k

i=1
pi), the current location of the game will be one of the ℓi

pi
. Then,

taking a transition labeled by # necessarily leads to Goal. The # is not allowed
in any other location, so that Player 1 needs to count the first p∗k steps before
playing that move. Notice that after the first round, Player 1 could play ⊥, but
this would not reduce the amount of memory needed to win. However, it shows
that he is winning uniformly from all locations of the subgames Hi. Since the
size p∗k of the strategy is exponential in the size

∑k

i=1
pi of the game, the theorem

follows.

Proof of Lemma 3. The location space of Gk is the disjoint union of L1, . . . , Lk

and {q0, Goal, Bad}. The initial location is q0, the target observation consists of
Goal, and the sink location is Bad. The transition relation contains each set Ei,
the transitions (ℓi

j ,⊥, ℓ0), and the transitions (ℓ0, σ, ℓi
1) and (ℓi

pi
, #, Bad) for all

1 ≤ i ≤ k, 1 ≤ j ≤ pi and σ ∈ Σk. The transition relation is made total by
adding the transitions (q, σ, Bad) for each location ℓ of Gn and σ ∈ Σk ∪ {#}
such that there is no transition of the form (q, σ, q′) for q′ 6= Bad. There is only
one trivial observation, i.e., the observation alphabet Γ is a singleton.

First we show that Player 1 wins Gk. As there is exactly one observation, a
strategy for Player 1 is a function λ : N

≥0 → Σk ∪{#,⊥}. We define the sets Sj

such that any strategy λ such that λ(j) ∈ Sj for all j ≥ 1 is winning for Player
0. We take S1 = Σk, Sj = {i ∈ Σk | j − 1 mod pi 6= 0} for 2 ≤ j ≤ p∗k. Notice
that Sj 6= ∅ because the least common multiple of p1, . . . , pk is p∗k. Finally, for
j > p∗k we take Sj = {#}. It is easy to show that any strategy defined by these
sets is winning for Player 1.

For the second part of the theorem assume, towards a contradiction, that
there exists a finite-state winning strategy λ̂ with less than p∗k states. Clearly,
when playing any winning strategy, the (p∗k + 1)-th location of the play in Gk

must be ℓi
pi

for some i ∈ {1, . . . , k}. Moreover, each of the states ℓi
pi

could be

8

ℓ0

ℓ1
1

ℓ1
2

ℓ2
1

ℓ2
2 ℓ2

3

Goal

H1 H2

⊥ ⊥

Σ2 Σ2

Σ2 Σ2\{1}
Σ2

Σ2

Σ2\{2}

#
#

#

Fig. 2. The game G2.

the current one, depending on the initial choice of Player 2 (after the first move
of Player 1). Therefore, after p∗k steps, any winning strategy must play #. In the

case of λ̂, the state of the automaton for λ̂ after p∗k steps has necessarily been
visited in one of the previous steps. This means that # has been played before
and thus λ̂ is not a winning strategy as for all j < p∗k, one of the subgames Hi

is not in location ℓi
pi

after j steps of play, and thus playing # leads to a loss for
Player 1. �

Finally, we show that it is not trivial to efficiently compute CPre(·). In the
antichain representation, the controllable predecessor operator is defined as

CPre(q) =
⌈
{s ⊆ L | ∃σ ∈ Σ · ∀o ∈ Γ · ∃s′ ∈ q : postσ(s) ∩ γ(o) ⊆ s′}

⌉
,

or equivalently as

CPre(q) =
⊔

σ∈Σ

l

o∈Γ

⊔

s′∈q

{p̃reσ(s′ ∪ γ(o))}, (1)

where p̃reσ(s) = {s′ ∈ S | postσ({s′}) ⊆ s} and γ(o) = L \ γ(o).
Notice that the least upper bound of a set {ℓ1, . . . , ℓk} of antichains can be

computed in polynomial time, whereas a naive algorithm for the greatest lower
bound is exponential. The next lemma shows that, as long as we use a reasonable
representation of antichains which allows to decide in polynomial time whether
an antichain contains a set larger than n, it is unlikely that CPre(·) is computable
in polynomial time.

9

Lemma 4. The following problem is NP-hard: given a game of imperfect in-
formation G, an antichain q and an integer n, decide whether there exists a set
B ∈ CPre(q) with |B| ≥ n.

