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Abstract

This thesis studies a generalisation of the modal µ-calculus, a modal fixed-
point logic that is an important specification language in formal verification.
We define a quantitative generalisation of this logic, meaning that formulae do
not just evaluate to true or false anymore but instead to arbitrary real values.
First, this logic is evaluated on a quantitative extension of transition systems
equipped with quantitative predicates that assign real values to the nodes of
the system. Having fixed a quantitative semantics, we investigate which of
the classical theorems established for the modal µ-calculus can be lifted to this
quantitative setting.

The modal µ-calculus is connected to bisimulation, a notion of behavioural
equivalence for transition systems. We define a quantitative notion of bisim-
ulation as a distance between systems. First, we show that for systems that
have a fixed maximal distance, the evaluation of formulae also differs by at
most this distance, thus providing a quantitative version of the classical result
that the modal µ-calculus is invariant under bisimulation. The converse direc-
tion does not hold for Qµ on arbitrary systems. However, as in the classical
case, on finitely-branching systems the converse can be shown for the modal
fragment and thus already quantitative modal logic characterises quantitative
bisimulation on finitely-branching systems.

Next, we consider the model-checking problem which, given a system and
a formula, is to decide whether the system is a model of the formula. In
the quantitative world, this translates to computing the numerical value of a
formula at a given node of the system. The model-checking problem for the
modal µ-calculus can be solved by parity games, a class of infinite zero-sum
graph games. We introduce a quantitative extension of these games and show
that they are the corresponding model-checking games for our logic.

After establishing bisimulation invariance and developing model-checking
games, we move to systems that are closer to the scenarios arising in prac-
tical applications. First, we consider discounted systems, i.e. systems where
additionally the edges are labelled with quantities. It is not straightforward to
define a negation operator in this setting that allows for the duality properties
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needed for a game-based approach to model checking. We show that in this
setting there is only one reasonable way to define it. Again, we define an ap-
propriate extension of parity games and show that they correctly describe the
evaluation of a discounted quantitative µ-calculus formula. Finally, we pro-
vide an algorithm for solving these games, thus also for model checking the
quantitative µ-calculus on discounted systems.

In the final chapter, we go even further towards practical applications and
evaluate the quantitative µ-calculus on a simple class of hybrid systems, namely
initialised linear hybrid systems. We show how to approximate the value of a
quantitative µ-calculus formula with arbitrary precision on such systems. We
define a corresponding version of parity games and use the previously ob-
tained results to prove that they are the correct model-checking games. Then
we show how to simplify these games in several steps. We provide a detailed
mathematical analysis of these games. In particular we introduce a new class of
almost discrete strategies that permit us to simplify the games and to compute
their values.
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Zusammenfassung

Diese Dissertation behandelt eine Verallgemeinerung des modalen µ-Kalküls,
einer wichtigen Spezifikationssprache in der formalen Verifikation. Die quan-
titative Erweiterung ist dergestalt, dass Formeln nicht länger nur zu wahr oder
falsch ausgewertet werden können, sondern zu beliebigen reellen Zahlen. Wir
werten diese Logik zunächst auf einer quantitativen Erweiterung von Transi-
tionssystemen aus, in der jedem Knoten durch quantitative Prädikate reelle
Werte zugewiesen werden. Anschließend untersuchen wir, welche klassischen
Resultate für den µ-Kalkül sich sinnvoll in diesen quantitativen Rahmen über-
tragen lassen.

Eines dieser Resultate ist die enge Verbindung zwischen dem µ-Kalkül und
der Bisimulation, einer Art von Verhaltensäquivalenz für Transitionssysteme.
Wir führen quantitative Bisimulation als einen Abstand zwischen Transitions-
systemen ein und zeigen, dass für Systeme, die einen festen Abstand haben,
auch der Unterschied in der Auswertung von Formeln durch diesen Abstand
begrenzt wird. Dies ist eine quantitative Version des klassischen Resultats,
dass der modale µ-Kalkül invariant unter Bisimulation ist. Die Rückrichtung
dieses Satzes gilt nicht für beliebige Systeme, aber wie im klassischen Fall
zeigen wir, dass für endlich verzweigte Systeme diese Richtung bereits für
die quantitative Modallogik gilt. Somit charakterisiert quantitative Modallogik
quantitative Bisimulation für endlich verzweigte Systeme.

Weiterhin betrachten wir das Model-Checking-Problem, d.h. die Frage ob für
ein gegebenes System und eine Formel gilt, dass das System Modell der Formel
ist. Für den quantitativen Fall lässt sich dies übersetzen in die Berechnung der
Auswertungsfunktion einer Formel für ein gegebenes System. Im klassischen
Fall kann dies durch die Übersetzung in Paritätsspiele gelöst werden, einer
Klasse von unendlichen Graphspielen. In dieser Arbeit führen wir eine quan-
titative Erweiterung dieser Spiele ein und zeigen, dass diese die geeigneten
Model-Checking-Spiele für den quantitativen µ-Kalkül sind.

Schließlich beschäftigen wir uns mit Anwendungsszenarien für den quan-
titativen µ-Kalkül, wobei wir zuerst eine entsprechend erweiterte Logik auf
discounted systems betrachten. Dies sind quantitative Systeme in denen auch
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die Kanten mit reellen Werten beschriftet sind. Die Definition eines geeigneten
Negationsoperators – welcher entscheidend für den spielbasierten Zugang zum
Model-Checking-Problem ist – ist in diesem Fall nicht offensichtlich. Wir
zeigen, dass es nur eine sinnvolle Art gibt diesen zu definieren. Wie be-
reits zuvor führen wir eine passende Erweiterung von Paritätsspielen ein und
zeigen, dass sie die geeigneten Model-Checking-Spiele für diesen Fall sind.
Anschließend zeigen wir, wie sich diese Spiele algorithmisch lösen lassen.

Im letzten Kapitel werten wir den quantitativen µ-Kalkül auf einer einfachen
Klasse von hybriden Systemen aus. Wir zeigen, dass der Wert einer quantita-
tiven µ-Kalkül-Formel mit beliebiger Präzision auf diesen Systemen berechnet
werden kann. Dazu nutzen wir wieder die Beschreibung durch entsprechende
Paritätsspiele aus, sowie die Resultate aus den vorherigen Kapiteln. Die Berech-
nung läuft in mehreren Reduktionsschritten ab. Wir führen eine detaillierte
mathematische Analyse dieser Spiele durch. Insbesondere definieren wir eine
neue Klasse von Strategien, die uns erlaubt, die Spiele zu vereinfachen und
ihre Werte zu berechnen.
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1 Introduction

Formal verification is one of the most important challenges in theoretical com-
puter science. One of its central tasks is to provide formal methods to assure
that a program or a system behaves according to a given specification. Failure
to predict or guarantee the behaviour of a program can lead to anything from
minor annoyance to major safety problems. For example, it is indispensable
that the software running in a plane that assists the pilot with the landing pro-
cedure runs smoothly and does not exhibit faulty behaviour. The same can be
said, for example, for the software that controls a nuclear power plant or other
safety-critical systems. If these programs are only verified by running test cases
or scenarios – however exhaustive – one can never be completely sure that all
possible behaviours have been covered and that the software will never pro-
duce an error. This is where formal verification comes into play. In order to
use formal methods we first have to model systems in an abstract way. Fur-
thermore, we have to provide a language in which we can specify the desired
behaviour. The languages of choice in verification are usually temporal logics
and one of the most prominent verification techniques is model checking, i.e.
proving that a model of the system fulfils a logical formula which represents its
specification. Two prominent examples of temporal logics are the linear-time
temporal logic LTL and the branching-time temporal logic CTL (computation
tree logic). These logics allow for specifying properties of runs of programs.
For example, the liveness property “a deadlock should never occur” could be
specified in a temporal logic. In linear time logics a run is a linear succession
of events that can be viewed as a time line and thus statements are implicitly
universally quantified. In branching-time logics we view the execution of a
program as a tree, for every possible event, we branch out. This tree describes
all possible future behaviours and every run through this tree can be viewed
as a linear time line.

The modal µ-calculus, introduced by Kozen in [31], is a modal logic with
least and greatest fixed-point operators and is expressive enough to subsume
LTL and CTL and even CTL∗, a generalisation of both, see e.g. [6]. This makes
the modal µ-calculus one of the most powerful logical formalisms in formal
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1.1. The Modal µ-Calculus

verification. In addition to its great expressive power, the modal µ-calculus has
nice model-theoretic properties.

1.1 The Modal µ-Calculus

The modal µ-calculus, Lµ, is a modal logic equipped with least and greatest
fixed-point operators. In modal logic, we build formulae from a set of atomic
propositions, a negation operator ¬ (not), logical operators ∧ (and) and ∨ (or),
and modal operators � (box) and ♦ (diamond). A formula is evaluated over
a transition system, i.e. a directed graph where the nodes are labelled with
atomic propositions. We can describe features of transition systems by modal
formulae. Atomic formulae are just propositions that are either true or false
at a node and we have the intuitive interpretation of ¬, ∧ and ∨. The modal
operators allow to speak about the successors of a node, where �ϕ requires all
successors to fulfil the formula ϕ and ♦ϕ requires the existence of a successor
where ϕ holds. An example formula in modal logic is ϕ = ♦(P ∧ ¬Q) which
holds at a node if there exists a successor where the atomic property P holds
and Q does not. Modal logic can be seen as a fragment of first-order logic and
thus lacks a recursion mechanism which is needed e.g. to express reachability
properties.

The modal µ-calculus introduces recursion by adding least and greatest fixed
points of definable operators. These fixed-point operators are denoted in the
syntax by the Greek letters µ (least fixed point) and ν (greatest fixed point).
We do not formally describe the semantics of Lµ here but instead give some
example formulae to illustrate what is expressible in this logic. For example,
reachability is now expressible: “eventually P” is expressed in Lµ as µX.(P ∨
♦X). Also, the requirement that a system be non-terminating, i.e. that the
system will never reach a point from which there are no outgoing edges is
expressible as νX.(♦X). Another example of a temporal property is “Q until
P”, or in Lµ, µX.(P ∨ (Q ∧ ♦X)). This holds if either P holds immediately on
the initial node, or it holds at a later node and on all nodes on paths in-between
the property Q is true.

The close connection to games is a fundamental aspect of logics. The evalua-
tion of logical formulae can be described by model-checking games, played by
two players on an arena which is formed as the product of a structure K and a
formula ψ. One player (Verifier) attempts to prove that ψ is satisfied in K while
the other one (Falsifier) tries to refute this. For the modal µ-calculus Lµ, model
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Chapter 1. Introduction

checking is described by parity games, and this connection is of crucial im-
portance for the algorithmic evaluation and the applications of the µ-calculus.
Indeed, most competitive model checking algorithms for Lµ are based on algo-
rithms to solve the strategy problem in parity games [29]. Furthermore, parity
games enjoy nice properties like positional determinacy and can be intuitively
understood: often, the best way give an intuitive meaning to a µ-calculus for-
mula is to look at the associated game. In the other direction winning regions
of parity games (for a fixed number of priorities) are definable in the modal µ-
calculus. A summary of the results about Lµ, parity games and model-checking
can be found in [24].

The modal µ-calculus is linked to a classical relation called bisimulation.
Bisimulation has been introduced as a notion of behavioural equivalence be-
tween systems. It has its origin in concurrency theory where it was used to
formalise the similarity of the behaviour of processes [25, 36]. Hennessy and
Milner additionally proposed a logical characterisation of bisimulation. In-
dependently, bisimulation was studied in the context of classical logics and
Kripke structures, and was used to identify the class of formulae of first-order
logic which are equivalent to formulae in modal logic [38, 39]. There are differ-
ent ways to define bisimulation: originally it was defined as a fixed point of a
monotone self-map on a complete lattice. Van Benthem gave a relational defini-
tion, and it can also be defined in terms of a two-player game. As stated above,
bisimulation captures behavioural equivalence between transition systems. In-
tuitively speaking, two systems are bisimilar if we can see the same behaviour
on all runs through the systems, even though the general shape of the systems
might be different. The modal µ-calculus is invariant under bisimulation. This
means that a specification written in Lµ cannot distinguish between systems
that are bisimilar. This is a desirable property for a specification language as
one often is not interested in e.g. the specific implementation of a program but
mainly in its behaviour. The converse direction of this statement, i.e. indistin-
guishability in Lµ implies bisimilarity, does not hold for the modal µ-calculus
on general systems [5]. It is true, however, for infinitary modal logic, an ex-
tension of modal logic that admits infinite conjunctions and disjunctions and
subsumes the modal µ-calculus (on classes of systems of bounded cardinality).
For finitely-branching systems, already modal logic characterises bisimulation,
i.e. finitely-branching systems that cannot be distinguished by a formula in
modal logic are bisimilar [23].

Bisimulation can not only be defined as a relation but equivalently as a game
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between two players, Spoiler and Duplicator. In the game, a pebble is placed
on each system. In each round Spoiler challenges Duplicator by moving one
of the pebbles to show a difference between the systems, and Duplicator has
to match his move and prove that the systems are still bisimilar. The game-
based description enables us to use tools from game theory to prove results in
logic, an approach that we already used for the model checking problem. For a
formal treatment of modal logics, Lµ, and the classical results on bisimulation
we refer the reader to [23, 5].

1.2 Quantitative Logics

There is an obvious motivation to extend classical two-valued formalisms to
quantitative ones: systems in the real world have quantities in them. If we
model a real system, for example an engine, there are properties that can nat-
urally be described using quantities, such as the amount of fuel, temperature,
pressure and so on. When querying the system, it seems natural to ask “what
is the highest temperature on each run of the system?” or “how much fuel
is left after n steps?”. The answer to such queries is a number and it is de-
sirable not having to rephrase them as yes-or-no questions. While there is a
great motivation to define quantitative logics, one has to be careful in doing so.
In many areas of practice where logical formalisms are applied, one can ob-
serve that the definitions of quantitative formalisms are often ad-hoc and not
well thought-out. Quantitative formalisms often lack the clean mathematical
theory their qualitative counterparts enjoy and thus also lose their nice algo-
rithmic properties. Furthermore, these mathematical properties are needed for
a formal treatment, and thus the wrong quantitative extension can make it
impossible to use classical approaches to formal verification.

The word quantitative can have different meanings when applied to logical
formalisms. It can refer to a specific quantity, such as time or probability, or
it can just be an abstract number. There are application areas for all of these
approaches and so, unsurprisingly, there are already many different proposals
for quantitative versions of logics, especially of temporal logics and the µ-
calculus. In the broadest sense quantitative means that instead of a logic being
two-valued, i.e. allowing only for the evaluations true or false, formulae can
evaluate to arbitrary quantities.

In many of the proposed extensions of temporal logics, the term quantitative
is used as a synonym for probabilistic. In these works, a logic is interpreted
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Chapter 1. Introduction

over probabilistic transition systems [33], or used to describe winning condi-
tions in stochastic games [12, 7, 22]. Other variants introduce quantities by
allowing discounting in the respective version of a “next”-operator for qualita-
tive transition systems [7], Markov decision processes and Markov chains [8],
and for stochastic games [11]. In [34], the µ-calculus is also interpreted over
probabilistic transition systems, and it is shown that the value of a formula can
be described by an appropriate two-player stochastic game. The proof tech-
niques in [34] are adapted from the unfolding technique that we also use in
this thesis.

We already stated that the modal µ-calculus is linked to a notion of be-
havioural equivalence called bisimulation. In the quantitative setting, bisimu-
lation has already been interpreted in the context of behavioural pseudomet-
rics. The pseudometric allows for defining a distance between states repre-
senting the similarity of their behaviours. In [40] quantitative bisimulation
equivalence has been studied for (edge-)labelled transition systems and been
given three characterisations: a fixed-point, a logical and a co-algebraic one.
Their logic allows for labelled modalities and the distance between edge label
and modal label describes the requirement on the following sub formula. In
[10], the authors study metric transition systems (where propositions can take
values from arbitrary metric spaces) and quantitative versions of simulation
and bisimulation. They also give a definition of a pseudometric using a fixed-
point characterisation and in terms of a positive quantitative modal logic. In
[13], another fixed-point characterisation of a bisimulation pseudometric can
be found.

1.3 Organisation and Main Results

In this thesis quantitative is an abstract term and has no pre-defined seman-
tics. To be able to avoid overly abstract notions however, we chose to interpret
quantitative as real-valued, so in our formalism formulae can evaluate to real
values. We took our inspiration from a work by de Alfaro, Faella and Stoelinga
[9, 10]. Their quantitative µ-calculus is an extension of Lµ (without negation
and thus duality of operators). The semantics of this logic is given by metric
transition systems, i.e. transition systems where nodes are labelled with quan-
tities from arbitrary metric spaces. Additionally, they allow discounting in the
modal operators, i.e. multiplying by a positive factor less than 1. They study
this logic and a quantitative version of LTL in connection with a trace and
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bisimulation distance, a quantitative generalisation of trace equivalence and
bisimulation, and they show a characterisation result for its modal fragment
on finitely-branching systems.

We are interested in developing a quantitative model theory of the µ-calculus.
As mentioned above, we restrict ourselves to real values. Also, we are not sat-
isfied with a logic without negation as duality of operators is crucial for a
game-based approach to model checking and negation is a part of a full logic.

Having settled on the reals, there are still many design choices to be made.
Transition systems can be made quantitative to different degrees. We can label
only the nodes with real values or we can allow labels on both nodes and
edges. Also the logic can be made quantitative to different levels. Either we
just allow quantitative predicates or we also allow a version of discounting in
the formulae, i.e. multiplying or adding a real value. As we discussed above
though, we have to be careful how we define the quantitative version of the
µ-calculus so that we retain the classical properties that we expect from it – at
least to a certain extent. To illustrate the consequences of the different choices
in the quantitative design, we will treat the above mentioned cases separately.

Having defined a quantitative extension of Lµ which we call the quantitative
µ-calculus Qµ, we can now ask which of the classical theorems can be lifted
into this quantitative setting and how the different scenarios compare to each
other. Obviously, we cannot use the classical notions anymore, so we have
define quantitative extensions of bisimulation and parity games. We also for-
mulate quantitative versions of the classical theorems tailored to this setting.
After establishing some of the classical results for the quantitative µ-calculus
Qµ, we discuss algorithms to evaluate it on more complex systems. We start by
investigating discounted systems, and then go on to provide a model-checking
algorithm for the quantitative µ-calculus on a class of hybrid systems.

Structure of this Thesis

The general structure of this thesis is as follows. First, we define the quanti-
tative µ-calculus on simple quantitative transition systems, i.e. graphs where
only the nodes are labelled with real values, and investigate a quantitative ver-
sion of bisimulation. Then, we concern ourselves with model-checking, and
define a quantitative version of parity games and prove that they correctly de-
scribe the evaluation of a formula. Towards practical applications, we consider
more complex systems and make the logic more powerful. We discuss model-
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Chapter 1. Introduction

checking for discounted systems, i.e. quantitative transition systems where also
the edges are labelled. Finally, we extend the model-checking algorithm even
to a class of hybrid systems.

In Chapter 2, we introduce the quantitative µ-calculus, the heart of this the-
sis. We illustrate the kind of properties this logic is able to express. Then, we
explore a quantitative version of bisimulation and illuminate its relation to our
logic. We show a result similar to the classical invariance theorem for Lµ and
the characterisation theorem for modal logic on finitely-branching systems.

First, we define a simple quantitative extension of Kripke structures. These
quantitative transition systems are directed graphs where the nodes are la-
belled with quantitative predicates, i.e. functions that assign real values to each
node.

Next, we define our quantitative version of the modal µ-calculus which we
call the quantitative µ-calculus Qµ. The syntax of this logic is similar to the
classical µ-calculus. The formulae of Qµ are evaluated on quantitative transi-
tion systems and yield a function from the nodes of a transition system to the
reals extended with ∞ and −∞. We give a few examples for the evaluation of
modal operators and fixed-point formulae to familiarise the reader with our
logic.

Then, we introduce a quantitative version of bisimulation similar to the
bisimulation distance by de Alfaro, Faella and Stoelinga [10, 9]. Although
the resulting notion is similar, our definition differs from theirs. They define
bisimulation as a least fixed point of a quantitative operator. We define bisim-
ulation as a relation and as a game, and show that the notions coincide as in
the classical case. Then, we extend the classical results. We establish that Qµ

is invariant under quantitative bisimulation which means that if two systems
are r-bisimilar, the evaluations of formulae in Qµ also differ by at most r, for a
r ∈ R. As previously stated, the reverse direction fails for Qµ as in the classical
case. For finitely-branching systems, however, the reverse is true already for
quantitative modal logic QML, the fragment of Qµ without fixed-point opera-
tors. If the evaluation of QML formulae of two finitely-branching systems dif-
fer by at most r, then these systems are r-bisimilar. This means that QML char-
acterises quantitative bisimulation for finitely-branching systems. The proofs
in this chapter make heavy use of the game-based description of quantitative
bisimulation.
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1.3. Organisation and Main Results

In Chapter 3, we explore how the classical relationship between parity games
and the µ-calculus can be lifted into the quantitative setting. To this end, we
introduce a quantitative version of parity games and prove that they are the
appropriate model-checking games for Qµ. Quantitative parity games extend
classical parity games by adding payoff rules for finite plays while infinite plays
are still decided by the occurring priorities. This means that now we have no
winner or loser anymore, but a quantitative payoff for each play. This changes
the objectives of the two players, Verifier now wants to maximise the payoff,
while Falsifier wants to minimise it. In this chapter, it becomes obvious why
we could not forgo negation and thus duality of operators in our definition of
Qµ earlier. Without the appropriate closure and duality properties – closure
under negation, De Morgan equalities, quantifier and fixed point dualities –
we would not be able to use the game-based approach.

Quantitative parity games are the model-checking games for Qµ. However,
they turn out to be more complicated than their qualitative counterparts. They
do not admit optimal strategies, but on the positive side we can show that they
allow for positional ε-optimal strategies, i.e. simple strategies that do not need
any memory to give an outcome close to the optimal value. The fact that we
cannot guarantee optimal strategies makes the proof that the model-checking
games correctly describe the value of a formula considerably harder than in
the classical case. As in the classical setting, model-checking games lead to a
better understanding of the semantics and expressive power of the quantitative
µ-calculus. In the last section of this chapter, we show how we can prove the
bisimulation invariance theorem of the previous section entirely using games,
i.e. model-checking games and bisimulation games.

In Chapter 4, we introduce an extended version of the quantitative µ-calculus
and quantitative parity games. We extend the systems by allowing discounts,
i.e. real values, also on the edges of the quantitative transition systems. Fur-
thermore, we equip the logic with a discount operator, i.e. we allow multipli-
cation by a positive real value. Equivalently, we could use addition of a real
value as the two semantics are interchangeable, which we also explain in more
detail.

This version of Qµ was the first one we introduced in [16] and later explored
in more detail in [17]. Here, we decided to treat the discounted and non-
discounted version separately, therefore simplifying our original proofs which
dealt with determinacy and correctness of model-checking directly in the dis-
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Chapter 1. Introduction

counted setting. Here, we omit these direct proofs and show instead how the
correctness of the model-checking theorem in the discounted case follows from
the corresponding theorem in the non-discounted case. First, we have to treat
negation. If we allow for discounting, the choice of negation and how to en-
sure the duality of operators is not as obvious as one might expect. We show
that there is only one reasonable way to define negation in our context.

Having done so, we can then define an appropriate extension of quantitative
parity games. Unsurprisingly, they allow for the labelling of edges in the game
graphs. This makes the rules for calculating payoffs of finite plays slightly more
complicated. Although these games are only a minor extension of quantitative
parity games, they behave in a substantially different way. Obviously, they also
do not enjoy optimal strategies, but now they do not allow ε-optimal positional
strategies anymore. Even worse, they do not even admit bounded-memory ε-
optimal strategies for a given ε. Nevertheless, we show that these are the
right model-checking games and that they correctly describe the value of a
discounted Qµ formula. Then, we make use of the fact that we proved the
corresponding theorem for quantitative parity games (of any cardinality) by
showing how discounted games can be seen as a compact representation of
these games. In the discounted setting, we can go even further and show that
the model-checking correspondence goes both ways: the value of a formula on
a structure coincides with the value of the associated model-checking game,
and conversely, the value of a quantitative parity game (with a fixed number
of priorities) is definable in the quantitative µ-calculus. Unfortunately, the
corresponding quantitative formula uses a trick that needs discounting and so
this does not work for the non-discounted calculus of the previous chapters.

In Chapter 5, we apply our formalism to a restricted class of hybrid systems.
Hybrid systems are a combination of discrete transition systems and dynami-
cally changing continuous variables. While they are an obvious candidate for
practical applications, they are extremely difficult to handle and almost all in-
teresting questions about them are undecidable [27]. Although this is clearly
an area where formal verification methods can be applied, there have not yet
been many attempts for quantitative model checking of such systems. Quanti-
tative verification is mostly done by simulation and thus lacks the guarantees
that can be given by model-checking techniques.

As mentioned before, it would be impossible to attempt formal verification
on the class of all hybrid systems as even simple properties such as reachability
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1.4. Impact

are undecidable. For this reason, we consider the restricted class of initialised
linear hybrid systems, which is one of the largest classes of hybrid systems
with decidable temporal logic. Linear in this context means that the general
differential equations used to describe the changes of continuous variables are
linearised. This approximation alone does not lead to decidability though and
so we also need the systems to be initialised. Initialised systems have to re-
set a variable if the evolution rate of that variable changes during a discrete
transition.

In this chapter, we show how to approximate the value of hybrid Qµ on ini-
tialised linear hybrid systems. These results have been published in [18, 19].
First, we define linear hybrid systems in our setting. Then, we give the syn-
tax of hybrid Qµ, a slight extension of Qµ which allows to use continuous
variables in the same way as quantitative predicates. Afterwards, we describe
a corresponding version of quantitative parity games which we call interval
parity games and which can be used to model-check hybrid Qµ. As in the dis-
counted case, these games can be seen as a compact representation of infinite
parity games, a fact that we explain in detail.

We continue our investigation by showing how to simplify these games to
ones where the linear coefficients are all 1. These games look similar to timed
games but unfortunately behave quite differently, as we point out. Thus, we
cannot use the classical region-graph construction. Instead we use a new class
of almost discrete strategies to simplify these games even further. The resulting
class of games, called counter-reset games, is a special case of counter parity
games that were recently solved by Berwanger, Kaiser and Leßenich, [30]. Alto-
gether, we show how we can compute the value of a Qµ formula with arbitrary
precision on initialised linear hybrid systems. As the µ-calculus subsumes LTL,
this result properly generalises a previous result on model checking LTL on
such systems [26, 27].

1.4 Impact

The quantitative µ-calculus and the results on quantitative parity games that
we present in this thesis have already been applied and extended, confirming
the usefulness of this approach.

In [30], a variation of Qµ has been introduced that replaces quantitative pred-
icates with terms from counting monadic-second order logic which, e.g., allows
to express boundedness questions. It is evaluated on structured transition sys-
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Chapter 1. Introduction

tems, i.e. systems where nodes are labelled with relational structures, and thus
generalise many systems that occur in theoretical computer science such as
pushdown automata, Turing machines, term and graph rewriting systems. To
model-check this logic, Kaiser and Leßenich also use quantitative parity games
and our result from Chapter 3. By additionally generalising a decomposition
result, they show decidability of counting Qµ on tree-producing pushdown
systems, a generalisation of pushdown systems and regular tree grammars.
They re-prove and extend previous results [3, 21] on model-checking with un-
boundedness conditions on pushdown systems. In this case, the use of Qµ and
model-checking games allows to obtain stronger results in a more systematic
way and simplifies the proofs.
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2 The Quantitative µ-Calculus Qµ

In this chapter we present a quantitative generalisation of the classical modal
µ-calculus which was introduced by Kozen in [31]. We extend the classical
two-valued formalism to one with infinitely many real values. A formula of
the quantitative µ-calculus does not evaluate to just true or false anymore but
to an arbitrary real number.

The classical µ-calculus is evaluated over transition systems, i.e. labelled di-
rected graphs. First, we introduce a simple quantitative version of these struc-
tures. Quantitative transition systems are directed graphs where the nodes are
labelled with quantitative, i.e. real-valued predicates. Then, we give the syn-
tax and semantics for the quantitative µ-calculus, Qµ, and briefly discuss its
fragment quantitative modal logic.

We proceed by introducing a quantitative version of bisimulation, the clas-
sical notion which describes behavioural equivalence between transition sys-
tems. We define quantitative bisimulation as a distance between transition sys-
tems in two ways, as a quantitative relation and as a quantitative two-player
game and show that the notions are equivalent. Furthermore, we prove that
– as in the classical world – the quantitative µ-calculus is invariant under this
relation. Invariance in the quantitative setting means that a certain fixed bisim-
ulation distance between two transition systems guarantees that also the eval-
uations of formula on these systems only differ by at most this distance. As in
the classical case, the reverse direction does not hold for the µ-calculus [5], but
if we restrict the models to systems that are finitely-branching, we can show
a characterisation result already for quantitative modal logic. In the classical
world, if finitely-branching transition systems are indistinguishable for modal
logic, then they are bisimilar. This translates in the quantitative setting to the
following. If the evaluation of all formulae of quantitative modal logic on two
transition systems only differ by a certain number, then they have at most this
bisimulation distance.
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2.1. Syntax and Semantics

v0 v1

v2

P0 = −5
P1 = 0

P0 = 1
P1 = 1

2

P0 = 2
P1 = 1000

Figure 2.1: A simple quantitative transition system Q = (V, E, P0, P1)

2.1 Syntax and Semantics

Let us fix some notation first. In the sequel, R+
0 is the set of positive reals

including 0, R∞ is the set of real numbers extended with a minimal and a
maximal element, i.e. R∞ := R∪ {−∞, ∞} and R+

∞ is R+
0 ∪ {∞}. If not defined

otherwise, we denote by I ⊂N a finite index set.

Definition 2.1. A quantitative transition system (QTS) is a tuple

Q = (V, E, {Pi}i∈I),

consisting of a directed graph (V, E), where V is the set of nodes, E ⊆ V × V
is the set of (directed) edges and Pi : V → R∞ for i ∈ I are predicate functions
that assign real values to each node.

A transition system is qualitative if all functions Pi assign only the values −∞
or ∞, i.e. Pi : V → {−∞, ∞}, where −∞ stands for false and ∞ for true. We call
a transition system Q pointed, if it has a designated initial node v and denote
this by (Q, v).

Example 2.2. In Figure 2.1, we depict a simple quantitative transition system
Q = (V, E, P0, P1) with two quantitative predicates P0 and P1.

We now introduce a quantitative version of the modal µ-calculus to describe
properties of quantitative transition systems.

14



Chapter 2. The Quantitative µ-Calculus Qµ

Definition 2.3. Given a set X of fixed-point variables X, predicate symbols
{Pi}i∈I , and constant symbols c ∈ R, the formulae of the quantitative µ-calculus
(Qµ) are built in the following way.

(1) Pi + c is a Qµ-formula,

(2) X is a Qµ-formula,

(3) if ϕ is a Qµ-formula, then so is ¬ϕ,

(4) if ϕ, ψ are Qµ-formulae, then so are (ϕ ∧ ψ) and (ϕ ∨ ψ),

(5) if ϕ is a Qµ-formula, then so are �ϕ and ♦ϕ,

(6) if ϕ is a formula of Qµ, then µX.ϕ and νX.ϕ are formulae of Qµ given that
X occurs only positively (i.e. under an even number of negations) in ϕ.

Formulae of Qµ are interpreted over quantitative transition systems. For a
transition system Q, let F be the set of functions f : V → R∞. We say for
f1, f2 ∈ F that f1 ≤ f2 if f1(v) ≤ f2(v) for all v ∈ V. (F ,≤) forms a complete
lattice with the constant functions f = ∞ as top element and f = −∞ as
bottom element. Please note that we slightly abuse notation here by using the
same order symbol for functions as for the natural order on the reals.

Given an interpretation I : X → F , a variable X ∈ X , and a function
f ∈ F , we denote by I[X ← f ] the interpretation I′, such that I′(X) = f and
I′(Y) = I(Y) for all Y 6= X.

Definition 2.4. Given a QTS Q = (V, E, {Pi}i∈I) and an interpretation I, a Qµ-
formula yields a valuation function JϕKQI : V → R∞ defined as follows, for
v ∈ V.

(1) JPi + cKQI (v) = Pi(v) + c,

(2) JXKQI (v) = I(X)(v),

(3) J¬ϕKQI (v) = −JϕKQI (v),

(4) Jϕ ∧ ψKQI (v) = min{JϕKQI (v), JψKQI (v)},
Jϕ ∨ ψKQI (v) = max{JϕKQI (v), JψKQI (v)},

(5) J♦ϕKQI (v) = supv′∈vEJϕKQI (v
′),

J�ϕKQI (v) = infv′∈vEJϕKQI (v
′),
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Q0 v

v0 v1 v2

P : 1 1 2

Q1 v

v0 v1 v2

P : 0 1 2

. . . vi

i

. . .

Figure 2.2: Evaluation of modal operators

(6) JµX.ϕKQI (v) = inf{ f ∈ F : f = JϕKQ
I[X← f ]}(v),

JνX.ϕKQI (v) = sup{ f ∈ F : f = JϕKQ
I[X← f ]}(v).

We extend the addition from R to R∞ in the following way, let a, b ∈ R∞ and
we assume without loss of generality that a ≥ b, then we define

a + b =


a + b if a ∈ R and b ∈ R

∞ if a = ∞ and b > −∞
−∞ if a < ∞ and b = −∞
0 if a = ∞ and b = −∞.

The requirement that the fixed-point variable X occur only positively in the
definition of a fixed-point formula and the monotonicity of the Boolean and
modal operators guarantee the existence of least and greatest fixed points via
the Knaster-Tarski theorem.

As in classical logic, we call a fixed-point variable bound, if it appears under
the scope of a fixed-point operator. A variable that is not bound is called free.
We call formulae without free variables closed, and we can simply write JϕKQ

rather than JϕKQI in this case.
We call the fragment of Qµ consisting of formulae without fixed-point oper-

ators quantitative modal logic QML.
If Qµ is interpreted over qualitative transition systems, it coincides with the

classical µ-calculus and we say that (Q, v) is a model of ϕ, written (Q, v) |= ϕ

if JϕKQ(v) = ∞.
For a predicate symbol Pi and c ∈ R∞, we use |Pi − c| as an abbreviation for

(Pi + (−c)) ∨ ¬(Pi + (−c)).
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Example 2.5. In Figure 2.2, we see two simple quantitative transition systems,
a finite one, Q0, and an infinite one, Q1. Both have only a single quantita-
tive predicate P and we depicted the values it assigns to each node below the
respective node. Please note that Q1 is infinitely-branching, the node v has
ω-many successors, with P(vi) = i respectively.
Let us look at two formulae, ϕ = �(P + 5) and ψ = ♦P and illustrate the eval-
uation of modal operators on the two transition systems on the initial node v.
On the first transition system, since the node v has only finitely many succes-
sors, the box operator simply evaluates to the minimum of the values of the
succeeding atomic formula (P + 5) and hence we have J�(P + 5)KQ0(v) = 6.
The same holds true for ψ, it evaluates to the maximum of the successor values
of v, and thus J♦PKQ0(v) = 2
On the second transition system, we have infinitely many successors of the
initial node. Box evaluates to the infimum, which in this case is also the min-
imum, plus 5, J�(P + 5)KQ1(v) = 5. Diamond evaluates to the supremum of
the successor values, thus, we have J♦PKQ1(v) = ∞.

We always assume the formulae to be well-named, i.e. each fixed-point vari-
able is bound only once and no variable appears both free and bound and we
use the following common notions as defined e.g. in [24].

We say that a well-named formula ϕ of Qµ is in negation normal form if nega-
tions are only applied to atoms. We observe that, as for the classical µ-calculus,
we can transform every well-named formula ϕ of Qµ into negation normal
form by exploiting that ¬¬ϕ = ϕ and the following dualities.

– ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ and ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ (DeMorgan),

– ¬�ϕ ≡ ♦¬ϕ and ¬♦ϕ ≡ �¬ϕ,

– ¬µX.ϕ ≡ νX.¬ϕ[X/¬X] and ¬νX.ϕ ≡ µX.¬ϕ[X/¬X],

where ϕ[X/¬X] is identical to ϕ except that every occurrence of the fixed-point
variable X is replaced by ¬X.

Furthermore, we callDϕ(X) the unique subformula in ϕ of the form fpX.ψ(X)

where fp stands for either ν or µ. We assume every fixed-point variable X only
occurs inside the scope of a quantifier and say that X′ depends on X if X occurs
free in Dϕ(X′). We call the transitive closure of this dependency relation the
dependency order <ϕ. Furthermore, for a variable X, we look at the variables
it depends on and the induced <ϕ-paths. We count the number of alterna-
tions of least and greatest fixed-point variables on all <ϕ-paths and denote the
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v0 v1 v2

P :

Q

1 2 4

JϕK0 :
JϕK1 :
JϕK2 :
JϕK3 :

−∞ −∞ −∞
1 2 4
2 4 4
4 4 4

Figure 2.3: Inductive evaluation of ϕ = µX.(P ∨♦X)

maximum by alϕ(X), the alternation level of the fixed-point variable X. Finally,
we denote by ad(ϕ), the alternation depth, the maximal alternation level of all
fixed-point variables occurring in ϕ.

Note that all operators in Qµ are monotone, thus guaranteeing the existence
of the least and greatest fixed points. Furthermore, the fixed-points can be
computed inductively according to the Knaster-Tarski Theorem stated below.

Proposition 2.6. For Qµ formulae µX.ϕ and νX.ϕ built as described in Defini-
tion 2.3, the least and greatest fixed points exist and can be computed inductively:
JµX.ϕKQI = gγ with g0(v) = −∞ (and JνX.ϕKQI = gγ with g0(v) = ∞) for all
v ∈ V where

gα =

{
JϕKI[X←gα−1]

if α is a successor ordinal,
limβ<αJϕKI[X←gβ]

if α is a limit ordinal,

and γ is such that gγ = gγ+1.

We call the smallest ordinal γ such that gγ = gγ+1 the closure ordinal of
JfpX.ϕKQI where fp ∈ {µ, ν}.
Example 2.7. In Figure 2.3, we illustrate the inductive evaluation of a formula
involving a least fixed point. The finite quantitative transition system Q con-
sists of three nodes and has only a single quantitative predicate P. We consider
the fixed-point formula ϕ = µX.(P ∨ ♦X) and evaluate it inductively accord-
ing to Proposition 2.6. Since it is a least fixed point, we have to start at the
bottom of the lattice with the function that assigns −∞ to each node. Then, we
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v0 v1 v2 v3 v4

JϕK0 :
JϕK1 :
JϕK2 :
JϕK3 :
JϕK4 :
JϕK5 :JϕK∞ =

Q

P1 : 100
P0 : 1

50
2

25
4

12.5
8

6.25
16

−∞ −∞ −∞ −∞ −∞
1 2 4 8 16
2 4 8 12.5 16
4 8 12.5 12.5 16
4 12.5 12.5 12.5 16

12.5 12.5 12.5 12.5 16

Figure 2.4: Evaluation of ϕ = µX.(P0 ∨ (P1 ∧♦X))

proceed through the stages of the evaluation as below. In Figure 2.3, we also
depicted the values that each stage interpretation assigns to the nodes. For all
v ∈ V,

JϕK0(v) = −∞

JϕK1(v) = P(v)

JϕK2(v) = max{P(v), sup
w∈vE
{JϕK1(w)}

JϕK3(v) = max{P(v), sup
w∈vE
{JϕK2(w)}} = JϕK4(v) = JϕK∞(v).

The fixed point is reached after four iterations. The classical meaning of the
formula is that P is reachable from a node at which the formula holds. Here,
the formula assigns to each node the highest value of P that is reachable from
this node.

Example 2.8. Now we want to show another example of a fixed point evalua-
tion, this time on an infinite quantitative transition system Q, depicted in Fig-
ure 2.4. This transition system is basically just an infinite path. It has two quan-
titative predicates P0 and P1, where the values of P0 get smaller along the path,
while the values of P1 get bigger. Formally, P0(vi) =

100
2i and P1(vi) = 2i. We

now want to show how a classical Until formula evaluates in the quantitative
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setting. As we have explained in Section 1.1, a temporal formula P1 Until P0

holds on a path, if either P0 holds immediately on the initial node, or it holds
at a later node and on all nodes in between the property P1 is true. We re-
write this temporal formula into the µ-calculus in the usual way and see what
happens, if we evaluate it on the depicted transition system,

P1 Until P0 := µX.(P0 ∨ (P1 ∧♦X)).

As before, we are dealing with a least fixed-point formula and so we go
through the stage evaluation again as detailed below. The values of the stages
at each node are depicted in the figure.

JϕK0(v) = −∞

JϕK1(v) = max{P0(v), min{P1(v), max
w∈vE
{ϕ0(w)}} = P0(v)

JϕK2(v) = max{P0(v), min{P1(v), max
w∈vE
{ϕ1(w)}

JϕK3(v) = . . .

In the figure, we see that after six iterations the fixed point is reached. Intu-
itively, this formula evaluates to the biggest reachable value of P1 at a node
where P0 ≤ P1 – if such a node is reachable. This holds for {v0, v1, v2, v3} in
this example and so they all evaluate to 12.5. If no such node is reachable, and
thus, we have P0 > P1 for all reachable nodes – this holds for all vi for i ≥ 4 –
then the formula just evaluates to the value of P0.

Quantitative Modal Logic

As mentioned before, the fragment of Qµ without the use of fixed-point op-
erators is called quantitative modal logic QML. In Section 2.4 below, we also
need the following notions.

Definition 2.9. The modal nesting depth dp of a formula of QML is defined as
follows:

– dp(Pi + c) = 0 for a predicate Pi and c ∈ R∞,

– dp(¬ϕ) = dp(ϕ),

– dp(ϕ ∨ ψ) = dp(ϕ ∧ ψ) = max{dp(ϕ), dp(ψ)},

– dp(�ϕ) = dp(♦ψ) = 1 + dp(ϕ).
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We define the fragment QMLn of QML by allowing only formulae with a
modal nesting depth at most n. We define logical equivalence up to a real number
r (or ∞), meaning that the evaluations of all formulae of a quantitative logic
differ by at most r.

Definition 2.10. For a logic L, we write that (Q, v) ≡r
L (Q′, v′), if for all ϕ ∈ L

we have that |JϕKQ(v)− JϕKQ
′
(v′)| ≤ r.

We use this notion for both Qµ and QML, denoted by ≡r
QML and ≡r

Qµ.

2.2 Bisimulation Relation and Games

We introduce quantitative bisimulation and show that, as in the classical case,
our quantitative µ-calculus is invariant with respect to quantitative bisimula-
tion. Obviously, the classical definition of a bisimulation relation is far too
restrictive in the quantitative setting. Instead, we take an approach similar to
[10, 40] and define a bisimulation distance that intuitively tells us how much
two given systems differ from each other. The concept of invariance is subse-
quently also replaced by a notion of differences in evaluations of formulae.

The motivation for defining quantitative bisimulation and invariance in such
a way stems from practical application scenarios. One might easily imagine
that, in practice, minor variations in the quantitative predicates should also
only slightly influence the evaluation of a formula. The fact that a requirement
is fulfilled should be robust under minor perturbations of the values.

First, let us look at an example.

Example 2.11. Figure 2.5 depicts three quantitative transition systems with the
same underlying graph. They only differ in the values of the quantitative
predicate P. As classical models, these systems are not bisimilar. They have
different values at the nodes and this would be modelled by different predi-
cates. However, in the quantitative setting, we see that the first two systems,
Q0 and Q1 are much more similar than Q0 and Q2, as their values only differ
by 0.1 whereas, the difference between Q0 and Q2 is 99.

A quantitative relation or distance should formalise this intuition and give
us exactly these differences as the maximum (supremum) of all the differences
in the predicate evaluations. Additionally, it should generalise classical bisim-
ulation.
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Q0

v0

P = 1

v1

P = 1

Q1

w0

P = 1

w1

P = 1.1

Q2

u0

P = 1

u1

P = 100

Figure 2.5: How different are these systems?

First, we define a distance between states of different transition systems as
proposed in [10]. For this purpose, we compare all values of propositions at
two states and take the maximum of the differences.