4 Strategy Construction with Antichains

We present a procedure to construct a winning strategy for a parity game of im-
perfect information G = (L, l0, ∆, γ) over the alphabets Σ and Γ . It is sometimes
convenient to reason in terms of the equivalent perfect-information game GK ob-
tained via the subset construction in Section 3. Let C denote the set of all cells s

such that s ⊆ γ(o) for some o ∈ Γ . Thus, C contains all locations of GK. For
R ⊆ C, a cell strategy on R is a memoryless strategy α : R → Σ for Player 1
in GK. Given an objective φ ⊆ Cω in GK, we define

WinR(φ) := { s ∈ R | there exists a cell strategy α such that

Outcome(GK

s , α) ⊆ φ ∩ Safe(R) }.

In words, WinR(φ) consists of cells s such that given the initial cell is s there
exists a winning cell strategy for Player 1 to ensure φ while maintaining the
game GK in R.

In Algorithm 1, we present a procedure to construct a winning cell strategy
in GK for objectives of the form

Reach(T) ∪ (Parity(p) ∩ Safe(F)),

where T ,F ⊆ C are downward-closed sets of cells and p : Γ → N is a pri-
ority function over observations. As p can be naturally extended to cells, the
set Parity(p) contains the sequence of cells such that the minimal priority cell
appearing infinitely often is even. The parity objective Parity(p) corresponds to
the special case where F = C and T = ∅. Note that a winning strategy need
not be defined on T since Reach(T) is satisfied for all cells in T . Memoryless
strategies are sufficient for this kind of objective in games of perfect information.
Thus, we can restrict our attention without loss to memoryless cell strategies.

Informal description. The algorithm is based on two procedures
ReachOrSafe(T ,F) and ReachAndSafe(T ,F) that use antichains to compute the
set of winning cells and a winning strategy for the objectives Reach(T)∪Safe(F)
and Reach(T)∩Safe(F), respectively, given downward-closed sets of cells T ⊆ C
and F ⊆ C. For perfect-information games, it is known that memoryless winning
strategies exist for such combinations of safety and reachability objectives.

The procedure is called recursively, reducing the number of priorities. Given
a parity function p we denote by p−2 the parity function such that for all o ∈ Γ

we have (p − 2)(o) = p(o) if p(o) ≤ 1, and (p − 2)(o) = p(o) − 2 otherwise.
For i ≥ 0, we denote by Cp(i) = { s ∈ C | s ⊆ γ(o), o ∈ Γ, p(o) = i } the set of
cells with priority i. Let W1 and W2 be disjoint sets of cells, and let α1 be a cell
strategy on W1 and α2 be a cell strategy on W2. We denote by α1 ∪ α2 the cell

10

strategy on W1∪W2 such that for all s ∈W1∪W2, we have (α1∪α2)(s) = α1(s)
if s ∈ W1, and (α1 ∪ α2)(s) = α2(s) otherwise.

Without loss of generality we assume that the cells in the target set T are
absorbing (i.e., have self-loops only). In line 1 of Algorithm 1, we compute W =
WinC(φ) using the antichain algorithm of [2]. Since we assume that cells in T are
absorbing, a winning cell strategy for the objective φ ensures that the set W is
never left. In the rest of the algorithm and in the arguments below, we consider
the sub-game induced by W . In line 2, the set W ∗ of winning cells and a winning
cell strategy α∗ on W ∗ \ T for the objective Reach(T) is computed by invoking
the procedure ReachOrSafe with target T and safe set W . Then the set W0 of
cells is obtained along with a cell strategy α0 that ensures that either W ∗ is
reached or the set of priority 0 cells in W is reached. After this, the algorithm
iterates a loop as follows: at iteration i + 1, let Wi be the set of cells already
obtained by the previous iteration and let Ai = W \ Wi. The algorithm is
invoked recursively with Wi as target set, Ai \ Cp(1) as the safe set, and p − 2
as the priority function to obtain a set Wi+1 as a result. In the base case,
where W consists of priorities 0, 1 and 2 only, since Ai has no priority 0 cells,
the objective Reach(Wi) ∪ (Parity(p − 2) ∩ Safe(Ai \ Cp(1)) can be equivalently
written as Reach(Wi)∪Safe(Ai∩Cp(2)). Therefore, in the base case, the recursive
call is replaced by ReachOrSafe(Wi, Ai ∩ Cp(2)). Notice that Wi ⊆ Wi+1. The
algorithm proceeds until a fixpoint of Wi = Wi+1 is reached.