Definition 2.12. ([10]) The propositional distance between two states is the maxi-
mal distance in their proposition evaluations, i.e. pd : V ×V′ → R+

∞ is defined
by,

pd(v, w) = max
i∈I
{|(Pi(v)− Pi(w))|}.

In [10, 40], bisimulation distance is introduced as a least fixed point of an
operator on functions on tuples of states equipped with a distance function.
Additionally, a coalgebraic definition is given in [40]. In contrast, we define
bisimulation as a relation and as a game. A natural way to define a quantitative
bisimulation, i.e. a bisimulation distance, is to consider bisimulation up to a
real value r as in the definition below.

Definition 2.13. A quantitative bisimulation relation ≈r with r ∈ R+
0 between

two transition systems Q = (V, E, {Pi}i∈I) and Q′ = (V′, E′, {P′i }i∈I) is a non-
empty relation ≈r ⊆ V ×V′, such that for all (v, v′) ∈ ≈r,

– pd(v, v′) ≤ r (propositional distance),

– for every w ∈ vE, there is a w′ ∈ v′E′ with (w, w′) ∈ ≈r (forth condition),

– for every w′ ∈ v′E′, there is a w ∈ vE with (w, w′) ∈ ≈r (back condition).
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We call two pointed quantitative transition systems, (Q, v) and (Q′, v′) r-
bisimilar if there exists a quantitative bisimulation relation ≈r and (v, v′) ∈
≈r, and we simply write (Q, v) ≈r(Q′, v′). If there is no r ∈ R+

0 , such that
there exists a relation ≈r, then (Q, v) and (Q′, v′) are not bisimilar denoted
by (Q, v) 6≈ (Q′, v′). For qualitative transition systems, classical bisimulation
corresponds to ≈0, meaning that two qualitative transition systems (Q, v) and
(Q′, v′) are bisimilar in the classical sense if there exists a relation ≈0, such
that (Q, v) ≈0(Q′, v′) and they are not bisimilar if no such relation exists.

In the classical setting, the equivalence of structures with respect to a logic
is also treated with game-theoretic methods, e.g. with the help of Ehrenfeucht-
Fraïssé games, model comparison games for first-order logic (see e.g. [28, 37]).
These games are two-player games, where one player tries to show that two
systems are indistinguishable for a logic, whereas the other player wants to
prove the opposite. Classical Ehrenfeucht-Fraïssé games are used to decide
whether two structures are elementary equivalent, i.e. indistinguishable for
first-order logic. They are also often used to show non-definability in first-
order logic and work for general models as well as in finite model theory, a
remarkable feature as classical concepts often do not easily translate to finite
models.

As classical modal logic can be seen as a fragment of first-order logic, it also
has a variant of Ehrenfeucht-Fraïssé games that capture the notion of bisimu-
lation. As we already stated in the introduction, however, bisimulation does
not exactly correspond to equivalence in modal logic, only on the restriction
to finitely-branching systems. This game characterisation of bisimulation has
also been studied independently, i.e. without the connection to modal logic.
Bisimulation games have some advantages over the recursive definition as a
relation. They are intuitive and easy to understand and most importantly pave
the way for a game-based analysis. In fact, many of the classical proofs relating
bisimulation to modal equivalence make heavy use of the game-based descrip-
tion of bisimulation. We refer the reader to [23] for an extensive treatment of
classical bisimulation results.

In the quantitative world, these advantages may be even more obvious. First
of all, it is easy to adapt the classical bisimulation game and design a quan-
titative game that captures our intuition of what a quantitative bisimulation
relation should accomplish. This is again a two-player game, one player,
Spoiler, wants to maximise the difference between two systems whereas the
other player, Duplicator, wants to minimise it. The value of this game defines
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the bisimulation distance. We show that using this game-based description,
we can adapt the classical proofs and lift the corresponding model-theoretic
theorems to the quantitative setting.

First, we give a formal definition of the bisimulation game. Then, we show
that, as in the classical case, the game definition is equivalent to the recursive
definition.

Definition 2.14. For two quantitative transition systems Q0,Q1 we define the
bisimulation game,

G∼(Q0, v,Q1, v′)

as follows. There are two players, Spoiler and Duplicator. At the beginning
of a play, a token is placed on both transition systems on v and v′. In every
round, if the token is currently on (u0, u1),

– Spoiler chooses a transition system Qi, i ∈ {0, 1} and moves the token to
a node wi ∈ uiEi.

– Duplicator now moves the token in Q1−i to a w1−i ∈ u1−iE1−i.

The play ends if one of the players cannot move anymore. If Spoiler cannot
move anymore, the payoff will be calculated as below, but if Duplicator cannot
respond to a move by Spoiler because the current state she is in has no succes-
sors, the play has a payoff of ∞. Duplicator wants to minimise the outcome
and Spoiler wants to maximise it.

The outcome of a play π = (v0, v′0), (v1, v′1), . . . is

p(π) = sup
(v,v′)∈π

pd(v, v′).

A strategy γ of Spoiler is a function, that assigns to a history

(v0, v′0), . . . , (vi, v′i) ∈ (V ×V′)i+1

a node v ∈ V (or v′ ∈ V′), such that (vi, v) ∈ E (or (v′i, v′) ∈ E′).
A strategy β of Duplicator is a function, that assigns to a history

(v0, v′0), . . . , (vi−1, v′i−1), (vi, _) or (v0, v′0), . . . , (vi−1, v′i−1), (_, v′i)

a node v ∈ V or v′ ∈ V′, such that (vi−1, vi) ∈ E or (v′i−1, v′i) ∈ E′.
A play π starting from (v0, v′0) is consistent with a strategy γ of Spoiler if

for all play prefixes of π, (v0, v′0), . . . , (vi, v′i), (vi+1, v′i+1), we have one of the
following.
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– γ((v0, v′0), . . . , (vi, v′i)) = vi+1 or

– γ((v0, v′0), . . . , (vi, v′i)) = v′i+1.

A play π starting from (v0, v′0) is consistent with a strategy β of Duplicator if
for all play prefixes of π, (v0, v′0), . . . , (vi, v′i), (vi+1, v′i+1), we have one of the
following.

– β((v0, v′0), . . . , (vi, v′i), (vi+1, _)) = v′i+1 or

– β((v0, v′0), . . . , (vi, v′i), (_, v′i+1)) = vi+1.

The unique play starting from (v, v′) consistent with strategies γ and β is de-
noted by πβ,γ(v, v′).

A bisimulation game G∼(Q, v,Q′, v′) is determined if

inf
β∈Γ2

sup
γ∈Γ1

p(πβ,γ(v, v′)) = sup
γ∈Γ1

inf
β∈Γ2

p(πβ,γ(v, v′)) =: valG∼(Q, v,Q′, v′),

where Γ1 and Γ2 denote the sets of strategies for Spoiler and Duplicator. We call
valG∼(Q, v,Q′, v′) the value of the bisimulation game. If valG∼(Q, v,Q′, v′) = r,
we write (Q, v) ∼r (Q′, v′).

The n-round bisimulation game Gn
∼(Q, v,Q′, v′) is played in the same way as

the full bisimulation game, except it ends after n rounds (for n ∈ N) - or
earlier if one of the players cannot move anymore. The payoff is computed
exactly in the same way as for the full game. If valGn

∼(Q, v,Q′, v′) = r, we
write Q, v ∼r

n Q′, v′.
To avoid confusion when referring to the players by pronouns, we regard

Spoiler as male and Duplicator as female and refer to them as “he” and “she”.
A strategy is positional, if it chooses the next move only according to the cur-

rent position in the game and not regarding the history. Formally, a positional
strategy β of Duplicator is a function, that assigns to a position

((vi−1, v′i−1), (vi, _)) or ((vi−1, v′i−1), (_, v′i))

a node v ∈ V or v′ ∈ V′ such that (vi−1, vi) ∈ E or (v′i−1, v′i) ∈ E′.
Next, we show that bisimulation games are determined and therefore the

value is well-defined. For a given value r, a bisimulation game can be seen as
a safety game for the Duplicator. Her winning objective in this game is to stay
in the region where the propositional distance does not exceed r.
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Formally, a safety game is a graph game between two players where the posi-
tions are assigned one of two colours. The safety condition is described by the
target colour. Player 0 wins a play in a safety game if all the positions in the
play are of this colour. It is well-known that safety games are positionally de-
termined, i.e. each position belongs to the winning region of one of the players
and if Player 0 has a winning strategy from a position, she also has a positional
one. We now show that the same property holds for bisimulation games.

First of all, we deduce the determinacy of bisimulation games as follows. To
formalise the above intuition, for each r ∈ R we can re-phrase the bisimulation
game on Q and Q′ up to r as a safety game: all positions, i.e. tuples (v, v′),
(v, _), or (_, v′), are coloured in the following way. Positions (v, _) or (_, v′)
get colour 0. For positions (v, v′), if their propositional distance pd(v, v′) ≤ r
they get colour 0, if pd(v, v′) > r they get colour 1. The safety condition
for Duplicator then is to stay within 0-coloured positions. As safety games
are determined, all we have to do to determine the value of G∼(Q, v,Q′, v′)
is to take the infimum over all r such that Duplicator wins the safety game
up to r. Furthermore, we get positional determinacy utilising the following
proposition.

Proposition 2.15. Fix two quantitative transition systems Q and Q′. For every
r ∈ R there exists a positional strategy β such that if valG∼(Q, v,Q′, v′) ≤ r then for
every strategy γ of Spoiler we have p(πβ,γ) ≤ r

Proof. We again re-phrase the bisimulation game G∼(Q, v,Q′, v′) up to a fixed
r as a safety game (as above). If valG∼(Q, v,Q′, v′) ≤ r then Duplicator has
a strategy that guarantees her that she never visits a position (v, v′) with
pd(v, v′) > r, as then the value would be greater than r as well. But this is
a winning strategy in the safety game for G. Safety games are positionally
determined, this means that if Player 0 has a winning strategy, she has a po-
sitional one. Thus, Duplicator has a positional strategy β to guarantee that
she never visits a position (v, v′) with pd(v, v′) > r. This is also a positional
strategy in the original game to assure an outcome at most r.

Having established positional determinacy for bisimulation games, let us
now look at an example.

Example 2.16. Figure 2.6 depicts two quantitative transition systems K and H.
Both have only one quantitative predicate P. The values of P at each node are
depicted next to it. Also, we notice that we can make two consecutive moves
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K = ({1, 2, 3, 4, 5}, P) H = ({a, b, c, d}, P)

11

21 3 1

5 244

a1

b3 c 2

d1

Figure 2.6: Two systems (K, 1) and (H, a) that are ∼3-bisimilar

in each system. Spoiler will begin the game and, as he wants to maximise the
occurring differences in the values of P, following an optimal strategy he will
first move in K from 1 to 2. As Duplicator wants to minimise, she will move in
H from a to c. Spoiler challenges again with a move from 2 to 4. Duplicator has
to reply with a move from c to d, resulting in the play π = (1, a), (2, c), (4, d)
with the outcome sup(v,v′)∈π pd(v, v′) = sup{0, 2, 3} = 3. This means that the
systems are ∼3-bisimilar, (K, 1) ∼3 (H, a).

The relational and the game description of r-bisimulation are equivalent as
stated in the following proposition.

Proposition 2.17. For two pointed quantitative transition systems (Q, v), (Q′, v′),
we have that valG∼(Q, v,Q′, v′) ≤ r, i.e. Q, v ∼r Q′, v′, if and only if Q, v ≈rQ′, v′.

Proof. (⇒)

If valG∼(Q, v,Q′, v′) = r, then Duplicator has a strategy to guarantee an out-
come at most r from (v, v′). Let M be the set of all tuples (w, w′), such that
Duplicator has a strategy to guarantee an outcome at most r from this posi-
tion, M = {(w, w′)| valG∼(Q, w,Q′, w′) ≤ r}. We have to show that M is an
r-bisimulation relation.
First, we note that it is non-empty since it contains at least the tuple (v, v′) by
assumption. Furthermore, we observe that trivially pd(w, w′) ≤ r for every
(w, w′) ∈ M, since otherwise valG∼(Q, w,Q′, w′) > r and this only leaves us
to check the back and forth conditions from Definition 2.13. Let β be her po-
sitional strategy (from Proposition 2.15). The forth condition states that for all
(w, w′) ∈ M we have a u′ ∈ w′E′ for every u ∈ wE, such that (u, u′) ∈ M. Let
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us check that this holds. Let (w, w′) ∈ M. For every challenge u ∈ wE or in
game terminology for a position (w, w′), (u, _) with u ∈ wE, Duplicator has a
response u′ ∈ w′E′ with β((w, w′), (u, _)) = u′. Since valG∼(Q, w,Q′, w′) ≤ r
by assumption and she plays according to β, also valG∼(Q, u,Q′, u′) ≤ r and
thus (u, u′) ∈ M. The back condition is proved analogously, just that now the
challenge is in Q but a strategy for Duplicator gives her an appropriate answer
as well. This means that M is an r-bisimulation relation ≈r.
(⇐)

The relation ≈r provides a non-deterministic strategy for Duplicator to get
an outcome at most r. By assumption, the initial position (v, v′) ∈ ≈r. This
also guarantees that she does not immediately get an outcome greater than
r as for every (v, v′) ∈ ≈r we have that pd(v, v′) ≤ r and the value of the
bisimulation game is calculated using the supremum of propositional distances
occurring in a play. Assume that in a play we have for a tuple (w, w′) ∈ ≈r

a challenge (w, w′), (u, _) of Spoiler. Duplicator can just choose any u′ ∈ w′E′

with (u, u′) ∈ ≈r. Such a tuple exists by the forth condition. Analogously,
for every challenge in the other system, the back condition guarantees her the
existence of an appropriate answer in ≈r. As Duplicator can now force the
whole play π to stay within ≈r, this means that for every (u, u′) ∈ π we have
by definition that pd(u, u′) ≤ r and thus also p(π) = sup(u,u′)∈π pd(u, u′) ≤ r.
Thus, valG∼(Q, v,Q′, v′) ≤ r or Q, v ∼r Q′, v′.

2.3 Bisimulation Invariance

In the classical setting, a logic is invariant under a relation if no formula of
the logic can distinguish between structures that are related. The modal µ-
calculus, and thus modal logic, is invariant under bisimulation, no formula of
the modal µ-calculus can distinguish between bisimilar states.

In the quantitative world, we have defined bisimulation up to a real value r.
Hence, the invariance theorem will have the following shape: if two structures
differ by at most r (are r-bisimilar) then also the evaluation of all formulae will
differ by at most r. As stated before, the reverse direction is not true for the
µ-calculus. However, for finitely-branching systems, modal logic characterises
bisimulation equivalence. This means that if finitely-branching structures are
bisimilar then they are equivalent for modal logic.

In the following section, we show that the corresponding results also hold in
the quantitative world.

28



Chapter 2. The Quantitative µ-Calculus Qµ

The invariance theorem can be proved by an induction on the structure of
the formula. Later, we will present an alternative way to prove this theorem
using another game concept – model-checking games (see Section 3.4).

Theorem 2.18. Let ϕ ∈ Qµ and v ∈ Q, v′ ∈ Q′ withQ, v ≈rQ′, v′ then |JϕKQ(v)−
JϕKQ

′
(v′)| ≤ r or, in other words,

(Q, v) ≈r(Q′, v′) implies (Q, v) ≡r
Qµ (Q′, v′).

Proof. Assume we have two pointed quantitative transition systems, (Q, v) and
(Q′, v′), and we know that (Q, v) ≈r(Q′, v′). We proceed by induction on the
structure of the formula ϕ.

Base case: ϕ = Pi + c for some Pi and constant c ∈ R. Since (Q, v) ≈r(Q′, v′)
we know that pd(v, v′) = maxi∈I |Pi(v)− Pi(v′)| ≤ r. Hence, for all i ∈ I, we
have |Pi(v)− Pi(v′)| ≤ r and therefore also |Pi(v) + c− (Pi(v′) + c)| ≤ r.

For the induction step, it suffices to consider the cases ¬ϕ, ϕ ∨ ψ, ♦ϕ and
νX.ϕ(X).

First case: ϕ = ¬ψ.
We need to show that |J¬ψKQ(v)− J¬ψKQ

′
(v′)| ≤ r. We have that

|J¬ψKQ(v)− J¬ψKQ
′
(v′)|

=| − JψKQ(v)− (−JψKQ
′
(v′))|

=|JψKQ
′
(v′)− JψKQ(v))| ≤ r,

since by induction hypothesis |JψKQ(v)− JψKQ
′
(v′))| ≤ r.

Second case: ψ = ψ ∨ ϑ.
As we know that

|Jψ ∨ ϑKQ
′
(v′)− Jψ ∨ ϑKQ(v))|

=|max{JψKQ(v), JϑKQ(v)} −max{JψKQ
′
(v′), JϑKQ

′
(v′)}|

by definition, we have to consider two cases. Either the formula with the
maximal evaluation is equal for both nodes, let us say without loss of generality
it is ψ. Then

|max{JψKQ(v), JϑKQ(v)} −max{JψKQ
′
(v′), JϑKQ

′
(v′)}|

=|JψKQ(v)− JψKQ
′
(v′)|

which by induction hypothesis is smaller or equal to r.
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Or it is different for the two systems, without loss of generality we assume
max{JψKQ(v), JϑKQ(v)} = JψKQ(v) and max{JψKQ

′
(v′), JϑKQ

′
(v′)} = JϑKQ

′
(v′).

Then

|Jψ ∨ ϑKQ
′
(v′)− Jψ ∨ ϑKQ(v))| = |JψKQ(v)− JϑKQ

′
(v′)|.

If JψKQ(v) > JϑKQ
′
(v′) we use that by assumption JϑKQ

′
(v′) ≥ JψKQ

′
(v′) and

again by induction hypothesis |JψKQ(v)− JψKQ
′
(v′)| ≤ r.

Otherwise, JψKQ(v) ≤ JϑKQ
′
(v′), we also know that JϑKQ(v) ≤ JψKQ(v) and

again by induction hypothesis |JϑKQ(v)− JϑKQ
′
(v′)| ≤ r.

Altogether, we have |JψKQ(v)− JϑKQ
′
(v′)| ≤ r.

Third case: ϕ = ♦ψ. Towards a contradiction, assume that

|J♦ψKQ(v)− J♦ψKQ
′
(v′))| = | sup

w∈vE
{J♦ψKQ(w)} − sup

w′∈v′E′
{J♦ψKQ

′
(w′)}| > r.

Subcase 1: J♦ψKQ(v) ≥ J♦ψKQ
′
(v′).

Let wmax ∈ vE such that JψKQ(wmax) ≥ supw′∈v′E{JψKQ
′
(w′)}+ r. Please note

that the case that both suprema are infinite is ruled out by our assumption.
Since (Q, v) ≈r(Q′, v′), we know by the forth condition that for every w ∈
vE there is a w′ ∈ v′E′, such that (Q, w) ≈r(Q′, w′), this means in particular
that we can find a u′ ∈ v′E′, such that (Q, wmax) ≈r(Q′, u′) which means by
induction hypothesis that |JψKQ(wmax)− JψKQ

′
(u′))| ≤ r. But since JψKQ

′
(u′) ≤

supw′∈v′E′{JψKQ
′
(w′)}, it also follows that |JψKQ(wmax)− JψKQ

′
(u′))| > r which

is a contradiction.
Subcase 2: J♦ψKQ(v) < J♦ψKQ

′
(v′). Analogously, let w′max ∈ v′E′ such that

JψKQ
′
(w′max) ≥ supw∈vE{JψKQ(w)} + r. Since (Q, v) ≈r(Q′, v′), we know by

the back condition that for every w′ ∈ v′E′ there is a w ∈ vE, such that
(Q, w) ≈r(Q′, w′), this means in particular that we can find a u ∈ vE, such that
(Q, u) ≈r(Q′, w′max) which means by induction hypothesis that |J♦ψKQ(u)−
J♦ψKQ

′
(w′max))| ≤ r. But since J♦ψKQ(u) ≤ supw∈vE{J♦ψKQ(w)}, it also fol-

lows that |J♦ψKQ(u)− J♦ψKQ
′
(w′max))| > r which is again a contradiction.

Fourth case: ϕ = νX.ψ(X).
Let JνX.ψ(X)KQ = gα and JνX.ψ(X)KQ

′
= g′α′ for the respective closure ordinals

α, α′. By the induction hypothesis, we have that

|Jψ[X ← g]KQ(v)− Jψ[X ← g′]KQ
′
(v′)| ≤ r

for all interpretations g, g′ of the fixed-point variable X such that |g(v) −
g′(v′)| ≤ r. To see that this holds for gγ and g′γ for γ = max{α, α′} we look at
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the stages of the evaluation. For g0(v) = g′0(v
′) = ∞ this trivially holds. For

gβ(v) and g′β(v
′) for a successor ordinal β, this holds by induction. For a limit

ordinal β, we also have |gβ(v)− g′β(v
′)| ≤ r because for all β′ < β we have by

induction that |gβ′(v)− g′β′(v
′)| ≤ r. Thus, we have

|Jψ[X ← gγ]KQ(v)− Jψ[X ← g′γ]K
Q′(v)| ≤ r

and therefore

|JνX.ψ(X)KQ(v)− JνX.ψ(X)KQ(v′)| ≤ r.

2.4 Characteristic Formulae

In classical modal logic, characteristic formulae are used to describe a fixed
transition system up to finitary bisimulation. In particular, these formulae for-
malise that fact that Duplicator has a winning strategy in the n-round bisimula-
tion game. In the classical setting this means that, if the characteristic formula
up to n for a system (K, v) holds for (K′, v′), then Duplicator has a winning
strategy for the n-round bisimulation game played on (K, v) and (K′, v′).

In the quantitative world, there is also a way to construct characteristic for-
mulae. In [40], characteristic formulae which are syntactically similar to the
classical ones appear in the logical characterisation of bisimulation. The ones
that we use, and that appear in [10], are also similar to the classical ones except
that all operators are swapped for their dual (∧ for ∨, � for ♦ and vice versa).
This is due to the fact that these formulae should evaluate to the bisimulation
distance, so in particular to 0 if the systems are classically bisimilar.

For a given pointed quantitative transition system (Q, v) with only finitely
many quantitative predicates, we define the characteristic formula up to nest-
ing depth n inductively.

χ0
[Q,v] =

∨
Pi

|Pi − Pi(v)|,

χn+1
[Q,v] = χ0

[Q,v] ∨
∨

w∈vE
�χn

[Q,w] ∨♦
∧

w∈vE
χn
[Q,w].
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As in the classical setting, the formula has a game-theoretic meaning (which
is not discussed in [10, 40]). It describes that Duplicator can guarantee an out-
come less than or equal to the value of the formula in the n-round bisimulation
game. We can use this to prove the back direction of the invariance theorem
and thus get a characterisation theorem.

Please note that – unlike in the classical case – we have to restrict the tran-
sition systems to be finitely-branching from the beginning and not just when
we consider full bisimulation. In the classical case, if there are only finitely
many predicates and finitely many different modal types, this guarantees that
the disjunctions and conjunctions in the characteristic formulae are all finite as
we have only finitely many non-equivalent formulae χn

[Q,v] at each level n. In
the quantitative case, there could be infinitely many non-equivalent χn

[Q,v] in
an infinitely-branching system. Imagine, e.g. a node that has infinitely many
successors (as in Figure 2.2), one for each natural number and a quantitative
predicate that assigns that number to the respective node. There would be
infinitely many different non-equivalent formulae χ0

[Q,v].
Please also note that we use addition of real constants for atomic formulae

for constructing χ0
[Q,v]. The following example shows that this is crucial and

allows us to distinguish between systems that are 1-bisimilar but cannot be
distinguished without addition.

Q

v

P0 = 0, P1 = 0

w0 w1 w2 w3

0 1 2 3

2 0 3 1

Q′

v′

P0 = 0, P1 = 0

w′0 w′1 w′2 w′3

P0 :

P1 :

0 1 2 3

1 3 0 2

Figure 2.7: Two systems that cannot be distinguished without addition.

Example 2.19. In Figure 2.7, we illustrate by an example why we need to allow
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addition of real values in atomic formulae of Qµ and QML. These systems
have two quantitative predicates, P0 and P1, their values are depicted in the
figure. The value of the bisimulation game is 1, thus the systems are 1-bisimilar.
Intuitively, the difficulty with pinpointing the difference between the systems
with a formula is that we have the same values of quantitative predicates in
both systems, only in different combinations. However, Qµ without addition of
real constants in atomic formulae can only speak about a set of values in terms
of minima and maxima, but this does not help us to distinguish the systems.
The notion of propositional distance, however, allows to compare all values at
once.

To see that full QML (and then also Qµ) can distinguish between these sys-
tems, let us build the characteristic formula for (Q, v):

χ0
[Q,v] = |P0 − 0| ∨ |P1 − 0|,

χ0
[Q,w0]

= |P0 − 0| ∨ |P1 − 2|,

χ0
[Q,w1]

= |P0 − 1| ∨ |P1 − 0|,

χ0
[Q,w2]

= |P0 − 2| ∨ |P1 − 3|,

χ0
[Q,w3]

= |P0 − 3| ∨ |P1 − 1|.

We only need formulae up to depth 1.

χ1
[Q,v] =χ0

[Q,v]∨

((�χ0
[Q,w0]

) ∨ (�χ0
[Q,w1]

) ∨ (�χ0
[Q,w2]

) ∨ (�χ0
[Q,w3]

))∨

(♦(χ0
[Q,w0]

∧ χ0
[Q,w1]

∧ χ0
[Q,w2]

∧ χ0
[Q,w3]

)).

If we evaluate the formula on (Q′, v′), we get 1 which is the bisimulation
distance between the systems.

Jχ1
[Q,v]K

Q′(v′) =max{0, max{min{1, 1, 2, 3}, min{1, 3, 1, 2}, min{2, 1, 3, 1},

min{3, 2, 1, 1}}, max{min{1, 1, 2, 3}, min{1, 3, 1, 2},
min{2, 1, 3, 1}, min{3, 2, 1, 1}}}

=max{0, max{1, 1, 1, 1}, max{1, 1, 1, 1}} = 1
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Proposition 2.20. For a given pointed finitely-branching quantitative transition sys-
tem (Q, v) with only finitely many predicates and χn

[Q,v] constructed as described
above, we have for every pointed quantitative transition system (Q′, v′) that whenever
Jχn

[Q,v]K
Q′(v′) ≤ r then valG∼n(Q, v,Q′, v′) ≤ r, i.e. Duplicator has a strategy in the

n-round bisimulation game to guarantee an outcome at most r.

Proof. We prove this proposition by induction on n, the number of rounds in
the game. In the case that n = 0, we just have to consider the propositional
distance of the two nodes where the pebbles are placed in the game and check
that it is at most r. Since

Jχ0
[Q,v]K

Q′(v′) = J
∨
i∈I

|Pi − Pi(v)|KQ
′
(v′) = max

i∈I
|Pi(v′)− Pi(v)| ≤ r

by definition, and this is exactly the definition of pd(v, v′), the base case holds.
In the n + 1-st round of the game, we have to provide a strategy for Dupli-

cator to guarantee the desired outcome (by using the strategy for the n-round
game). We have that Jχn+1

[Q,v]K
Q′(v′) ≤ r. By definition, this means that

Jχn+1
[Q,v]K

Q′(v′) = Jχ0
[Q,v] ∨

∨
w∈vE

�χn
[Q,w] ∨♦

∧
w∈vE

χn
[Q,w]K

Q′(v′)

= max{pd(v, v′), max
w∈vE

min
w′∈v′E′

Jχn
[Q,w]K

Q′(v′), max
w′∈v′E′

min
w∈vE

Jχn
[Q,w]K

Q′(v′)} ≤ r.

The first part Jχ0
[Q,v]K

Q′(v′) = pd(v, v′) ≤ r ensures that the propositional dis-
tance at current state is not exceeding r, so Duplicator has not already lost.
Now she has to provide a move in her strategy against all possible moves
Spoiler can make so that the outcome of the n-round game played from the
next state is still less than or equal to r.

If Spoiler moves in Q′, she will use that fact that the formula provides

J♦
∧

w∈vE
χn
[Q,w]K

Q′(v′) = max
w′∈v′E′

min
w∈vE

Jχn
[Q,w]K

Q′(w′),

i.e. for every move (v′, w′) Spoiler makes in Q′, she has a response (v, w) in Q,
such that Jχn

[Q,w]K
Q′(w′) ≤ r. This means by induction hypothesis that she has

a strategy from w to guarantee an outcome for the n-round game of less than
or equal to r.
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If Spoiler moves in Q, she will use that fact that the formula provides

J
∨

w∈vE
�χn

[Q,w]K
Q′(v′) = max

w∈vE
min

w′∈v′E′
Jχn

[Q,w]K
Q′(w′),

i.e. for every move (v, w) Spoiler makes in Q, she has a response (v′, w′) in
Q′, such that Jχn

[Q,w]K
Q′(w′) ≤ r which again by induction hypothesis gives the

desired strategy for the n-round game.

As characteristic formulae of depth n are obviously included in QMLn and
also clearly Jχn

[Q,v]K
Q(v) = 0 we can conclude the following.

Corollary 2.21. For two finitely-branching pointed QTS with finitely many predi-
cates (Q, v, ) and (Q′, v′), if for all ϕ ∈ QMLn, |JϕKQ(v) − JϕKQ

′
(v′)| ≤ r then

valG∼n(Q, v,Q′, v′) ≤ r. Or in other words,

(Q, v) ≡r
QMLn (Q′, v′) implies (Q, v) ∼r

n (Q′, v′).

Altogether we can state the following (as in the classical case).

Theorem 2.22. Let (Q, v) and (Q′, v′) be finitely-branching pointed quantitative
transition systems with finitely many predicates and r ∈ R. Then the following are
equivalent:

1. (Q, v) ∼r
n (Q′, v′)

2. Jχn
[Q,v]K

Q′(v′) ≤ r

3. (Q, v) ≡r
QMLn (Q′, v′).

As a corollary, we obtain that finite r-bisimulation coincides with QML
equivalence where finite bisimulation is defined as follows.

Definition 2.23. We call two pointed quantitative transition systems (Q, v) and
(Q′, v′) finitely r-bisimilar, denoted ∼r

ω, if (Q, v) ∼r
n (Q′, v′) for all n ∈N.

Corollary 2.24. Let (Q, v) and (Q′, v′) be finitely-branching pointed quantitative
transition systems with finitely many predicates and r ∈ R, then

(Q, v) ∼r
ω (Q′, v′) if and only if (Q, v) ≡r

QML (Q′, v′).
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Now we can prove a quantitative version of the Hennessy-Milner theorem
[25], namely that for finitely-branching structures finite bisimulation implies
full bisimulation equivalence. Hence, quantitative bisimulation coincides with
quantitative modal equivalence (up to some real number r) for finitely-branching
structures.

Theorem 2.25. Let (Q, v) and (Q′, v′) be finitely-branching pointed quantitative
transition systems with finitely many predicates and r ∈ R. Then,

(Q, v) ∼r
ω (Q′, v′) implies (Q, v) ∼r (Q′, v′).

Proof. As in the classical case this proof follows a game-based approach. To-
wards a contradiction assume that Spoiler has a strategy γ to get an outcome
of g > r. Now, we consider the tree of all plays played consistent with γ. Each
branch represents a play and in each of these plays, by our assumption, there
comes a position (vj, vj

′) with pd(vj, vj
′) > r. Now, consider the tree of all play

prefixes pruned at the positions where the propositional differences greater
than r occur. As, by our assumption, the systems are finitely-branching, this
tree is finite and thus has a finite height n. Thus, (Q, v) 6∼r

n (Q′, v′) which is a
contradiction to (Q, v) ∼r

ω (Q′, v′).
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3 Quantitative Parity Games and Model

Checking

In this chapter, we introduce quantitative parity games, a generalisation of
classical parity games. Classical parity games are two-player infinite games
on coloured graphs. Finite plays are lost by the player who got stuck while
infinite plays are decided by the colours that are seen infinitely often during
the play. The main difference in the quantitative setting is that the games
are no longer win-or-lose, but instead each play has a quantitative outcome.
It is well-known, that classical parity games are model-checking games for
the modal µ-calculus [15, 24], and our goal in this chapter is to extend this
connection to the quantitative setting.

First, we introduce a suitable game model, then we show how to define
model-checking games for a given formula and system within this setting.
Classical parity games are determined, i.e. we can decide for each position
which player wins from this position, there are no undecided positions. They
are even positionally determined which means that the players do not need
memory for their winning strategies [14, 35, 43]. In the quantitative setting,
determinacy translates to the existence of the value of a game. It is not obvious
that quantitative parity games are determined. We adapt a technique called
unfolding which is used in the classical setting to prove the correctness of
the model-checking games for Lµ and least fixed-point logic LFP [24]. In the
quantitative setting, we use the unfolding technique to show the determinacy
of quantitative parity games by providing strategies for both players and the
correctness of our model-checking games. Unfortunately, quantitative parity
games do not admit optimal strategies, but we show that for a fixed ε they
enjoy ε-optimal positional strategies, i.e. memoryless strategies that allow the
players to get an outcome close to the value. In the last section, we show a
nice application of model-checking games by giving an alternative proof of the
bisimulation invariance theorem from the previous chapter.
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3.1. Quantitative Parity Games

3.1 Quantitative Parity Games

Quantitative parity games extend classical parity games by enriching the game
structure with a payoff function for terminal nodes, i.e. nodes without any
outgoing edges. This gives real-valued payoffs for all finite plays. The payoff
of an infinite play still only depends on the lowest priority seen infinitely often,
as for classical parity games.

Definition 3.1. A quantitative parity game (QPG) is a tuple

G = (V, V0, V1, E, λ, Ω),

where the directed graph (V, E) is called the game arena. V is a disjoint union
of V0 and V1, i.e. positions belong to either Player 0 or 1. The transition relation
E ⊆ V ×V describes possible moves in the game. The payoff function λ : {v ∈
V : vE = ∅} → R∞ assigns values to all terminal positions and the priority
function Ω : V → {0, . . . , n} assigns a priority to every position.

How to play. Every play starts at some position v ∈ V. For every posi-
tion in Vi, Player i chooses a successor position, and the play proceeds from
that position. If the play reaches a terminal position, it ends. We denote by
π = v0, v1, . . . the (possibly infinite) play through vertices v0, v1, . . ., given that
(vn, vn+1) ∈ E for every n. The outcome p(π) of a finite play π = v0 . . . vk de-
pends only on the value assigned to the terminal node by the payoff function
λ, i.e. p(v0, v1, . . . , vk) = λ(vk).

The outcome p(π) of an infinite play depends only on the lowest priority
seen infinitely often. We assign the value −∞ to every infinite play where the
lowest priority seen infinitely often is odd, and ∞ to those where it is even.

Goals. The two players have opposing objectives regarding the outcome of
the play. Player 0 wants to maximise the outcome, while Player 1 wants to
minimise it. To avoid confusion when using pronouns, we refer to Player 0 as
“she” and Player 1 as “he”.

Strategies. A strategy for Player i ∈ {0, 1} is a function s : V∗Vi → V with
(v, s(v0, . . . , vn, v)) ∈ E for v ∈ V and a play prefix v0, . . . , vn. A play π =

v0, v1, . . . is consistent with a strategy s for player i, if vn+1 = s(v0, . . . , vn) for
every n such that vn ∈ Vi. For strategies σ, ρ of the two players, we denote by
πσ,ρ(v) the unique play starting at node v which is consistent with both σ and
ρ.
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v0 Ω(v) = 1

for v ∈ {v0, v1, v2, v4, v5}
Ω(v3) = 0v1v2

λ = 4

v3

v4 v5

Figure 3.1: A quantitative parity game G = (V, V0, V1, E, λ, Ω)

Determinacy. A game is determined if, for each position v, the highest outcome
Player 0 can assure from this position and the lowest outcome Player 1 can
assure coincide, i.e.,

sup
σ∈Γ0

inf
ρ∈Γ1

p(πσ,ρ(v)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(πσ,ρ(v)) =: valG(v),

where Γ0, Γ1 are the sets of all possible strategies for Player 0, Player 1 and the
achieved outcome is called the value of G at v, valG(v).

For a determined game G, we call a strategy σ of Player 0 optimal if for every
strategy ρ of Player 1 p(πσ,ρ(v)) ≥ valG(v) (and analogously for Player 1).

Example 3.2. In Figure 3.1, we show a simple quantitative parity game. By
convention, we depict positions of Player 0 by circles and positions of Player 1
by rectangles. Let us look at a finite play starting at v0. This position belongs
to Player 0 and she has to move to v1. This position belongs to Player 1, if he
decides to move to v2 the play ends as this is a terminal position, thus resulting
in π = v0, v1, v2 with payoff p(π) = λ(v2) = 4.

Player 1 could at v1 also decide to go to v3. Then, Player 0 can decide to
stay in the cycle v3, v4, v5 forever, and not give Player 1 another opportunity
to end the play by moving back to v1. The payoff of this infinite play π =

v0, v1, (v3, v4, v5)
ω is p(π) = ∞ as the smallest priority occurring infinitely

often is 0.
This shows that it is an optimal strategy for Player 1 to end the play by

moving to v2 directly (and not giving Player 0 any chance to force an infinite
play), as the value of the game starting at v0 is 4.
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3.1. Quantitative Parity Games

v

v0 v1 v2

λ = 0 1 2

. . . vi

i

. . .

Figure 3.2: An infinitely-branching QPG where Player 0 has no optimal
strategy

Classical parity games can be seen as a special case of quantitative parity
games on qualitative arenas. As in qualitative transition systems, we only have
payoffs ∞ and −∞ in terminal nodes. Then, we map winning to payoff ∞ and
losing to payoff −∞. Classical determinacy is recovered by observing that only
two values are possible and that guaranteeing one of those exactly means that
one of the players has a winning strategy from every position of the game, i.e.,
the game arena is partitioned into winning regions for both players.

Formally, we say that a quantitative parity game G = (V, V0, V1, E, λ, Ω) is
qualitative if λ(v) = −∞ or λ(v) = ∞ for all v ∈ V with vE = ∅. In qualitative
games, we denote by Wi ⊆ V the winning region of Player i, i.e. W0 is the
region where Player 0 has a strategy to guarantee payoff ∞ and W1 is the
region where Player 1 can guarantee payoff −∞.

Qualitative parity games have been extensively studied in the past. One
of their fundamental properties is positional determinacy [14, 35, 43]. In every
parity game, the set of positions can be partitioned into the winning regions W0

and W1 for the two players, and each player has a positional winning strategy
on her winning region (which means that the moves selected by the strategy
only depend on the current position, not on the history of the play).

Winning strategies translate into optimal strategies in the quantitative world.
Unfortunately, the existence of optimal strategies is not guaranteed in quanti-
tative parity games – unless we restrict the payoff functions to finite domains.
Below, we give two examples of infinite games where Player 0 has no optimal
strategy. However, there exist ε-optimal strategies, a concept that we introduce
later in Section 3.3.

Example 3.3. In Figure 3.2, we show a very simple infinitely-branching QPG. In
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v0 v1 v2 v3 v4 vi

w0 w1 w2 w3 w4 wi

λ = 0 1 2 3 4 . . . i . . .

Ω(v) = 1 for all v ∈ V

Figure 3.3: A finitely-branching QPG where Player 0 has no optimal strategy

this game, only Player 0 moves. She has exactly one choice to make, namely
to move from v to one of the infinitely-many successors. The value of the
game is the supremum over all the payoffs she could achieve by using different
strategies. As she can achieve arbitrarily high payoffs, this value is ∞. But
there is no strategy that will give Player 0 this payoff (as no position actually
has payoff ∞), so she has to settle for a payoff i ∈N. She still has an ε-optimal
strategy for every ε ∈ (0, 1) (as defined in Definition 3.9), i.e. strategies that
give her a payoff greater or equal to 1

ε .

Example 3.4. In Figure 3.3, we illustrate that also finitely-branching (infinite)
games do not necessarily admit optimal strategies. In this game, again only
Player 0 has any choice. In every step, she can decide if she is happy with the
value she will get if she ends the play by moving down to a terminal position,
or if she wants to continue playing. She cannot, however, move along the
infinite path forever, as the only priority in this game is odd so an infinite play
would be the worst case for her. It can again easily be seen that the value of
the game is ∞, but that there is no play with this payoff, so she has no optimal
strategy. She has, however, as before, strategies to get arbitrarily high payoffs.

Please note that if we allow quantities on edges as well, as we will do in
Chapter 4, the situation gets worse as even very simple finite games do not
admit optimal strategies anymore.

Although we do not have positional optimal strategies, we can show that for
a fixed ε, quantitative parity games admit positional ε-optimal strategies. As
we need some more concepts and definitions to prove this, we come back to
this later in Theorem 3.29.
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3.2 Model-Checking Games for Qµ

A game (G, v) is a model-checking game for a formula ϕ and a structure Q, v′,
if the value of the game starting from v is exactly the value of the formula
evaluated on Q at v′. In the qualitative case, that means that ϕ holds in Q, v′ if
Player 0 wins in G from v.

Model-checking games give us a more intuitive way to look at the evaluation
of Qµ formulae. Few will deny that Qµ and Lµ formulae are very un-intuitive
and hard to understand as soon as they involve more than one quantifier alter-
nation. To construct a game out of a given formula and system often makes it
much easier to understand the meaning of the formula.

But this is only one nice feature and not the main advantage model-checking
games give us. The game setting also allows us to use a whole new tool box,
namely to adopt game-theoretic techniques and methods to solve the model-
checking problem. This also paves the way for an algorithmic treatment.

Definition 3.5. For a quantitative transition system Q = (S, T, Pi) and a closed
Qµ-formula ϕ in negation normal form, the quantitative parity game

MC[Q, ϕ] = (V, V0, V1, E, λ, Ω),

which we call the model-checking game for Q and ϕ, is constructed in the fol-
lowing way.

Positions. The positions of the game are the pairs (ψ, s), where ψ is a sub-
formula of ϕ, and s ∈ S is a state of the QTS Q, and the two special positions
(−∞) and (∞). Positions (ψ, s) where the top operator of ψ is �,∧, or ν belong
to Player 1 and all other positions belong to Player 0.

Moves. Positions of the form (Pi + c, s), (¬(Pi + c), s), (−∞), and (∞) are
terminal positions. From positions of the form (ψ ∧ ϑ, s), resp. (ψ ∨ ϑ, s),
one can move to (ψ, s) or to (ϑ, s). Positions of the form (♦ψ, s) have either
a single successor −∞, in case s is a terminal state in Q, or one successor
(ψ, s′) for every s′ ∈ sT. Analogously, positions of the form (�ψ, s) have a
single successor (∞), if sT = ∅, or one successor (ψ, s′) for every s′ ∈ sT
otherwise. Fixed-point positions (µX.ψ, s) or (νX.ψ, s) have a single successor
(ψ, s). Whenever one encounters a position where the fixed-point variable
stands alone, i.e. (X, s′), the play goes back to the corresponding definition,
namely (ψ, s′).
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Payoffs. The payoff function λ assigns JPiK(s) + c to positions (Pi + c, s),
−(JPiK(s) + c) to positions (¬(Pi + c), s), ∞ to position (∞), and −∞ to po-
sition (−∞).

Priorities. The priority function Ω is defined as in the classical case using the
alternation level of the fixed-point variables, as described in [24]. Positions
(X, s) get a lower priority than positions (X′, s′) if X has a lower alternation
level than X′. Ω assigns an even value to all positions (X, s), where X is a
ν-variable and an odd value to all positions (X, s), where X is a µ-variable,
using the alternation level of the fixed-point variables as priorities. To ad-
just the alternation level to get the right parity we set al∗ϕ(X) = alϕ(X) + 1
if µ-variables are at even alternation levels (or equivalently ν-variables at odd
alternation levels) and al∗ϕ(X) = alϕ(X) otherwise. Let ad∗ϕ = max{al∗(X) :
X is a fixed-point variable in ϕ} and set Ω(X, s) := al∗ϕ(X) for positions, where
X is a fixed-point variable and Ω(p) := ad∗ϕ for all other positions.

It is well-known that qualitative parity games are model-checking games for
the classical µ-calculus [15]. A proof that uses the unfolding technique can be
found in [24].

Theorem 3.6. For a formula ϕ in Lµ, a qualitative transition system K and a node v,
MC[K, ϕ] starting from (ϕ, v) is a model-checking game for ϕ and K, v, i.e., Player 0
(or Verifier) has a winning strategy in MC[K, ϕ] from (ϕ, v) if and only if K, v |= ϕ.