Correctness of the iteration. First, we have W \ W ∗ ⊆ F which essen-
tially follows from the fact that from W \W ∗ Player 1 cannot reach T . More
precisely, if a cell s ∈ W \W ∗ does not belong to F , then against every cell
strategy for Player 1, there is a Player 2 strategy to ensure that the set T
is not reached from s. Hence from s, against every cell strategy for Player 1,
there is a Player 2 strategy to ensure that Reach(T) ∪ Safe(F) is violated,
and thus φ = Reach(T) ∪ (Parity(p) ∩ Safe(F)) is violated. This contradicts
s ∈ W = WinC(φ). The significance of the claim is that if W ∗ is reached, then
Player 1 can ensure that T is reached, and since W \W ∗ ⊆ F it follows that
if W ∗ is not reached then the game stays safe in F .

To establish the correctness of the iterative step, we claim that from the
set Wi+1 the cell strategy αi+1 on Wi+1 \Wi which ensures

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
,

also ensures that

Reach(Wi) ∪
(
Parity(p) ∩ Safe(F \ Cp(1))

)
.

Notice that in Ai \ Cp(1), there is no cell with priority 0 or priority 1 for the
priority function p since Cp(0) ∩W ⊆W0 ⊆Wi. Hence, we have

Parity(p− 2) ∩ Safe(Ai \ Cp(1)) = Parity(p) ∩ Safe(Ai \ Cp(1)).

Since Ai ⊆ W \ W0 ⊆ W \ W ∗ ⊆ F , it follows that the cell strategy αi+1

on Wi+1 \Wi to ensure

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
,

11

Algorithm 1: Imperfect-Information Game Solver - Solve(G, T , F , p)

Input : A game structure G with target T ⊆ C, safe set F ⊆ C and parity
function p on Γ .

Output : W = WinC(φ) where φ := Reach(T) ∪ (Parity(p) ∩ Safe(F)), and a
winning cell strategy α on W \ T for φ.

begin

1 W ←WinC(φ)
2 (W ∗, α∗)← ReachAndSafe(T , W)
3 (W0, α0)← ReachAndSafe(W ∗ ∪ (Cp(0) ∩W), W))
4 Let α′

0 be a cell strategy on (Cp(0) ∩W) \W ∗ such that
5 postα′

0
(s)(s) ∩ γ(o) ∈ W for all o ∈ Γ and s ∈ (Cp(0) ∩W) \W ∗

6 α0 ← α0 ∪ α′
0 ∪ α∗

7 i← 0
8 repeat

9 Ai ←W \Wi

10 if W ⊆ Cp(0) ∪ Cp(1) ∪ Cp(2) then

11 (Wi+1, αi+1)← ReachOrSafe(Wi, Ai ∩ Cp(2))

12 else

(Wi+1, αi+1)← Solve(G, Wi, Ai \ Cp(1), p− 2)

13 αi+1 ← αi ∪ αi+1

14 i← i + 1

until Wi = Wi−1

15 return (Wi, αi)

end

also ensures that

Reach(Wi) ∪
(
Parity(p) ∩ Safe(F \ Cp(1))

)
.

holds from all cells in Wi+1. By induction on i, composing the cell strategies
(i.e., by taking the union of strategies obtained in the iteration) we obtain that
from Wi+1, the cell strategy αi+1 on Wi+1 \ T for Player 1 ensures Reach(W0)∪(
Parity(p)∩Safe(F)∩ coBuchi(F \Cp(1))

)
. Note that to apply the induction step

for i times, one may visit cells in Cp(1), but only finitely many times.

Termination. We claim that upon termination, we have Wi = W . As-
sume towards a contradiction that the algorithm terminates with Wi = Wi+1

and Wi+1 6= W . Then the following assertions hold. The set Ai = W \Wi is
nonempty and

Wi+1 = Wi = WinW
(
Reach(Wi) ∪

(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

))
,

that is, in the whole set Ai against all Player 1 cell strategies, Player 2 can ensure
the complementary objective, i.e.,

Safe(Ai) ∩
(
coParity(p− 2) ∪ Reach(Ai ∩ Cp(1))

)
.