We generalise this connection to the quantitative setting as follows.

Theorem 3.7. For a formula ϕ in Qµ, a quantitative transition systemQ, and v ∈ Q,
the game MC[Q, ϕ] is determined and

valMC[Q, ϕ](ϕ, v) = JϕKQ(v).

By using the method of unfolding, we give a direct proof for both the deter-
minacy of quantitative parity games and the connection to model checking Qµ.
An alternative method to prove the determinacy of quantitative parity games
is via the determinacy of classical parity games. To apply this result here, con-
sider for a quantitative game G the infinite family of two-valued, i.e. zero-sum
games Gr for r ∈ R∞. Each Gr is identical to G, except that Player 0 wins a play
in Gr if the payoff of the corresponding play in G is at least r, and Player 1 wins
in the other case. A formal definition can be found in the proof of Theorem
3.29. As classical parity games are determined, it follows that each game Gr is
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Q

a

P=0

b

P=1

µX.(P∨♦X), a

P∨♦X, aP, a

λ=0

MC[Q, ϕ]

♦X, aX, b X, a

P∨♦X, b

P, b

λ=1

♦X, b −∞

λ=−∞

µX.(P∨♦X), b

Figure 3.4: Model-checking game for ϕ = µX.(P ∨♦X) and Q.

determined. The value of G can be calculated as the supremum of all r such
that Player 0 wins Gr and thus the determinacy of G follows. Please observe
that it is impossible that Player 1 wins Ga and Player 0 wins Gb for b > a, as a
winning strategy for Player 0 for Gb would also be winning in Ga.

Next, we give an example to illustrate the construction of a model-checking
game.

Example 3.8. A model-checking game for ϕ = µX.(P ∨ ♦X) on the QTS Q is
shown in Figure 3.4. The nodes are labelled with the corresponding subfor-
mulae of ϕ, and the state of Q. As there is only one fixed-point variable and
no alternation, we only need one priority. Since it is referring to a least fixed-
point, the (adjusted) priority will be 1 and assigned not only to the fixed-point
position but also to all other nodes. This means that infinite plays are bad for
player Player 0. As we know that this formula classically describes a reach-
ability property (P is reachable in a finite number of steps) this captures our
intuition that Player 0 should be punished if she fails to establish a value in
a finite number of steps. Note that in this game Player 0 is the only one al-
lowed to make any choices. When we start at the top node, corresponding to
an evaluation of ϕ at a in Q, the only choice she has is either to keep playing
(by looping), or to end the game by moving to a terminal position. The only
reasonable strategy is to move directly to the position (P, b) which will give

44



Chapter 3. Quantitative Parity Games and Model Checking

her a payoff of 1. This is equal to JϕKQ(a).

3.3 Unfolding Quantitative Parity Games

We prove the determinacy of quantitative parity games by an induction on the
number of priorities occurring in the game. The base case are games with one
priority. We call these games reachability games if the only priority is odd and
safety games if it is even. As the games are dual to each other, we focus on
reachability games and show that they can be solved by a generalisation of
backwards induction.

For the induction step, we adapt the classical method of unfolding a parity
game. This technique allows us to transform a game with m priorities into a
sequence of games with m− 1 priorities. Then, we show that the value of the
original game can be computed from the values of the games of the unfolding.

After having established the determinacy of quantitative parity games, we
prove that they correctly describe the evaluation of Qµ formulae. First, we look
at formulae without fixed-point operators and thus give a proof for quantita-
tive modal logic. For the fixed-point case, we show that the values of the games
of the unfolding are closely related to the stages of the fixed-point evaluation
of Qµ.

Let us first fix some notation and show a few basic properties. We need the
notion of ε-optimal strategies. These are strategies that guarantee an outcome
ε-close to the value of the game. As the value can be infinite in our setting we
use the following notion of “close”.

Definition 3.9. A number k ∈ R∞ is called ε-close to p ∈ R∞, when either p is
finite and |k− p| ≤ ε, p = ∞ and k ≥ 1

ε or p = −∞ and k ≤ −1
ε . Furthermore,

we say that k is ε-above p (or ε-below), if k ≥ p′ (or k ≤ p′) for some p′ that is
ε-close to p.

We slightly abuse the word “close” as ε-closeness is not symmetric, since 1
ε

is ε-close to ∞, but ∞ is not ε-close to any number r ∈ R (and analogously for
−∞). Intuitively, if a value k is ε-above p it means that k is at least greater than
a threshold p′ ε-close to p (ε-below is defined analogously).

Definition 3.10. We call a strategy σ of Player 0 in a determined game G ε-
optimal for ε ∈ (0, 1) if for every strategy ρ of Player 1, p(πσ,ρ(v)) is ε-close to
valG(v) (and analogously for Player 1).
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In our proofs, we combine ε-optimal strategies and have to guarantee that the
resulting strategy is still a good enough approximation of the original value.
For this purpose, we note that closeness is transitive in a weaker sense.

Observation 3.11. Let x, y, z ∈ R∞, ε ∈ (0, 1). If x is ε/2-close to y and y is
ε/2-close to z, then x is ε-close to z.

This statement remains valid if we replace the close-relation by the above- or
below-relation.

Reachability Games

This is the base case of our induction. In quantitative reachability games the
only priority is odd and is assigned to every node, i.e. infinite plays have out-
come −∞. To determine the value of a play in a reachability game after k steps,
we use backwards induction, and inductively define a sequence of approximate
payoff functions fk : V → R∞. Then, we show how to construct strategies for
the two players to achieve this payoff and thus prove determinacy.

The first payoff function corresponds to the immediate payoff of the game,
i.e. after 0 steps.

f0(v) =
{

λ(v) for vE = ∅
−∞ otherwise

The payoff function fk+1 corresponds to the payoff that can be guaranteed
for Player 0 in k + 1 steps.

fk+1(v) =


λ(v) for vE = ∅
supw∈vE fk(w) for v ∈ V0

infw∈vE fk(w) for v ∈ V1

Intuitively, the functions fk determine the value of a game that ends after at
most k steps. This means that the outcome is −∞ if Player 0 does not succeed
to reach a terminal position in at most k steps.

We define f (v) as limk→∞ fk(v) and we show that f (v) is indeed the value of
a game started at v. To show that f (v) is well-defined, note that the sequence
fk is monotonically increasing, i.e. fk+1(v) ≥ fk(v) for all v, k. This can easily
be proved by induction on k. Moreover, by commutativity of lim and sup, inf,
the properties in the definition of fk are maintained in f .
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Lemma 3.12. For all moves (v, w) ∈ E,

f (v) =


λ(v) for vE = ∅
supw∈vE f (w) for v ∈ V0

infw∈vE f (w) for v ∈ V1 .

Let us now introduce strategies for the two players to approximate fk and
f . For given ε and k, the strategy σk

ε for Player 0 approximates the payoff
fk whereas the strategy ρε for Player 1 approximates f . For σk

ε choose at v
a successor node w ∈ vE such that fk−1(w) is ε

2 -close to fk(v). From w on,
play according to σk−1

ε
2

. For ρε in v proceed in an analogous way: choose a
successor node w such that f (w) is ε

2 -close to f (v) and play ρ ε
2

from w. When
the opponent makes a move, adjust ε to ε

2 in the same way.
Note that if the game is finitely-branching, the ε-approximations are not

necessary as one can choose the maximal and minimal value directly.
Before we proceed, let us illustrate the construction of fk, f and σk

ε by an
example.

Example 3.13. In Figure 3.5, we see again the infinite quantitative parity game
from Example 3.4. We recall that Player 0 has no optimal strategy, but that she
can achieve arbitrarily high values, thus she has an ε-optimal strategy for every
ε. We want to illustrate the computation of the values fk(v) for all positions
v ∈ V and how to construct a strategy σk

ε for given k and ε. The values of
the functions fk are depicted in the figure. f (vi) = limk→∞ fk(vi) = ∞ for all
non-terminal nodes vi and f (wi) = λ(wi) for all terminal nodes wi.

Now let us consider a strategy σk
ε for Player 0, e.g. for k = 3 and ε = 1

2 .
This means that for a play starting at v0 this strategy guarantees an outcome
p which is 1

2 -above f3(v0) = 2, i.e. p ≥ 2− 1
2 = 1.5. The construction of σ3

1
2

proceeds as follows. σ3
1
2
(v0) has to choose a w ∈ v0E such that f2(w) is 1

4 -close

to f3(v0) = 2, i.e. f2(w) ≥ 2− 1
4 . This leaves us with v1 and from here we play

according to σ2
1
4
. Now, σ2

1
4
(v1) has to choose a w ∈ v1E such that f1(w) is 1

8 -close

to f2(v1) = 2. This gives us v2 and we change to σ1
1
8
. Again, at v2, we have to

choose a w ∈ v2E such that f0(w) is 1
16 -close to f1(v2) = 2. As f0(v3) = −∞,

this forces us to choose the terminal node w2 with f0(w2) = λ(w2) = 2. This
gives us the desired outcome as 2 is 1

2 -close to 2. Please note that this strategy
is 1

2 -optimal in G starting from v0 as valG(v0) = ∞ and we have defined 1
2 -

close to ∞ as greater or equal to 2. This also implies that for every ε, she has an
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v0 v1 v2 v3 v4 vi

w0 w1 w2 w3 w4 wi

λ = 0 1 2 3 4 . . . i . . .

Ω(v) = 1 for all v ∈ V

v0 w0 v1 w1 v2 w2 v3 . . . vi wi . . .
f0 −∞ 0 −∞ 1 −∞ 2 −∞ −∞ i
f1 0 0 1 1 2 2 3 i i
f2 1 0 2 1 3 2 4 i + 1 i
f3 2 0 3 1 4 2 5 i + 2 i
f4 3 0 4 1 5 2 6 i + 3 i
...

...
f ∞ 0 ∞ 1 ∞ 2 ∞ . . . ∞ i . . .

Figure 3.5: Illustration of the strategy construction for Player 0

48



Chapter 3. Quantitative Parity Games and Model Checking

ε-optimal strategy, she just has to take more steps along the path of vi before
moving to a terminal position to get an outcome greater or equal to 1

ε . Please
note that we presented the general construction for the strategy σk

ε , although
in this game those approximations are not necessary, as the game graph is
finitely-branching.

Lemma 3.14. p(πσk
ε ,ρ(v)) is ε-above fk(v) for every strategy ρ of Player 1.

Proof. We prove this lemma by induction on k. For k = 0, f0(v) 6= −∞ only in
case that v is a terminal node, but then f0(v) = λ(v) = p(πσ0

ε ,ρ(v)).
By induction hypothesis p(π

σk−1
ε
2

,ρ(w)) is ε
2 -above fk−1(w) for all w ∈ V and

ε ∈ (0, 1).
If v ∈ V0, then σk

ε by definition chooses w such that fk−1(w) is ε
2 -close to

fk(v). Thus, by the above and Observation 3.11, p(πσk
ε ,ρ(v)) = p(π

σk−1
ε
2

,ρ(w)) is

ε-above fk(v).
If v ∈ V1, then ρ chooses any successor w′, by definition

fk(v) = inf
w∈vE

fk−1(w) ≤ fk−1(w′),

and thus p(πσk
ε ,ρ(v)) = p(π

σk−1
ε
2

,ρ(w
′)) is even ε

2 -above fk(w).

Lemma 3.15. The strategies σk
ε
2

are ε-optimal, i.e. for every ε and v there is a k such
that p(πσk

ε
2

,ρ(v)) is ε-above f (v) for every strategy ρ of Player 1.

Proof. As f (v) = limi→∞ fi(v), for every ε there is a k such that fk(v) is ε
2 -close

to f (v). By Lemma 3.14, p(πσk
ε
2

,ρ(v)) is ε
2 -above fk(v) and thus by Observation

3.11 it is ε-above f (v).

Lemma 3.16. The strategy ρε is ε-optimal, i.e. p(πσ,ρε(v)) is ε-below f (v) for every
strategy σ of Player 0.

Proof. Towards a contradiction, assume there is a σ such that

p(πσ,ρε(v)) > f (v) + ε.

Then p(πσ,ρ(v)) > −∞, and thus πσ,ρ(v) is finite.
We show by induction on the length k of πσ,ρ(v) that p(πσ,ρε(v)) is ε-below

f (v). The case k = 0 means that v is a terminal position and then

p(πσ,ρε(v)) = λ(v) = f (v).
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For the induction step, let

πσ,ρε(v0) = v0, v1, . . . , vk.

By definition of ρε, the play v1 . . . vk is played consistent with ρ ε
2

and therefore,
by inductive assumption, p(v1, . . . , vk) is ε

2 -below f (v1).
If v0 ∈ V0, then f (v0) = supw∈v0E f (w) ≥ f (v1) and so p(v0, v1, . . . , vk) is

even ε
2 -below f (v0).

If v0 ∈ V1, then, by definition, ρε chooses a v1 so that f (v1) is ε
2 -close to f (v0)

and thus, by Observation 3.11, p(v0, v1, . . . , vk) is ε-below f (v0).

As for all v ∈ V, both players have strategies that guarantee an outcome
ε-close to f (v), we can conclude that this is indeed the value of the game.

Proposition 3.17. Reachability and safety games are determined, for every position v
there exist strategies σε and ρε that guarantee payoffs ε-above (or respectively ε-below)
valG(v).

Unfolding Step

We proceed with the induction step of our determinacy proof. To this end, we
present a method to unfold a quantitative parity game with m priorities into a
sequence of games with m− 1 priorities. The value of the original game can
be computed from the values of the games in the unfolding. To prove this, we
construct strategies for both players to achieve an approximation of this value.
The unfolding technique is inspired by the proof of correctness of the model-
checking games for Lµ and LFP in [24]. Besides establishing determinacy, we
also use this method to prove the fixed-point case of Theorem 3.7. We show
that, as in the classical case, the unfolding of MC[Q, ϕ] is closely related to the
inductive evaluation of fixed points in ϕ on Q.

From now on, we assume that the minimal priority in G is even and call it
m. This is no restriction, since, if the minimal priority is odd, we can always
consider the dual game, where the roles of the players are switched and all
priorities are decreased by one.

Definition 3.18. For a quantitative parity game G = (V, E, λ, Ω), we define the
truncated game,

G− = (V, E−, λ, Ω−).
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We assume without loss of generality that all nodes with minimal priority in
G have unique successors. In G− we remove the outgoing edge from each of
these nodes. Since these nodes are terminal positions in G−, their priority does
not matter any more for the outcome of a play and Ω− assigns them a higher
priority, e.g. m + 1. Formally,

E− = E \ {(v, v′) : Ω(v) = m}

Ω−(v) =
{

Ω(v) if Ω(v) 6= m,
m + 1 if Ω(v) = m.

The unfolding of G is a sequence of games G−α , for ordinals α, which all coincide
with G−, except for the payoff functions λα. Below we give the construction of
the λα.

For all terminal nodes v of the original game G we have λα(v) = λ(v) for all
α. For the new terminal nodes, i.e. all v ∈ V such that vE− = ∅ and vE = {w},
the valuation is given by:

λα(v) =


∞ for α = 0,
valG−α−1(w) for α successor ordinal,
limβ<α valG−β (w) for α limit ordinal.

The intuition behind the definition of λα is to give an incentive for Player 0 to
reach the new terminal nodes by first giving them the best possible valuation,
and later by updating them to values of their successor in a previous game
G−β , β < α.

To determine the value of the original game G, we inductively compute the
values for each game in Gα, until they do not change any more.

Let γ be an ordinal for which valG−γ = valG−γ+1. Such an ordinal exists, since
the values of the games in the unfolding are monotonically decreasing (which
follows from determinacy of these games and the definition). We set

g(v) = gγ(v) = valG−γ (v)

and show that g is the value function of the original game G.

Example 3.19. In Figure 3.6, we want to illustrate how to unfold a quantita-
tive parity game and how to compute the value of the original game via
the games of the unfolding. We depict an infinite quantitative parity game
G = (V, V0, V1, E, λ, Ω) where all positions belong to Player 1, i.e. V0 = ∅

51



3.3. Unfolding Quantitative Parity Games

G v0 u0

0
v1 u1

0
v2 u2

0

w0

(0 . . . −1)

w1

(−1 . . . −2)

w2

(−2 . . . −3)

. . .

. . .

G− v0 u0

0
v1 u1

0
v2 u2

0

w0 valG(w0) = −1

(0 . . . −1)

w1 valG(w1) = −2

(−1 . . . −2)

w2 valG(w2) = −3

(−2 . . . −3) . . .

valG−0 (v0) = −1 λ0(u0) = ∞ valG−0 (v1) = −2 λ0(u1) = ∞ valG−0 (v2) = −3
valG−1 (v0) = −2 λ1(u0) = −2 valG−1 (v1) = −3 λ1(u1) = −3 valG−1 (v2) = −4
valG−2 (v0) = −3 λ2(u0) = −3 valG−2 (v1) = −4 λ2(u1) = −4 valG−2 (v2) = −5

...
...

valG−∞(vi) = −∞ = g(vi) = valG−∞(ui) = g(ui) for all i ∈N

Figure 3.6: Unfolding for a QPG G
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and V1 = V. Each wi has infinitely many successors from the open interval
(−i,−(i + 1)), e.g. w1 has successors for each r ∈ (−1,−2) and each of these
successors has payoff r. Ω : V → {0, 1} assigns 0 to all nodes ui and 1 to all
other nodes. Hence, the nodes ui are the nodes with minimal priority, so the
unique outgoing edge from each of these nodes is removed in the truncated
game G−. In the figure, we also show the values of the games in the unfolding.

Let us look at v0. In the first game, G−0 , we have valG−0 (v0) = −1 as the
only choice he has is to either go to u0 or to w0. Since λ0(u0) = ∞, the only
reasonable choice is to go to w0. The value of this position is −1, but there is
no successor with this payoff. Please recall that λ0(ui) = ∞ for all nodes of
even minimal priority ui by definition to encourage Player 0 to seek out these
positions and to discourage Player 1 from moving to them. In the next game,
G−1 , the payoff function λ1 is updated to λ1(u0) = −2, the value at v1 in G−0 .
Now it is a better choice for Player 1 to move to u0 and thus valG−1 (v0) =

−2. In the next step the payoff function is again updated to a smaller value,
λ2(u0) = −3. Thus, the values that Player 1 can achieve from v0 decrease with
every iteration. In the end, valG−∞(v0) = −∞ = g(v0) = valG(v0). As before,
he cannot achieve this value in an actual play, he just can achieve arbitrarily
small values by moving down to a wi. And even these values at wi are not
actually achievable. For example, to achieve a value 1

2 -below G(v0) = −∞, he
has to get an outcome at most −2. But he cannot just move to w1, although
valG(w1) = −2, but this is again an approximation. So to get a value 1

2 -below
G(v0), he has to move at least 5 steps to w2 and then to one of its successor
w′ ∈ w2E with λ(w′) < −2.

To prove that g is the value function of the original game, we need to in-
troduce strategies for Player 1 and Player 0, which are inductively constructed
from the strategies in the unfolding. To give an intuition for the construction,
we view a play in G as a play in the unfolding of G. Let us look more closely
at the situation of each player.

The Strategy of Player 0

Player 0 wants to achieve the value gγ(v0) or come ε-close. To reach this goal,
she imagines to play in G−γ and uses her ε-optimal strategies σε

γ for that game.
Between every two occurrences of nodes of minimal priority throughout the
play, she plays a strategy σ

εi
γ .

Initially, εi will be ε
2 , ε being the approximation value she wants to attain in
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m

vki vki+1

in G
m

vk(i+1)σ
εi
γ

G−γ

Figure 3.7: Player 0’s strategy after having seen i nodes of priority m

the end. Then she chooses a smaller εi+1 every time she passes an edge outside
of G−. She will adjust the approximation value by cutting it in half every time
she changes the strategy. This is illustrated in Figure 3.20.

For a history h or a full play π, let L(h) (resp. L(π)) be the number of nodes
with minimal priority m occurring in h (or π).

Definition 3.20. The strategy σε for Player 0 in the game G, after history
h = v0, . . . , v` is given as follows. In the case that L(h) = 0 (i.e., no posi-
tion of minimal priority has been seen), let ε(h) := ε/2, and σε(h) := σ

ε(h)
γ (h).

Otherwise, let vk be the last node of priority m in the history h = v0, . . . , v`,

ε(h) :=
ε

2L(h)+1

and

σε(h) := σε′
γ (vk+1, . . . , v`).

Now let us consider a play π = v0, . . . , vk, vk+1, . . ., consistent with a strategy
σε, where vk is the first node with minimal priority. The following property
about values gγ(v0) and gγ(vk+1) in such a case (and an analogous, but more
tedious one for Player 1) allows us to prove ε-optimality of the strategies σε, as
stated in the proposition below.

Lemma 3.21. gγ(vk+1) is ε
2 -above gγ(v0).

Proof. Let us look at π as played in G−γ+1 = G−γ . By definition, λγ+1(vk) =

gγ(vk+1), hence

p(π) = λγ+1(vk) = gγ(vk+1).

As σ
ε
2
γ is ε

2 -optimal in G−γ , we know that p(π) is ε
2 -above

valG−γ+1(v0) = gγ+1(v0) = gγ(v0).
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Proposition 3.22. The strategy σε is ε-optimal, i.e. for every v ∈ V and every strategy
ρ for Player 1, p(πσε,ρ(v)) is ε-above g(v).

Proof. Let us fix v and a strategy ρ for Player 1. We distinguish the following
two cases.

Case 1: πσε,ρ(v) visits nodes of minimal priority infinitely often.
In this case, the outcome of the play is ∞ and there is nothing left to show.

Case 2: πσε,ρ(v) visits nodes of minimal priority only finitely often.
We prove this case by induction over the number of nodes with minimal prior-
ity occurring during the play.
If L(πσε,ρ(v)) = 0, then the whole play is equivalent to a play in G−γ and

σε is equivalent to the ε
2 -optimal strategy σ

ε
2
γ and thus gives a payoff ε

2 -above
gγ(v) = g(v).

Now let us look at a play πσε,ρ(v) = v0, . . . , vk, vk+1, . . ., where vk is the first
node with minimal priority and L(πσε,ρ(v)) = n. For a play suffix s, let

ρ′(s) = ρ(v0, . . . , vk, s) and σ′(s) = σ
ε
2 (s) = σε(v0, . . . , vk, s),

i.e. we play a part of πσε,ρ, starting at vk+1.
As L(πσ′,ρ′(vk+1)) = n − 1, by induction hypothesis, p(πσε,ρ′(vk+1)) is ε

2 -
above g(vk+1). By Observation 3.11 it follows, that p(πσε,ρ′(vk+1)) is ε

2 -above
g(vk+1). Using Lemma 3.21, we get that gγ(vk+1) is ε

2 -above gγ(v0).
By transitivity (Observation 3.11) and the above, we obtain that

p(π
σ

ε
2

γ ,ρ
(v0)) = p(πσε,ρ′(vk+1)) is ε-above gγ(v0)

and this concludes the proof.

The Strategy of Player 1

Now we look at the situation of Player 1. The problem of Player 1 is that
he cannot just combine his strategies for G−γ . If he did, he would risk going
infinitely often through nodes with minimal priority which is his worst case
scenario. Intuitively speaking, he needs a way to count down, so that he is
able to come close enough to his desired value, but stops going through the
nodes with minimal priority after a finite number of times. To achieve that,
he utilises the strategy index as a counter. Like Player 0, he starts with a
strategy for G−γ , but with every time he passes a node of minimal priority and
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v0
m

vk1ρ
ε
4
γ

G−γ

vk1+1

in G
m

vk2ρ
ε

16
γ−1

G−γ−1

Figure 3.8: Player 1’s strategy at the beginning of the play for a successor ordi-
nal γ

v0
m

vk1ρ
ε
4
γ

G−γ

vk1+1

in G
m

vk2ρ
ε

16
α

G−α

Figure 3.9: Player 1’s strategy at the beginning of the play for a limit ordinal γ

changes his strategy, he not only adjusts the approximation value according
to the previous one, but also lowers the strategy index in the following way.
If the current game index is a successor ordinal, he just changes the index to
its predecessor and adjusts the approximation value in the same way Player 0
does. In Figure 3.8, we illustrate this by an example. The nodes vki depict the
positions with minimal priority.

If the current game index is a limit value, he uses the fact that there is a game
index belonging to a game which has an outcome close enough to his desired
value. In the situation depicted in Figure 3.9 he would choose an α such that
valG−α (vk1+1) is ε

4 -below λγ(vk1).
Finally, after a finite number of changes, as the ordinals are well-founded, he

will be playing some version of ρ
ε l
α (for a fixed ordinal α) and keep on playing

this strategy for the rest of the play.
Now we formally describe Player 1’s strategy. Let us first fix some notation

considering game indices. For a limit ordinal α, a node v ∈ V of priority m,
and for ε ∈ (0, 1), we denote by α � ε, v the index for which the value valG−α (v)
is ε-below λα(w), where {w} = vE.

Definition 3.23. For a given approximation value ε′, a starting ordinal ζ, and a
history h = v0, . . . , v`, we define game indices αζ(h, ε′), approximation values
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ε(h, ε′), and a strategy ρε′ for Player 1 in the following way.
If L(h) = 0, we fix αζ(h, ε′) = ζ and ε(h, ε′) = ε′.
For h = v0, . . . , vk, vk+1, . . . , vl, where vk is the last node with minimal prior-

ity in h, let h′ = v0, . . . , vk−1 and put

αζ(h, ε′) =


αζ(h′, ε′)− 1 for αζ(h′, ε′) successor ordinal,
αζ(h′, ε′) � ( ε′

4L(h′)+1 , vk) for αζ(h′, ε′) limit ordinal,
0 for αζ(h′, ε′) = 0,

and ε(h, ε′) = ε′

4L(h) .
The ε′-optimal strategy for Player 1 is given by:

ρε′
ζ (v0 . . . vl) = ρ

ε(v0...vl ,ε′)
4

αζ(v0...vl ,ε′)
.

We motivate the above definition with a nice property of a play consistent
with such a strategy for Player 1. Let

π = v0, . . . , vk1 , vk1+1, . . . , vkl
, vkl+1, . . .

be a play that is consistent with a strategy ρε′
ζ , where vki are the nodes with

minimal priority.
To simplify the notation, let k0 = −1, and α0 = ζ, αi = αζ(v0, . . . , vki , ε′) and

εi =
ε′

4i = ε(v0, . . . , vki , ε′) (describing the situation after i occurrences of nodes
with minimal priority).

Lemma 3.24. gαi+1(vk(i+1)+1) is εi
2 -below gαi(vki+1).

Proof. First, we observe that by definition,

gαi+1(vk(i+1)+1) is
ε′

4i+1 =
εi

4
-below λαi(vk(i+1)

).

On the part πi = vki+1 . . . vk(i+1)
of the play, the strategy ρε

ζ is equivalent to
the εi

4 -optimal strategy ρ
εi
αi in G−αi

and thus yields a payoff p(πi) that is εi
4 -below

gαi(vki+1). By definition, p(πi) = λαi(vk(i+1)
). Thus, by Observation 3.11, it

follows that gαi+1(vk(i+1)+1) is εi
2 -below gαi(vki+1).

Using the lemma above, we can now prove the ε-optimality of Player 1’s
strategy.

57



3.3. Unfolding Quantitative Parity Games

Proposition 3.25. The strategy ρε
ζ is ε-optimal, i.e. for every ε ∈ (0, 1), for all v ∈ V,

and strategies σ of Player 0: p(πσ,ρε
ζ
(v)) is ε-below gζ(v).

Proof. Let us fix a strategy σ for Player 0 and distinguish two cases.
Case 1: πσ,ρε

ζ
(v) visits nodes of minimal priority infinitely often.

In this case, we show that gζ(v) = ∞. Towards a contradiction, assume that
gζ(v) < ∞ and consider,

πσ,ρε
ζ
(v) = v0, . . . , vk1 , vk1+1, . . . , vk` , vk`+1

, . . . ,

where vki are the nodes with minimal priority. Now we can use Lemma 3.24,
i.e. we know for k0 = −1, and α0 = ζ, αi = αζ(v0, . . . , vki , ε), that

gαi+1(vk(i+1)+1) is
εi

2
-below gαi(vki+1).

In particular, if gαi(vki+1) is finite, then gαi+1(vk(i+1)+1) is finite as well, as ∞ is
only ε-close to ∞ (see the remark after the definition of ε-closeness).

The sequence α0 > α1 > . . . is a strictly decreasing sequence of ordinals and
therefore, for some l, αl = 0. But in the game G−0 , node vkl

is a terminal node,
and thus gαl(vkl

) = g0(vkl
) = λ0(vkl

) = ∞, which, using the above, contradicts
gζ(v) < ∞.

Case 2: πσ,ρε
ζ
(v) visits nodes of minimal priority only finitely often.

We will prove this case by induction over the number of nodes with minimal
priority.

If L(πσ,ρε
ζ
(v)) = 0 then the whole play is equivalent to a play in Gζ and ρε

ζ is

equivalent to the ε
4 -optimal strategy ρ

ε
4
ζ and thus gives a payoff ε

4 -below gζ(v).
Now let us look at a play

πσ,ρε
ζ
(v) = v0, . . . , vk, vk+1, . . . ,

where vk is the first node with minimal priority and L(πσ,ρε
ζ
(v)) = n.

For a play suffix s, let σ′(s) = σ(v0, . . . , vk, s) and

ρ′(s) = ρ
ε
4
α1(s) = ρε

α0=ζ(v0 . . . vks).

As L(πσ′,ρ′(vk+1)) = n− 1, by induction hypothesis, p(πσ′,ρ′(vk+1)) is ε
4 -below

gα1(vk+1).
By Observation 3.11, p(πσ′,ρ′(vk+1)) is ε

4 -below gα1(vk+1).
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Now we can use Lemma 3.24, which tells us, that gα1(vk+1) is ε
2 -below

gα0(v0).
By Observation 3.11, we get that

p(πσ,ρε
ζ(v0)) = p(πσ′,ρ′(vk+1)) is

ε

4
+

ε

2
< ε-below gζ(v0),

which completes the proof.

Having defined the ε-optimal strategies σε and ρε
γ, we can conclude the fol-

lowing.

Proposition 3.26. For a quantitative parity game G = (V, E, λ, Ω), for all v ∈ V,

sup
σ∈Γ0

inf
ρ∈Γ1

p(πσ,ρ(v)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(πσ,ρ(v)) = valG(v) = g(v).

Correctness of Model-Checking Games

After establishing determinacy for quantitative parity games we are ready to
prove the second part of Theorem 3.7, namely that the model-checking games
correctly describe the evaluation of a Qµ formula. Let us first look at formulae
without fixed-point operators and prove the following lemma.

Lemma 3.27. MC[Q, ϕ] is a model-checking game for ϕ ∈ QML.

Proof. Note that in case of QML-model checking all plays are finite and the
game graph is a tree of finite depth. The value of a the game from node v is
f (v) as defined in Section 3.3. Note that the process of computing the sequence
fi stops after a finite number of steps, namely the depth of the game tree. We
have to show by induction on the structure of ϕ that indeed f (v) = JϕK(v).

In case that ϕ = Pi + c or ϕ = ¬(Pi + c) (formulae are assumed to be in
negation normal form), the value of the formula is the same as the evaluation
of the terminal position by definition. In case that ϕ = ϕ1 ∧ ϕ2, we have the
evaluation JϕK(v) = min{Jϕ1K(v), Jϕ2K(v)}. But that also means, that in the
model-checking game, the corresponding position belongs to Player 1 and the
value f (v) is computed as minw∈vE f (w), where the next positions w are the
subformulae ϕ1, ϕ2, evaluated at v. By induction hypothesis, the values f (w)

coincide with Jϕ1K(v) and Jϕ2K(v).
In case that ϕ = �ϕ′, we have JϕK(v) = infw∈vEJϕ′K(w). Hence, in the model-

checking game, the corresponding position belongs to Player 1 and the value
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f (v) is computed as infw∈vE f (w), where the next positions are the subformula
ϕ′ evaluated at each of the successor nodes w in the original transition system.
By induction hypothesis, these values coincide with Jϕ′K(w). The proofs for
ϕ = ϕ1 ∨ ϕ2 and ϕ = ♦ϕ′ are analogous, only that the corresponding positions
now belong to Player 0.

To prove the correctness for Qµ, we need to consider formulae with fixed-
point operators. Let us consider the case that ϕ = νX.ψ.

Note that in the game MC[Q, ϕ], the positions with minimal priority are of
the form (X, v) each with a unique successor (ϕ, v). Our induction hypothesis
states that for every interpretation g of the fixed-point variable X, it holds that:

JϕKQ[X←g] = valMC[Q, ψ[X/g]]. (3.1)

By Theorem 2.6, we know that we can compute νX.ψ inductively in the
following way: JνX.ψKKI = gγ with g0(v) = ∞ for all v ∈ V and

gα =

{
JψKε[X←gα−1]

for α successor ordinal,
limβ<αJψKε[X←gβ]

for α limit ordinal,

and where gγ = gγ+1.
Now we want to prove that the games MC[Q, ψ[X/gα]] coincide with the

unfolding of MC[Q, ϕ]. We say that two games coincide if the game graph is
essentially the same, except for some additional moves where neither player
has an actual choice. In our case these are the moves from ϕ = νX.ψ to ψ,
which allows us to show the following lemma.

Lemma 3.28. The games MC[Q, ψ[X/gα]] and MC[Q, ϕ]−α coincide for all α.

Proof. Considering α = 0, note that MC[Q, ψ[X/g0]] coincides with MC[Q, ϕ]−0
by construction. The induction hypothesis is that MC[Q, ψ[X/gα]] coincides
with MC[Q, ϕ]−α for some α.

If α is a successor ordinal: the interesting positions in MC[Q, ψ[X/gα]] are the
terminal positions of the form (gα, a) with valuation

λ(gα, a) = gα(a) = JψK[X←gα−1]
(a).

In MC[Q, ϕ]−α , the corresponding terminal positions are of the form (X, a) with
valuation

λα(X, a) = valMC[Q, ϕ]−α−1(ϕ, a).
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By induction hypothesis, we have MC[Q, ϕ]α−1 coincides with MC[Q, ψ[X/gα−1]]

and therefore, by Equation 3.1,

valMC[Q, ϕ]−α−1(ϕ, a) = valMC[Q, ψ[X/gα−1]](ψ, a) = JψK[X←gα−1]
(a).

If α is a limit ordinal: we only consider terminal positions in MC[Q, ψ[X/gα]]

of the form (gα, a) with valuation

λ(gα, a) = gα(a) = lim
β<α

JψK[X←gβ]
(a).

In MC[Q, ϕ]−α , the corresponding terminal positions are of the form (X, a) with
valuation

λα(X, a) = lim
β<α

valMC[Q, ϕ]−β (ϕ, a).

By induction hypothesis, we have that for all β < α that MC[Q, ϕ]β coincides
with MC[Q, ψ[X/gβ]] and therefore, by Equation 3.1,

lim
β<α

valMC[Q, ϕ]−β (ϕ, a) = lim
β<α

valMC[Q, ψ[X/gβ]](ψ, a) = lim
β<α

JψK[X←gβ]
(a).

For ϕ = µX.ψ the proof is analogous.

From the above lemma and Proposition 3.26, we conclude that the value of
the game MC[Q, ϕ] is the limit of the values MC[Q, ϕ]−α , whose value functions
coincide with the stages of the fixed-point evaluation gα for all α, and thus

valMC[Q, ϕ] = valMC[Q, ϕ]−γ = gγ = JϕKQ.

This concludes the proof of Theorem 3.7.

Positional ε-Optimal Strategies

After establishing determinacy for quantitative parity games, we now come
back to positional determinacy. As shown in the examples in Section 3.1, quan-
titative parity games do not admit optimal strategies. However, they admit
ε-optimal strategies and are even positionally determined in such strategies.

Theorem 3.29. For a quantitative parity game G = (V, V0, V1, E, λ, Ω) and a fixed
ε ∈ (0, 1), Player 0 has a positional ε-optimal strategy σ, i.e. for every strategy ρ of
Player 1, p(πσ,ρ(v)) is ε-close to valG(v).
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Proof. For a quantitative parity game G = (V, V0, V1, E, λ, Ω), for every r ∈ R∞,
let Gr be the classical parity game where Player 0 wins a finite play if she would
get a payoff greater or equal to r in the corresponding play in the original game.
She wins an infinite play if she would get a payoff of ∞ accordingly. Formally,
using the convention that the player who cannot move at a position loses, we
define Gr = (V, V0r, V1r, E, Ω) where

V0r = {v ∈ V0 | vE 6= ∅} ∪ {v ∈ V | vE = ∅ ∧ λ(v) < r} and

V1r = {v ∈ V1 | vE 6= ∅} ∪ {v ∈ V | vE = ∅ ∧ λ(v) ≥ r}.

As we have mentioned before, classical parity games are positionally deter-
mined. This means that in every game Gr, if Player 0 has a winning strategy
from a node v, she also has a positional one. Now given a quantitative par-
ity game G and ε ∈ (0, 1), for a position v, we look at Gr where r is a value
ε-close to valG(v). Player 0 has an ε-optimal strategy in G which is a winning
strategy in Gr. This means, she also has a positional winning strategy in Gr

and thus a positional strategy in G to get outcome r, i.e. a positional ε-optimal
strategy.

3.4 Bisimulation via Model Checking

Now we show a nice application of model-checking games. In Section 2.3, we
proved that the quantitative µ-calculus is invariant under quantitative bisim-
ulation by an induction on the structure of the formula and using the rela-
tional description of bisimulation. Here, we instead use the description of the
value of a formula by a model-checking game and the bisimulation distance by
the corresponding bisimulation game. The proof then works by playing two
model-checking games and one bisimulation game at once.

Theorem 3.30 (2.18). Let ϕ ∈ Qµ and v ∈ M, v′ ∈ M′ with valG∼(M, v,M′, v′) =
r then |JϕKM(v)− JϕKM

′
(v′)| ≤ r or, in other words,

(M, v) ∼r (M′, v′) implies (M, v) ≡r
QML (M′, v′).

Proof. Towards a contradiction assume that valG∼(M, v,M′, v′) = r, but there
is a formula ϕ ∈ Qµ, such that JϕKM(v) = k and JϕKM

′
(v′) = k′ and |k′− k| > r

(without loss of generality we assume k′ > k).
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By assumption (and Theorem 2.15), Duplicator has a positional strategy β in
the bisimulation game G∼(M, v,M′, v′) such that

sup
γ∈Γ

p(πβ,γ(v, v)) ≤ r,

where Γ denotes the set of strategies of Spoiler. This means that for all (w, w′) ∈
πβ,γ(v, v′) we have pd(w, w′) ≤ r.

Furthermore, by Theorem 3.7, we know that if JϕKM(v) = p then Verifier
has a strategy σ in MC(M, ϕ) from node (ϕ, v) such that

inf
ρ∈Γ1

p(πσ,ρ(v)) is ε-above p

and that Falsifier has a strategy ρ in MC(M, ϕ) such that

sup
σ∈Γ0

p(πσ,ρ(v)) is ε-below p,

where Γ0 and Γ1 denote the sets of strategies of Verifier and Falsifier.
First, let us assume that k, k′ 6= ±∞. Then, we know from the above
that Verifier has a strategy σ in MC(M, ϕ) from node (ϕ, v) such that

inf
ρ∈Γ1

p(πσ,ρ(v)) ≥ k− ε

and that Falsifier has a strategy ρ in MC(M′, ϕ) such that

sup
σ∈Γ0

p(πσ,ρ(v′)) ≤ k′ + ε.

We consider the case in which both model-checking games and the bisimu-
lation game are played in parallel according to these strategies, resulting in the
plays πσ,ρ′(v) and πσ′,ρ(v′). The counter strategies ρ′ and σ′ will be constructed
according to the winning strategies in the other game using the bisimulation
relation.

We start at positions (v, ϕ) and (v′, ϕ) with M, v ∼r M′, v′. In every step
of our two games, after history H = (v0, v′0) . . . (vn, v′n) (we abbreviate with
h = v0, v1 . . . and h′ = v′0, v′1, . . . the histories in the model-checking games), we
choose the next positions according to the following rules:
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MC[Q, ϕ] MC[Q′, ϕ]

(v, ϕ) (v′, ϕ)

(u, ψ) (u′, ψ)∈ V0  ∈ V0

(w, ϑ)

σ

u = w  (u′, ϑ)

Figure 3.10: Player 0 position in the model-checking game, case 1

MC[Q, ϕ] MC[Q′, ϕ]

(v, ϕ) (v′, ϕ)

(u, ψ) (u′, ψ)∈ V0  ∈ V0

(w, ϑ)

σ

u 6= w  (w′, ϑ)
with β(. . . , (w, ·)) = (w, w′)

Figure 3.11: Player 0 position in the model-checking game, case 2
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MC[Q, ϕ] MC[Q′, ϕ]

(v, ϕ) (v′, ϕ)

(u, ψ) (u′, ψ)∈ V1∈ V1

(w′, ϑ)

γ

(w, ϑ) analogous

Figure 3.12: Player 1 position in the model-checking game

If (v, ϕ) ∈ V0, (i.e. also (v′, ϕ) ∈ V0, since by definition this is decided only
by the ϕ-part of the position) we choose a move according to σ in MC(M, ϕ):
from (v, ϕ) to σ(hv, ϕ) = (w, ψ).

If v = w (i.e. only the formula-part changes), we move in MC(M′, ϕ) to
(v′, ψ), as illustrated in Figure 3.10.

If v 6= w (i.e. ϕ = ♦ψ), we move in MC(M′, ϕ) to β((v, ϕ), _)) = (w′, ψ), as
illustrated in Figure 3.11.

If (v′, ϕ) ∈ V1, analogously, we choose a move according to ρ in MC(M′, ϕ)

to (w′, ψ). If v′ = w′, we move in the other game to (v, ψ). If v 6= w, (i.e.
ϕ = �ψ) we move in MC(M, ϕ) to β((_, (v′, ϕ′)) = (w′, ψ) (Figure 3.12).

Note that for the plays

πσ,ρ′ = (v0, ϕ0), (v1, ϕ1), . . . and πσ′,ρ = (v′0, ϕ′0), (v
′
1, ϕ′1), . . .

we have that vi ∼r v′i and ϕi = ϕ′i for all i. This also implies, that either both
plays are finite and have the same length or both plays are infinite. Let us see
who wins in both cases.

First Case: Both plays are finite. For a play in a model-checking game to be
finite it has to end in a position (v, ϕ) with ϕ = P for a proposition P. Let us
denote the end positions with (v, P) and (v′, P′). Since we know that P = P′

and v ∼r v′, this means that by definition pd(v, v′) ≤ r. We can conclude that
the payoffs in both plays, which are equal to P(v) and P(v′), differ by at most
r, |P(v)− P(v′)| ≤ r. However, we also know that the play in MC[M, ϕ] was
played according to a strategy for Verifier that guarantees a payoff p ≥ k− ε.
The play in MC[M′, ϕ] was played according to a strategy that guarantees a
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payoff p′ ≤ k′ + ε for Falsifier. It follows that

|p′ − p| ≥ |k + ε− (k− ε)| > |r + 2ε| > r

which is a contradiction.
Second Case: Both plays are infinite. For a model-checking game to allow in-

finite plays is has to contain a fixed-point position and one of the following
has to be the case. Either the underlying structure itself was infinite and the
model-checking game is therefore infinite or the model-checking game con-
tains a loop. In both cases there will a number of fixed-point positions visited
infinitely often. We established that all (sub)formulae occurring in positions
of the plays are the same and thus the same priorities occur as they are deter-
mined by the formula-part of a position only. This also means that the minimal
priority occurring infinitely often is the same for both play and thus the payoffs
are the same which is again a contradiction.

We are left to show that the same holds if k and k′ are infinite. This means
that k = −∞ and k′ = ∞, as we assumed they are different and k′ > k. Then,
we just have to choose the strategies accordingly, we now choose Verifier’s
strategy for MC(M′, ϕ) and Falsifier’s strategy for MC(M, ϕ). Let σ be the
strategy for Verifier in MC(M′, ϕ) from position (ϕ, v′) such that

inf
ρ∈Γ1

p(πσ,ρ(v′)) ≥
1
ε

.

Let ρ be the strategy for Falsifier in MC(M, ϕ) from position (ϕ, v) such that

sup
σ∈Γ0

p(πσ,ρ(v)) ≤ −
1
ε

.