12

Now, we show that satisfying the above objective also implies satisfying
Safe(Ai) ∩ coParity(p). Consider a cell strategy for Player 1, and consider the
counter-strategy for Player 2 that ensures that the game stays in Ai, and also
ensures that coParity(p − 2) ∪ Reach(Ai ∩ Cp(1)) is satisfied. If a play visits
Ai ∩Cp(1) only finitely many times, then from some point onwards it only visits
cells in Ai that do not have priority 1 or priority 0 for the priority function p,
and then coParity(p − 2) = coParity(p). Otherwise, the set Ai ∩ Cp(1) is vis-
ited infinitely often and Ai is never left. Since Ai has no 0 priority cells for
the priority function p, it means that Player 2 satisfies the coParity(p) objec-
tive. It follows that in Ai against all Player 1 cell strategies, Player 2 can ensure
Safe(Ai)∩coParity(p). This is a contradiction to the fact that Ai ⊆W = WinW (φ)
and Safe(Ai) ∩ coParity(p) ⊆ Γ ω \ φ. This leads to the following theorem.

Theorem 5. Given an imperfect-information game G with target T ⊆ C, safe
set F ⊆ C and a parity function p on Γ , Algorithm 1 computes W = WinC(φ),
where φ = Reach(T) ∪ (Parity(p) ∩ Safe(F)), and a winning cell strategy α on
W \ T for φ.

Proof. This follows from the correctness of the iteration, and the fact W = Wi

for some i, it follows that from all locations in W , the obtained cell strategy
ensures

Reach(W0) ∪ (Parity(p) ∩ Safe(F) ∩ coBuchi(F \ Cp(1)).

We now complete the argument by showing that the cell strategy is winning
for φ. The cell strategy on W0 ensures that T is reached from cells in W ∗, from
cells in Cp(0) ∩W it ensures to stay in W , and in all remaining cells in W0 it
ensures to reach W ∗ ∪ (Cp(0) ∩W). The following case analysis completes the
proof.

1. If the set W0 is visited infinitely often, then (a) if W ∗ is reached, then T is
reached; (b) otherwise Cp(0) ∩W is visited infinitely often and the game always
stays safe in W \W ∗ ⊆ F . This ensures that Parity(p) is also satisfied.

2. If W0 is visited only finitely often, then the play never reaches W ∗, other-
wise it would reach T and stay in T forever, and hence Safe(F) is satisfied, such
that the objective Parity(p) ∩ Safe(F) ∩ coBuchi(F \ Cp(1)) is attained. Overall,
it follows the objective φ is satisfied. �

Antichain algorithm. To turn Algorithm 1 into an antichain algorithm, all
set operations must preserve the downward-closed property. The union and in-
tersection operations on sets preserve the downward-closed property of sets, but
the complementation operation does not. Observe that Algorithm 1 performs
complementation in line 9 (Ai ←W \Wi) and uses the set Ai in lines 11 and 12.
This was done for the ease of correctness proof of the algorithm. To see that the
complementation step is not necessary, observe that

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
=

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(W \ Cp(1))

)
.

13

Indeed, if a play never visits Wi, then the play is in Safe(Ai \ Cp(1)) if, and
only if, it is in Safe(W \ Cp(1)). Also note that the expression Parity(p − 2) ∩
Safe(W \Cp(1)) can be equivalently written as Parity(p−2)∩Safe(W∩

⋃
i≥2
Cp(i)).

It follows that every set operation in Algorithm 1 preserves downward-closed
property. This demonstrates the following statement.

Theorem 6. Algorithm 1 is compatible with the antichain representation.

We remark that the explicit construction of the strategies takes place only
in few steps of the algorithm: at line 2 and 3 of each recursive call where cell
strategies are computed for reachability objectives, and in the base case (parity
games with priorities 0, 1 and 2) in line 11 where cell strategies are computed
for union of safety and reachability objectives. Also note that we never need to
compute strategies for the target set T , and therefore in line 10, we would obtain
strategies for the set Wi+1 \Wi. Hence, once the strategy is computed for a set,
then it is never modified in any subsequent iteration.

5 Implementation

We have implemented Algorithm 1 in a prototype written in C. The input is a
text-file description of the game structure, transitions and observations. Inter-
nally, transitions and sets of locations are represented as arrays of integers.