Then, we can use the same technique as above and, using the bisimulation
strategy, construct counter strategies for the other players, respectively. We
have to consider two cases again, either both resulting plays are finite or both
are infinite. In the case that the plays are infinite, the situation is the same as
above. In the case that both plays are finite, we end up again in positions (P, v)
and (P, v′) that are r-bisimilar and thus it follows that the resulting payoffs
differ by at most r, |P(v′)− P(v)| ≤ r. Again, we have played one play accord-
ing to Verifier’s strategy in MC(M′, ϕ) which guarantees her a payoff p′ > 1

ε

and one according to Falsifier’s strategy in MC(M, ϕ) which guarantees him
a payoff p < −1

ε . If we choose ε > 2
r , we get a contradiction again, as then

|p′ − p| > |1
ε
− (−1

ε
)| > |2

ε
| > r.
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4 Qµ on Discounted Systems

In this chapter, we discuss an extension of the quantitative µ-calculus tailored
for discounted transition systems, i.e. quantitative transition systems where
additionally the edges are labelled.

This version of Qµ was the first one we defined in [16, 17]. It is based on a
logic introduced in [9, 10] by de Alfaro, Faella, and Stoelinga. They introduce a
quantitative extension of the modal µ-calculus which is interpreted over metric
transition systems. These are transition systems where predicates can take val-
ues from arbitrary metric spaces. They also allow discount factors in modalities
that take values from the interval (0, 1]. The logic they study lacks a negation
operator and thus the corresponding duality properties. The authors study
this logic in connection with quantitative versions of bisimulation, a topic that
we discussed in Section 2.2.

We take their basic idea of a quantitative extension of the modal µ-calculus
but modify it in the following ways. First of all, we restrict ourselves to real
numbers instead of arbitrary metric spaces. Second, we decouple the discounts
from modalities and allow them to occur as factors in the formulae. We also
do not require them to be less than 1 anymore. Furthermore, we modify the
systems and allow edges to be labelled with discounts as well. These changes
make the logic more robust and more general, and, as we show in Section 4.2,
permit us to introduce a negation operator with the desired duality properties
that are fundamental to a game-based analysis.

To tackle the model-checking problem in this setting, we introduce a dis-
counted version of quantitative parity games where now also the moves are
labelled with discounts. This makes the calculation of payoffs for finite plays
more complicated than in the non-discounted case and has some consequences.
Discounted parity games do not retain the nice properties that classical parity
games admit. Namely, they do not enjoy optimal strategies, unsurprisingly as
their non-discounted counterparts also do not have this property. However,
quantitative parity games at least admit positional ε-optimal strategies, dis-
counted parity games unfortunately lose this property. In the discounted case,
there are simple games where the players do not have positional ε-optimal

67



4.1. Syntax and Semantics of Discounted Qµ

strategies anymore. Even worse, there are games where they do not even
have bounded-memory ε-optimal strategies for a fixed ε. Nevertheless, the
correctness of the model-checking theorem follows from the correctness in the
non-discounted case, as we show later.

We briefly discuss another quantitative version of parity games, crash games
that were introduced by Gawlitza and Seidl in [20]. These games are essentially
the same as finite quantitative parity games over integers. However, Gawlitza
and Seidl do not study crash games in connection to a logic, but instead show
how to solve these games by a reduction to hierarchical systems and using
a variant of strategy improvement. We show that the algorithm they present
can also be used to solve finite discounted (and non-discounted) quantitative
parity games over integers.

In the final section of this chapter, we show that in the discounted case, we
can also establish the other direction of the classical model-checking theorem.
Namely, we define the value of a discounted parity game (with a fixed number
of priorities) by a formula of the discounted quantitative µ-calculus.

Please note that we present a multiplicative version of the logic here, in
contrast to the version with addition in Chapter 2. However, as we demonstrate
later, we can easily transform the semantics of formulae (and the payoff of
games) from the additive version to the multiplicative version and back using
a logarithm function.

4.1 Syntax and Semantics of Discounted Qµ

In this section, we introduce discounted quantitative transition systems and the
discounted quantitative µ-calculus dQµ. We present a multiplicative version of
the calculus and we use only the non-negative reals as domain for our quan-
tities. As before, R+ is the set of positive real numbers, R+

0 := R+ ∪ {0}, and
R+

∞ := R+
0 ∪ {∞}. Discounted quantitative transition systems are an extension

of quantitative transition systems; they not only allow quantitative predicates
at nodes, but also discounts (or weights) on edges.

Definition 4.1. A discounted transition system (DTS) is a tuple

Q = (V, E, δ, {Pi}i∈I),

consisting of a directed graph (V, E), a discount function δ : E → R+ that
assigns a value to each edge, and predicate functions Pi : V → R+

∞ that assign
values to nodes.
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A discounted quantitative transition system that has δ(e) = 1 for all e ∈ E is
called non-discounted (and thus equivalent to a quantitative transition system).

We now introduce a discounted version of Qµ to describe properties of dis-
counted transition systems.

Definition 4.2. Given a set X of variables X, predicate functions {Pi}i∈I , dis-
count factors d ∈ R+ and constants c ∈ R+, the formulae of discounted Qµ

(dQµ) are built in the following way:

(1) |Pi − c| is a dQµ-formula,

(2) X is a dQµ-formula,

(3) if ϕ, ψ are dQµ-formulae, then so are (ϕ ∧ ψ) and (ϕ ∨ ψ),

(4) if ϕ is a dQµ-formula, then so are �ϕ and ♦ϕ,

(5) if ϕ is a dQµ-formula, then so is d · ϕ,

(6) if ϕ is a formula of dQµ, then µX.ϕ and νX.ϕ are formulae of dQµ.

We use |Pi − c| because we need the distance of a predicate to a constant
later in Section 4.5, and we do not introduce negation here (cf. Section 4.2).

Again, for a discounted transition system Q, we have a lattice (F ,≤) of
functions F := { f : V → R+

∞} with f = ∞ as top element and f = 0 as bottom
element, cf. Section 2.1.

Definition 4.3. Given a DTS Q = (V, E, δ, {Pi}i∈I) and an interpretation I :
X → F , a dQµ-formula yields a valuation function JϕKQI : V → R+

∞ defined as
follows, for every v ∈ V.

(1) J|Pi − c|KQI (v) = |Pi(v)− c|,

(2) JXKQI (v) = I(X)(v),

(3) Jϕ1 ∧ ϕ2KQI (v) = min{Jϕ1KQI (v), Jϕ2KQI (v)},
Jϕ1 ∨ ϕ2KQI (v) = max{Jϕ1KQI (v), Jϕ2KQ(v)},

(4) J♦ϕKQI (v) = supv′∈vE δ(v, v′) · JϕKQI (v
′),

J�ϕKQI (v) = infv′∈vE
1

δ(v,v′)JϕKQI (v
′),

(5) Jd · ϕKQI (v) = d · JϕKQI (v),
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(6) JµX.ϕKQI (v) = inf{ f ∈ F : f = JϕKQ
I[X← f ]}(v),

JνX.ϕKQI (v) = sup{ f ∈ F : f = JϕKQ
I[X← f ]}(v).

We extend the muliplication from R+
0 to R+

∞ in the following way, let a, b ∈
R+

∞ and we assume without loss of generality that a ≥ b, then we define

a ∗ b =


a ∗ b if a ∈ R+

0 and b ∈ R+
0

∞ if a = ∞ and b ≥ 0
0 if a = ∞ and b = 0

As before, all operators are monotone and thus we use the Knaster-Tarski the-
orem to establish that the fixed points exist and can be computed inductively
as described in Theorem 2.6 (for the least fixed point, we now start with the
function that assigns 0 to every node instead of −∞).

The fragment of dQµ consisting of formulae without fixed-point operators
is called discounted quantitative modal logic dQML. Again, if dQµ is interpreted
over qualitative transition systems, it coincides with the classical µ-calculus.
Please note that here qualitative means that we only assign the values 0 and
∞. We do not have to worry about the discounts in this case as the value of a
formula cannot be changed by discounting.

Over non-discounted quantitative transition systems, the definition above
coincides with the one in [10]. So far, we have not discussed negation in this
setting. The next task is thus to find a meaningful way to introduce a negation
operator for our logic. Please note that for the semantics on discounted systems
we take the natural definition for the ♦-operator and use a dual one for the
�-operator, thus we have a factor 1

δ instead of δ. We show that if we want
duality of operators and use multiplication as discount operation, this is the
only definition for which there is a well-behaved negation operator.

First, we illustrate by an example how the evaluation differs from the non-
discounted Qµ we defined in Chapter 2.

Example 4.4. In Figure 4.1, we see two simple discounted transition systems
– actually only Q′ really makes use of the discounting feature, Q is non-
discounted. To illustrate what effect discounting has on the evaluation of for-
mulae, consider the formulae ϕ = µX.(P∨ 2 ·♦X) on Q and ψ = µX.(P∨♦X)

on Q′. Again only ϕ makes use of discounting, whereas ψ does not. If we
evaluate ϕ on Q and ψ on Q′, we get the same results. In both evaluations we
have to take the discount factor 2 into account, although it comes from different
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Q

a

1

P=0

b

P=1

1

Q′

a

2

P=0

b

P=1

1

Figure 4.1: Two simple discounted transition systems

sources, once from the systems and once from the formula. The value of both
formulae is ∞, JµX.(P ∨ 2 ·♦X)KQ(a) = JµX.(P ∨♦X)KQ

′
(a) = ∞, because the

discounts accumulate in each step of the fixed point evaluation.

4.2 Negation Operators

So far, the quantitative logics dQµ and dQML lack a negation operator and the
associated dualities between ∧ and ∨, ♦ and �, and between least and greatest
fixed points.

Let us clarify what we expect from such an operator. Syntactically, we want
to add to the formula building rules of dQµ a new rule saying that, for every
formula ϕ ∈ dQµ, also ¬ϕ is a formula of dQµ. For fixed point formulae µX.ϕ
and νX.ϕ we then have to require that X only occur positively (i.e. under an
even number of negations) in ϕ, to guarantee monotonicity and, accordingly,
the existence of least and greatest fixed points. Semantically, the meaning
of negation has to be defined by an operator f¬ : R+

∞ → R+
∞ satisfying the

properties outlined in the following definition.

Definition 4.5. A negation operator f¬ for dQµ is a function R+
∞ → R+

∞, such
that, when we define J¬ϕK = f¬(JϕK), the following equivalences hold for
every ϕ ∈ dQµ:

(1) ¬¬ϕ ≡ ϕ

(2) ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ and ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

(3) ¬�ϕ ≡ ♦¬ϕ and ¬♦ϕ ≡ �¬ϕ

(4) ¬d · ϕ ≡ β(d) · ¬ϕ for some β : R+ → R+ independent of ϕ

(5) ¬µX.ϕ ≡ νX.¬ϕ[X/¬X] and ¬νX.ϕ ≡ µX.¬ϕ[X/¬X]
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4.2. Negation Operators

A straightforward calculation as carried out below shows that the function

f a
x

: R+
∞ → R+

∞ : x 7→


a/x for x 6= 0, x 6= ∞,
∞ for x = 0,
0 for x = ∞,

is a negation operator for dQµ.

Proposition 4.6. f a
x

is a negation operator in dQµ for every a ∈ R+\{0}. For a
DTS Q = (V, E, δ, {Pi}i∈I) and every v ∈ V, we have the following properties.

Proof.

(1) f a
x
( f a

x
(r)) = r for every r ∈ R+

∞

(2) J¬(ϕ ∧ ψ)KQ(v) = f a
x
(min{Jϕ1KQ(v), Jϕ2KQ(v)})

= max{ f a
x
(Jϕ1KQ(v)), f a

x
(Jϕ2KQ(v))} = J¬ϕ ∨ ¬ψKQ(v).

(3) J¬(ϕ ∨ ψ)KQ(v) = f a
x
(max{Jϕ1KQ(v), Jϕ2KQ(v)})

= min{ f a
x
(Jϕ1KQ(v)), f a

x
(Jϕ2KQ(v))} = J¬ϕ ∧ ¬ψKQ(v).

(4) J¬�ϕKQ(v) = f a
x
(infv′∈vE

1
δ(v,v′) · JϕKQ(v′))

= supv′∈vE δ(v, v′) · f a
x
(JϕKQ(v′)) = J♦¬ϕKQ(v).

(5) J¬♦ϕKQ(v) = f a
x
(supv′∈vE δ(v, v′) · JϕKQ(v′))

= infv′∈vE
1

δ(v,v′) · f a
x
(JϕKQ(v′)) = J�¬ϕKQ(v).

(6) J¬d · ϕKQ = f a
x
(d · JϕKQ(v))

= 1
d · f a

x
(JϕKQ(v)) = J1

d · ¬ϕKQ.

(7) J¬µX.ϕKQ = JνX.¬ϕ[X/¬X]KQ.
We will show this case by induction over the stages of the fixed-point eval-
uation as in Theorem 2.6. Let JµX.ϕKQ = limn gn, and JνX.¬ϕ[X/¬X]KQ =

limn hn. The base case f a
x
(g0) = h0, where g0 = 0 and h0 = ∞ as previously

defined, holds by definition of f a
x
. Assume that f a

x
(gα) = hα for stage α.
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The induction step

f a
x
(gα+1) = f a

x
(JϕKQ

I[X←gα]
)

= J¬ϕKQ
I[X←gα]

= J¬ϕKQ
I[X← f a

x
(hα)]

= J¬ϕ[X/¬X]KQ
I[X←hα]

= hα+1

follows from the induction hypothesis, the limit step follows trivially.

(8) J¬νX.ϕKQ = JµX.¬ϕ[X/¬X]KQ. The proof is analogous to (7) above.

Hence, we can add an inductive rule for negation to the definition of dQµ.
Moreover, we show that f a

x
are the only negation operators for dQµ with the

required properties. For this purpose we use the following technical lemma.

Lemma 4.7. Let g : R→ R and c ∈ R be such that:

(1) g(x + y) = g(x) + g(y) + c,

(2) g(g(x)) = x,

(3) x < y =⇒ g(y) < g(x).

Then g(x) = −x− c.

Proof. First, we establish the following equalities:

(i) g(0) = −c, because g(0 + 0) = g(0) + g(0) + c by (1).

(ii) g(−x) = −g(x)− 2c as −c = g(0) = g(x + (−x)) = g(x) + g(−x) + c.

(iii) g(c) = −2c as g(−c) = 0 by (2) and (i), and g(c) = −g(−c)− 2c by (ii).

Let us now compare x + c with −g(x) for arbitrary x.
First, if x + c > −g(x), then

g(x + c) < g(−g(x)) by (3)

g(x) + g(c) + c < − g(g(x))− 2c by (1) and (ii)

g(x)− 2c + c < − x− 2c by (iii) and (2),
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4.3. Discounted Quantitative Parity Games

so g(x) < −x− c, which contradicts the assumption that x + c > −g(x).
The case that x + c < −g(x) is treated analogously and also leads to a con-

tradiction. Hence, −g(x) = x + c and therefore also g(x) = −x − c which
concludes our proof.

Note that we prove that f a
x

are the only negation operators even for non-
discounted transition systems. Observe how each f a

x
operates on discounts,

thus the function β is β(d) = 1
d . This motivates our definition of the semantics

of dQµ, in particular it explains the 1
δ(v,v′) factor for J�ϕKQ in Definition 4.3.

Theorem 4.8. f a
x

for a ∈ R+\{0} are the only negation operators for dQµ, even for
non-discounted transition systems.

Proof. According to property (4) in Definition 4.5, we require f¬(d · x) = β(d) ·
f¬(x) for some β. If we take x = 1, we get β(d) = f¬(d)

f¬(1)
. Let a = 1

f¬(1)
, so

f¬(d · x) = f¬(d) · f¬(x) · a. Now let g(x) = ln f¬(ex). From our considerations
above, we get

g(x + y) = ln f¬(e(x+y)) = ln f¬(ex · ey) = g(x) + g(y) + ln(a).

By property (1) we require that f¬( f¬(x)) = x. By definition of g we have
f¬(x) = eg(ln(x)) which implies that g(g(ln(x))) = ln(x). As ln is a function
onto R+, we have g(g(x)) = x, and as both ln and exp are monotone, g satisfies
conditions (1)− (3) of Lemma 4.7 and thus g(x) = −x − a. Thus, f¬(x) = a

x
and β(d) = 1

d .

The canonical choice for negation in dQµ is f 1
x
. The dualities between ∧ and

∨, ♦ and �, and between least and greatest fixed points imply that dQµ has
a negation normal form: every formula can be translated into one in which
negation is applied only to atoms.

4.3 Discounted Quantitative Parity Games

Discounted quantitative parity games are an extension of quantitative parity
games, in so far as they allow discounts on edges. This makes the calculation of
payoffs for finite plays slightly more complicated and has some consequences
for the properties these games enjoy, e.g. they do in general not admit memory-
bounded ε-optimal strategies for a given ε.
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We show that discounted quantitative parity games can be used for model
checking the discounted µ-calculus. Discounted parity games can also be seen
as a more compact representation of infinite quantitative parity games which
we discuss in detail later and which enables us to use our previous results to
prove the correctness of the model-checking theorem also in the discounted
case.

Definition 4.9. A discounted quantitative parity game (DPG) is a tuple

G = (V, V0, V1, E, δ, λ, Ω),

where V is the disjoint union of V0 and V1, i.e. positions belong to either
Player 0 or 1. The transition relation E ⊆ V × V describes possible moves
in the game and δ : V×V → R+ maps every move to a positive real value rep-
resenting the discount factor. The payoff function λ : {v ∈ V : vE = ∅} → R+

∞
assigns values to all terminal positions and the priority function Ω : V →
{0, . . . , n} assigns a priority to every position.

The game is played in the same way as a quantitative parity game. Again,
we have two players, Player 0 wants to maximise the outcome and Player 1
wants to minimise it. The main difference to quantitative parity games is that
we have to take the discounts into account when calculating the outcome of a
finite play.

Formally, the outcome p(π) of a finite play π = v0 . . . vk is computed by
multiplying all discount factors seen throughout the play with the value of the
final node,

p(v0v1 . . . vk) = δ(v0, v1) · δ(v1, v2) · . . . · δ(vk−1, vk) · λ(vk).

The outcome of an infinite play again depends only on the lowest priority
seen infinitely often. We assign the value 0 to every infinite play where the
lowest priority seen infinitely often is odd, and ∞ to those where it is even.
The definitions of strategies and determinacy are as before, see Section 3.2.

Classical parity games can also be embedded into quantitative parity games
by mapping winning to payoff ∞ and losing to payoff 0 and playing on qual-
itative arenas (the payoff function only assigns the extremal values 0 or ∞ to
terminal nodes). Note that there is no need to consider the discount function δ

in the qualitative case as the payoff cannot be changed by discounting.
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v0 v1

Ω(v0) = 0 Ω(v1) = 1
λ(v1) = 1

1/2

1

Figure 4.2: No positional or strictly optimal strategy for Player 1

v0 v1 v2

Ω(v0) = 0 Ω(v1) = 1 Ω(v2) = 1
λ(v2) = 1

21/2

1 1

Figure 4.3: No bounded-memory strategy for Player 0 (not even ε-optimal strat-
egy for fixed ε)

As mentioned before, qualitative parity games enjoy the nice property of
positional determinacy [14, 35, 43]. Non-discounted parity games also admit ε-
optimal positional strategies for a fixed ε, but already no optimal strategies, as
we have shown in Section 3.1.

Unfortunately, in the case of discounted quantitative parity games, we do
not retain this property. There are already simple quantitative games where
no player has a positional ε-optimal strategy (for fixed ε). Even worse, in the
following examples we present a game where there is no bounded-memory
strategy for Player 0, not even an ε-optimal strategy for a fixed ε

Example 4.10. Figure 4.2 shows a simple discounted quantitative parity game.
Although it is finite and finitely-branching, we can already see the same phe-
nomenon as in Example 3.3, namely that no optimal strategy exists for Player 1.
Again, by convention, we depict positions of Player 0 by circles and the ones
of Player 1 by rectangles. The value of this game is 0, as Player 1 can force the
value to be arbitrarily small by looping in the first position. He cannot loop
indefinitely though, as the priority Ω(v0) = 0 is even and thus an infinite play
would give him the worst possible outcome. However, for every ε he has an
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ε-optimal strategy. Obviously, none of these strategies is positional.
In Figure 4.3, we show an extension of the above game, by basically duplicat-

ing Player 1’s situation (he wants to loop as long as possible, but cannot loop
infinitely often) for Player 0. The value of this game is ∞, as Player 0 can en-
force arbitrarily high values by looping in v1, but there is no optimal strategy.
Even if one fixes an approximation ε of the game value, Player 0 needs infinite
memory to reach this approximation. Please recall that we defined ε-close to
∞ as bigger or equal to 1

ε . Consequently, for Player 0 to reach such an outcome
in a play, when it is her turn, she first needs to loop in v1 as long as Player 1
looped in the v1 to make up for the discounts accumulated so far and get the
accumulated discount back to 1. Afterwards, she has to do as many additional
loops in v1 as she needs to get her desired outcome, before she can move to
the terminal position v2.

Crash Games

Crash games, introduced by Gawlitza and Seidl in [20], are an equivalent defi-
nition of discounted quantitative parity games where the discounts and payoffs
are restricted to the integers instead of the reals. Let Z∞ := Z∪ {−∞, ∞} and
Z+

∞ := Z+
0 ∪ {∞}. We give the definition of crash games rephrased in our

terminology.

Definition 4.11 ([20]). A crash game is a tuple

G = (V, V0, V1, E, δ, Ω),

where V is finite and the disjoint union of V0 and V1, i.e. positions of Player 0
and 1, and the designated sink position (0), which is the only terminal position
(and does not belong to either of the players). The discount function δ : V ×
V → Z maps every move to an integer value. The priority function Ω : V →
{0, . . . , n} assigns a priority to each position.

Please note that Gawlitza and Seidl use an additive version, meaning that
the outcome of a finite play is the sum over all discounts seen throughout a
play. Formally, the outcome p(π) of a finite play π = v0 . . . vk, (0) (which has
to end in (0)) is computed as

p(v0v1 . . . vk) = δ(v0, v1) + δ(v1, v2) + . . . + δ(vk−1, vk) + δ(vk, (0)).