The building blocks of the algorithm are the computation of CPre(·), and the
two procedures ReachOrSafe and ReachAndSafe. The implementation for CPre(q)
follows Equation (1) using three nested loops over the sets Σ, Γ and q. In the
worst case it may therefore be exponential in |Γ | which is not avoidable in
view of Lemma 4. To compute ReachOrSafe(T ,F), we evaluate the following
fixpoint formula in the lattice of antichains: ϕ1 ≡ νX.(F ⊓CPre(X))⊔T ∗ where
T ∗ = µX.CPre(X) ⊔ T . To compute ReachAndSafe(T ,F), we use ϕ2 ≡ µX.F ⊓
(CPre(X) ⊔ T).

When computing q′ = CPre(q), we associate with each cell in the antichain q′

the action to be played in order to ensure reaching a set in q. For ϕ1, this infor-
mation is sufficient to extract a winning strategy from the fixpoint: the action
associated with each winning cell ensures to reach an element of the fixpoint,
thus either confining the game inside F forever, or eventually reaching T ∗. On
the other hand, for T ∗ and ϕ2 (which has the flavor of reachability), we have
seen in Section 3 that the final fixpoint is not sufficient to recover the winning
strategy. Therefore, we have to construct on the fly the winning strategy while
computing the fixpoint. We output a reachability strategy as a tree structure
whose nodes are the sets in the successive antichains computed in the least-
fixpoint iterations together with their associated action σ ∈ Σ. If q′ = CPre(q)
and σ is the action to be played in cell s ∈ q′, then for each observation o (given
by Player 2) we know that there exists a cell so ∈ q such that post(s)∩γ(o) ⊆ so.
Correspondingly, each node for the sets in q′ has |Γ | outgoing edges to some sets
in q.To evaluate the scalability of our algorithm, we have generated game struc-
tures and objectives randomly. We fixed the alphabet Σ = {0, 1} and we used

14

the following parameters to generate game instances: the size |L| of the game,

the transition density r = |∆|
|L|·|Σ| , i.e., the average branching degree of the game

graph, and the density f = |Γ |
|L| of observations. For each σ ∈ Σ, we generate r·|L|

pairs (ℓ, ℓ′) ∈ L×L uniformly at random; each location is randomly assigned one
of the f · |L| observations. We have tested reachability and Büchi objectives for
games with transition density varying from 0.5 to 4 and density of observation
varying from 0.1 to 0.9. We have limited the execution time to 10s for each in-
stance. The size of the generated instances ranges from 50 to 500. For all values
of the parameters, our prototype solved half of the instances of size 100 for both
reachability and Büchi objectives. When the transition density is below 1.5, the
instances are much easier to solve and the maximal size is 350 for reachability
and 200 for Büchi objectives. Finally, we did not observe significant influence of
the number of observations on the performance of the prototype. It seems that
the exponential cost of computing CPre(·) is compensated by the fact that for
large number of observations, the games are closer to perfect-information games.

References

1. D. Berwanger, K. Chatterjee, L. Doyen, T. A. Henzinger, and S. Raje. Strategy
construction for parity games with imperfect information. Technical Report MTC-
REPORT-2008-005, http://infoscience.epfl.ch/record/125011, EPFL, 2008.

2. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-
regular games of incomplete information. Logical Methods in Computer Science,
3(3:4), 2007.

3. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In Proc. of CAV 2006,
LNCS 4144, pages 17–30. Springer-Verlag, 2006.

4. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative
algorithms for LTL satisfiability and model-checking. In Proc. of TACAS 2008,
LNCS 4693, pages 63–77. Springer-Verlag, 2008.

5. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. of FoCS 1991, pages 368–377. IEEE, 1991.

6. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
7. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite

Games. LNCS 2500. Springer-Verlag, 2002.
8. T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In

Proc. of ICALP 2003, LNCS 2719, pages 886–902. Springer-Verlag, 2003.
9. R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65(2):149–184, 1993.
10. J. Reif. The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences, 29:274–301, 1984.
11. W. Thomas. On the synthesis of strategies in infinite games. In Proc. of STACS

1995, pages 1–13. Springer-Verlag, 1995.
12. W. Thomas. Languages, automata, and logic. Handbook of Formal Languages,

3:389–455, 1997.
13. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-

tomata on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

15