The outcome of an infinite play is determined by the lowest priority occurring
infinitely often as for quantitative parity games.
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4.3. Discounted Quantitative Parity Games

Gawlitza and Seidl solve crash games by reducing them to hierarchical equa-
tion systems and then using a variant of strategy improvement, a technique
introduced in [42] to solve classical parity games.

Theorem 4.12 ([20]). Let G = (V, V0, V1, E, δ, Ω) be a crash game. The values
valG(v) can be computed by a strategy improvement algorithm in time O(d · |V|3 ·
|G| ·Π(|G|)), where |G| = |V|+ |E| and d denotes the maximal priority of a position
occurring in G.

Π(m) for m ∈N is the maximal number of updates of the strategy improve-
ment algorithm for a game with m positions of Player 0. The trivial upper
bound for this number is 2m. However, the authors claim that in practical
implementations this number remains small.

As stated before, crash games are just another representation of finite dis-
counted quantitative parity games over integers. We show how to transform a
discounted quantitative parity game over integers into a crash game. First, we
have to take into account that in crash games the payoff is calculated as the sum
of discounts, whereas in DPGs it is calculated as the product. Also, discounts
and payoffs in crash games range over the domain Z∞ := Z ∪ {−∞, ∞}, but
for DPGs we have to restrict this to Z+

∞ := Z+
0 ∪ {∞}. This allows us to replace

all the discounts on edges by their logarithm. As there is only one terminal
node and no payoff function λ in crash games, we also add a designated sink
position. Then, we add edges from all former terminal nodes to this new state.
These edges get as discount the logarithm of the value of λ.

Formally, for a discounted quantitative parity game G over Z∞,

G = (V, V0, V1, E, δ, λ, Ω) over Z+
∞,

i.e. λ : {v ∈ V | vE = ∅} → Z+ and δ : E→ Z+, let

Gc = (V ∪ (0), V0, V1, Ec, δc, Ω)

be the corresponding crash game where Ec = E ∪ {(v, (0)) | vE = ∅} and

δ(v, w) =

{
ln λ(v, w) if w = (0),
ln δ(v, w) else.

For a finite play π = v0, . . . , vk, (0) in the crash game, we have the payoff

p(π) = δc(v0, v1) + . . . + δc(vk, (0)) = ln(δ(v0, v1)) + . . . + ln(λ(vk)).
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The value of the corresponding play in G is calculated using the exponential
function.

ep(π) = eln(δ(v0,v1))+...+ln(λ(vk)) = eln((δ(v0,v1)·...·λ(vk)) = δ(v0, v1) · . . . · λ(vk),

and thus is equal to the payoff of the corresponding play in the QPG G. For
infinite plays, as we have not changed the priority function Ω, we have the
same priorities in corresponding plays. Hence, we only have to adjust the pay-
off according to the slightly different domains, ∞ stays the same (the minimal
priority occurring infinitely often in the play is even), but we have to map −∞
in the crash game to 0 in the DPG. The unique correspondence between plays
can be extended to strategies, and thus we can use the algorithm to solve crash
games also for discounted quantitative parity games over integers.

Corollary 4.13. Let G = (V, V0, V1, E, δ, λ, Ω) be a finite discounted quantitative
parity game over Z∞. The values valG(v) can be computed by a strategy improvement
algorithm in time O(d · |V|3 · |G| ·Π(|G|)) where |G| = |V|+ |E| and d denotes the
maximal priority of a position occurring in G.

Please note that also for discounted quantitative parity games over R∞, we
can easily go back and forth between the version which uses addition and the
one that uses multiplication using a logarithm function. This also translates
to the logic. For the discounted version of Qµ with addition, the negation
operator is thus f¬(x) = −x.

4.4 Model-Checking Games for Discounted Qµ

As before, we want to show that the value of a formula at a node can be de-
scribed by the value of the corresponding position in a model-checking game.
The model-checking games for dQµ are constructed in a similar way as the
ones for Qµ before. The main difference is that we need to add rules to deal
with the discounts and the resulting games are discounted parity games.

We briefly repeat the definition of the model-checking game and then state
the model-checking theorem for dQµ and discuss how the correctness follows
from our previous result.

Definition 4.14. For a discounted quantitative transition systemQ = (S, T, δS, Pi)

and a closed dQµ-formula ϕ in negation normal form, the discounted quanti-
tative parity game

MC[Q, ϕ] = (V, V0, V1, E, δ, λ, Ω),
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which we call the model-checking game for Q and ϕ, is constructed in the fol-
lowing way, similar to Definition 3.5.

Positions. The positions of the game are pairs (ψ, s), where ψ is a subformula
of ϕ, and s ∈ S is a state of the DTS Q, and the two special positions (0) and
(∞). Positions (ψ, s) where the top operator of ψ is�,∧, or ν belong to Player 1
and all other positions belong to Player 0.

Moves. Positions of the form (|Pi − c|, s), (¬(|Pi − c|), s), (0), and (∞) are
terminal positions. From positions of the form (ψ ∧ ϑ, s), or (ψ ∨ ϑ, s), one
can move to (ψ, s) or to (ϑ, s). Positions of the form (♦ψ, s) have either a single
successor (0), in case s is a terminal state inQ, or one successor (ψ, s′) for every
s′ ∈ sT. Analogously, positions of the form (�ψ, s) have a single successor (∞),
if sT = ∅, or one successor (ψ, s′) for every s′ ∈ sT otherwise. Positions of the
form (d · ψ, s) have a unique successor (ψ, s). Fixed-point positions (µX.ψ, s),
resp. (νX.ψ, s) have a single successor (ψ, s). Whenever one encounters a
position where the fixed-point variable stands alone, i.e. (X, s′), the play goes
back to the corresponding definition, namely (ψ, s′).

Discounts. The discount of an edge is d for transitions from positions (d · ψ, s),
it is δS(s, s′) for transitions from (♦ψ, s) to (ψ, s′), it is 1/δS(s, s′) for transitions
from (�ψ, s) to (ψ, s′), and 1 for all outgoing transitions from other positions.

Payoffs. The payoff function λ assigns |JPiK(s)− c| or−|JPiK(s)− c| to positions
(|Pi − c|, s) or (¬(|Pi − c|), s), ∞ to position (∞), and 0 to position (0).

Priorities. The priority function Ω is defined as in the classical case using the
alternation level of the fixed-point variables, see Definition 3.5.

Please note that the main difference to the construction in the non-discounted
setting is that we replace the special position (−∞) by (0) and we are adding
the rule for the case that ϕ = d · ψ. Payoffs are computed exactly as for dis-
counted quantitative parity games.

Also note that infinite plays will have the outcomes 0 (smallest priority oc-
curring infinitely often is odd) or ∞. As before, we have two players: Verifier
wants to maximise the outcome and Falsifier wants to minimise it.

Example 4.15. In Figure 4.4 we depict a model-checking game for ϕ = µX.(P ∨
2 ·♦X) on the DTS Q from Example 4.4. The nodes are labelled with the corre-
sponding subformulae of ϕ, and a state of Q. As there is only one fixed-point
variable and no alternation, we only need one priority. Since it is referring to a
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Q

a

1

P=0

b

P=1

1

µX.(P∨2·♦X), a

P∨2·♦X, aP, a

λ=0

2·♦X, a

♦X, aX, b X, a

P∨2·♦X, b

P, b

λ=1

2·♦X, b ♦X, b 0

λ=0

µX.(P∨2·♦X), b

1

1

1

2

1 1

1
1

1
1

2 1

1

Figure 4.4: DTS Q and model-checking game for µX.(P ∨ 2 ·♦X) and Q

least fixed point, the (adjusted) priority will be 1 and assigned not only to the
fixed-point position but also to all other nodes.

As the only priority is odd, Player 0 has to avoid infinite plays. This is a
discounted version of the game in Example 3.8. In the non-discounted game
there was no incentive for Player 0 to stay in the game, her best strategy was
to move to the terminal node that gives her the payoff 1 immediately. Now the
situation has changed. In the discounted game, every loop she makes through
the cycle of positions (P ∨ 2 · ♦X, a), (2 · ♦X, a), (♦X, a), (X, a) will double her
payoff. So she can reach arbitrarily high outcomes, which means the value of
the game starting from (µX.(P ∨ 2 ·♦X), a) is ∞. However, she has no optimal
strategy meaning she cannot get this outcome in an actual play.

Now we are ready to state the discounted version of the model-checking
theorem.
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Theorem 4.16. For a formula ϕ in dQµ, a discounted quantitative transition system
Q, and v ∈ Q, the game MC[Q, ϕ] is determined and

valMC[Q, ϕ](ϕ, v) = JϕKQ(v).

To prove this theorem, we need to first show that discounted quantitative
parity games are determined.

Proposition 4.17. For a discounted quantitative parity game G = (V, E, λ, Ω), for
all v ∈ V,

sup
σ∈Γ0

inf
ρ∈Γ1

p(πσ,ρ(v)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(πσ,ρ(v)) = valG(v).

Proof. We use the fact that we proved the theorem for non-discounted games of
any cardinality. We observe that for any discounted quantitative parity game
one can construct an infinite quantitative parity game with the same value. To
encode the discounts seen so far in a play in a non-discounted game, we have
to enrich the game structure. In the new game, positions are pairs of nodes
and a number which represents the current accumulated discounts. This way,
when we reach a terminal position, the accumulated discounts up to this point
can be determined from the position itself.

Formally, for a DPG

G = (V, V0, V1, E, δ, λ, Ω), let

Gδ = (V ×R∞, V0 ×R∞, V1 ×R∞, Eδ, λδ, Ωδ) where

– Eδ = {((v, d), (v′, d′)) | (v, v′) ∈ E and d′ = d · δ(v, v′)}

– λδ : {v ∈ V | vE = ∅} ×R∞ → R∞ where λδ(v, d) = d · λ(v)

– Ωδ(v, d) = Ω(v).

Gδ is an infinite quantitative parity game and as such determined as proved in
Theorem 3.26.

For a play π = v0, . . . , vi, . . . in G, we have a unique corresponding play

in Gδ, πδ = (v0, 0), . . . , (vi, di), . . . where di =
i−1
∏
j=0

δ(vj, vj+1) for i > 0. The

payoffs coincide for corresponding plays: for finite plays π = v0, . . . , vk and
πδ = (v0, d0), . . . , (vk, dk), we have

p(π) = (
k−1

∏
j=0

δ(vj, vj+1)) · λ(vk) = dk · λ(vk) = λδ(vk, dk) = p(πδ)

82



Chapter 4. Qµ on Discounted Systems

For infinite plays, we assign the same priorities to each play and thus the
values coincide as well. The unique correspondence between plays can be
extended to strategies and thus, the determinacy of discounted quantitative
parity games follows from the determinacy of quantitative parity games.

Please note, that in [17], we give a direct proof of determinacy for arbitrary
discounted quantitative parity games and the correctness of model-checking.

After establishing determinacy for discounted quantitative parity games we
prove Theorem 4.16, i.e. the correctness of the model-checking game. The
proof is almost identical to the non-discounted case, we just have to cover the
additional complications brought on by discounting.

Lemma 4.18. MC[Q, ϕ] is a model-checking game for ϕ ∈ dQML.

Proof. We prove this by an induction on the structure of the dQML formula.
The cases ϕ = |Pi| − c, ϕ = ¬ϕ, ϕ = ψ ∧ ϑ and ϕ = ψ ∨ ϑ are analogous to the
cases in the proof of Lemma 4.18 for QML.

Thus, we only prove the cases that differ from the QML evaluation, namely
the evaluation of modal operators and the new case ϕ = d · ϕ′.

In case that ϕ = �ϕ′, we have JϕK(v) = infw∈vE
1

δ(v,w)
JϕK(w). Hence, in

the model-checking game, the corresponding position belongs to Player 1 and
the value f (v) is computed as infw∈vE

1
δ(v,w)

f (w), where the next positions are
the subformula ϕ′ evaluated at each of the successor nodes w in the original
transition system. By induction hypothesis, these values coincide with Jϕ′K(w).
The case ϕ = ♦ϕ′ is analogous, but now the position belongs to Player 0.

If ϕ = d · ϕ′, we have JϕK(v) = d · Jϕ′K(v). In the model-checking game this
position has only one successor w = vE, which corresponds to the evaluation
of subformula ϕ′ at state v, and the value is computed as f (v) = d · f (w).
Again by induction hypothesis, the value f (w) coincides with Jϕ′K(v).

The proof for the fixed point case remains exactly the same as in the non-
discounted case, so we can use Lemma 3.28 and the consequences. Altogether,
this concludes the proof of Theorem 4.16.

4.5 Definability of Game Values

Having model-checking games for the quantitative µ-calculus is just one di-
rection in the relation between games and logic. The other direction concerns
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the definability of winning regions in a game by formulae in the correspond-
ing logic. For the classical µ-calculus such formulae have been constructed
by Walukiewicz and it has been shown that for any parity game with a fixed
number of priorities they define the winning region for Player 0, see e.g. [24].

We extend this theorem to the discounted case in the following way. We
represent discounted quantitative parity games (V, V0, V1, E, δG, λG, ΩG) with
priorities Ω(V) ∈ {0, . . . d− 1} by a discounted quantitative transition system
QG = (V, E, δ, V0, V1, Λ, Ω), where Vi(v) = ∞ if v ∈ Vi and Vi(v) = 0 otherwise,
Ω(v) = ΩG(v) if vE 6= ∅ and Ω(v) = d otherwise,

δ(v, w) =

{
δG(v, w) when v ∈ V0,

1
δG(v,w)

when v ∈ V1,

and payoff predicate Λ(v) = λG(v) when vE = ∅ and Λ(v) = 0 otherwise. We
then build the formula Wind as

Wind = νX0.µX1.νX2. . . . λXd−1

d−1∨
j=0

((V0 ∧ Pj ∧♦Xj)∨ (V1 ∧ Pj ∧�Xj))∨Λ,

where λ = ν if d is odd, and λ = µ otherwise, and Pi := ¬(µX.(2 ·X∨ |Ω− i|)).

Theorem 4.19. For every d ∈N, the value of any discounted quantitative parity game
G with priorities in {0, . . . d− 1} coincides with the value of Wind on the associated
transition system QG .

Proof. Please note that Pi(v) = ∞ if Ω(v) = i and Pi(v) = 0 otherwise. The
formula Wind is therefore analogous to the one in the qualitative case and the
proof is similar as well. We show that the model-checking game for Wind,
MC[QG , Wind], coincides with G modulo stupid moves (moves that would lead
to an immediate loss for the current player).

We consider a position v ∈ Vi in original game with priority Ω(v) = k and
distinguish two cases.

If v is a terminal position, then the corresponding DTS also has a terminal
position v, where all predicates P0, . . . Pd−1 give a value of 0. In the game
MC[QG , Wind] the play goes to a position (Λ, v) which gives a value of λG(v)
as in the original game.

If v is non-terminal of priority k, then the corresponding DTS QG has a position
v, where Vi(v) = ∞ and Pk(v) = ∞, and the discounts on the outgoing edges
are δG(v, w) if i = 0, or 1

δG(v,w)
if i = 1. The game MC[QG , Wind] then gets to
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µX0... νX1... µX2... ... µXk ...

...

λXd−1
∨

...

∨d−1
j=0 ((V0∧Pj∧♦Xj)∨(V1∧Pj∧�Xj))∨ΛV0∧P0∧♦X0

V1∧P0∧�X0

... V0∧Pk∧♦Xk V1∧Pk∧�Xk ... V0∧Pd−1∧♦Xd−1

V1∧Pd−1∧�Xd−1

Λ

V0 ♦Xk Pk V1 �Xk

Xk

...

...

...

Figure 4.5: Configuration in the model-checking game for Wind

a position (♦Xk, v) if i = 0 or (�Xk, v) if i = 1, except for the case that one of
the players makes an immediately losing move. If the players avoid that, then
Player i makes a move that exactly corresponds to a move in the original game
from v to some successor w, visits a position (Xk, w) with priority k and the
situation repeats for w as depicted in Figure 4.5.

Let us convince you that indeed the game will proceed to position (Λ, v),
(♦Xk, v) or (�Xk, v), or else some player has made a stupid move. We only
consider the case for v ∈ V0 in the original game. In the positions correspond-
ing to the series of fixed points preceding the subformula

ϑ =
d−1∨
j=0

((V0 ∧ Pj ∧♦Xj) ∨ (V1 ∧ Pj ∧�Xj)) ∨Λ,

there is no choice for either of the players, so the play proceeds to the position
(ϑ, v) and it is Player 0’s turn to choose a successor. If v is terminal position, the
only reasonable choice is to go to the position (Λ, v), as for all other positions
Player 1 can make a move to a terminal position (Pi, v) for i = 0, . . . d − 1,
which will give a payoff of 0. If v is non-terminal and has priority k in the
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original game, i.e. Pj(v) = 0 for j 6= k, and Λ(v) = 0, then any other move than
to a subformula containing the right priority predicate Pk would be pointless.
Of course, Player 0 will go to the position corresponding to the disjunct (V0 ∧
Pk ∧ ♦Xk) as we assumed that the position belonged to her in the original
game, and therefore V0(v) = ∞. In this position, Player 1 may choose the next
position, but again any other move than the one to (♦Xk, v) would be stupid,
since all the other predicates will give a value of ∞ by choice of Player 0 in the
last move. From position (♦Xk, v), Player 0 can choose a successor w, i.e. lead
the game to position (Xk, w) with priority k. The discount δ((♦Xk, v), (Xk, w))

is the same as in the original game by construction of QG and MC[QG , Wind].
The other case, v ∈ V1, is analogous, the only difference is that now the play

will go through a position (�Xk, v), where Player 1 can choose a successor
(Xk, w).

Hence, the two games G and MC[QG , Wind] coincide, i.e. all the relevant
choices to be made by the players and priorities seen throughout the plays are
essentially the same. Therefore, for all v ∈ V,

valG(v) = valMC[QG , Wind](Wind, v) = JWindK
QG (v).

Please note that we used discounting in Wind as a trick to ensure value ∞ if
we are at the right priority (encoded by the quantitative predicate) and 0 for all
other values of predicates. We cannot do this in the non-discounted case and
thus have not established this direction of the model-checking theorem in the
non-discounted setting.
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5 Qµ on Linear Hybrid Systems

So far, we have investigated the quantitative µ-calculus on simple quantita-
tive transition systems and the slightly more complex discounted quantitative
transition systems. In both cases, we have defined appropriate model-checking
games and have shown that they correctly describe the value of a quantitative
formula. In this chapter, we want to move further towards possible applica-
tions and focus on a more complex class of systems. Because of their impor-
tance in practice, an obvious candidate is the class of hybrid systems. How-
ever, these systems are inherently difficult to handle and almost all interesting
questions regarding hybrid systems are undecidable [27]. Thus, we look at
a sub class which is still practically relevant, namely the class of initialised
linear hybrid systems. We show that an appropriate version of the quantita-
tive µ-calculus, hybrid Qµ, can be model-checked with arbitrary precision on
initialised linear hybrid systems.

A hybrid system is, as the name suggests, a hybrid of a discrete transition
system and continuous variables which evolve according to a set of differen-
tial equations. It is a concept widely used in engineering to model discrete-
continuous systems. As the variables in each state have quantitative values,
it seems very natural to query hybrid systems in a quantitative way instead
of only asking yes-or-no questions. For example, one may not only want to
check that a variable of a system does not exceed a given threshold, but also to
compute the maximum value of the variable over all runs, checking whether
any such threshold exists.

Because of their importance in practical applications, model-checking tech-
niques have been applied to hybrid systems to verify safety, liveness and other
classical temporal properties [1, 26, 27]. However, quantitative testing of hy-
brid systems has only been done by simulation, and hence lacks the strong
guarantees which can be given by model checking. As we have noted before,
there has been a strong interest recently in extending classical model-checking
techniques and logics to the quantitative setting. Although there has been a
rise in introducing quantitative versions of temporal logics, those were mostly
evaluated on labelled, timed, or probabilistic transition systems. None of those
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systems allowed for dynamically changing continuous variables.
We want to apply our logic to a class of hybrid systems but, as we have men-

tioned before, for general hybrid systems, even simple qualitative verification
problems such as reachability are undecidable. This remains true even after
the natural approximation by a linear system. Hence, one more assumption is
made, namely that if the speed of evolution of a variable changes between dis-
crete locations then also the variable is reset on that transition. Systems with
this property, called initialised linear systems, are – besides o-minimal systems
[32, 4] and their recent extensions [41] – one of the largest classes of hybrid
systems with a decidable temporal logic [27].

We show that the quantitative µ-calculus can be model checked with ar-
bitrary precision on initialised systems. Thus, we present the first model-
checking algorithm for a quantitative temporal logic on a class of hybrid sys-
tems. Since the quantitative µ-calculus contains LTL, this also properly gener-
alises a previous result on model checking LTL on such systems [26, 27], which
is one of the strongest model-checking results for hybrid systems.

As in the previous chapters, we follow the classical approach to model-
checking the µ-calculus via parity games. To this end, we define another quan-
titative notion of parity games that we call interval parity games. Again, we
use our previous results on quantitative parity games to show that interval
parity games can be used to model check the hybrid quantitative µ-calculus on
linear hybrid systems.

We proceed by simplifying the resulting games to flat games, i.e. simple
games where all the linear coefficients are 1. These games look very similar to
timed games with more complex payoff rules but unfortunately behave differ-
ently. Thus, the methods used for solving timed games turned out not to be
sufficient for our games and did not easily generalise to the quantitative case.
We overcome this problem by working directly with a quantitative equivalence
relation, roughly similar to the region graph for timed automata and introduc-
ing a new class of (almost) discrete strategies. This way, we are able to reduce
the model-checking games to the much simpler class of counter-reset games.
Then, we can exploit a recent result on solving counter parity games, which
are a generalisation of counter-reset games [2].

The organisation of this chapter follows the reductions needed to model-
check a formula ϕ over a hybrid system K. In Section 5.1, we introduce the
necessary notation, the systems, and the logic. Then, we present an appropri-
ate game model in Section 5.2 and show how to construct a model-checking
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game for the system and the formula. In Section 5.4, we transform interval
parity games constructed for arbitrary initialised linear hybrid systems to flat
games, where the linear coefficients are always 1. In Section 5.5, we show how
the strategies can be discretised and still lead to a good approximation of the
original game. Finally, in Section 5.6, we reduce the problem to counter parity
games and exploit a recent result to solve them.

5.1 Syntax and Semantics of Hybrid Qµ

As before, we denote the real and rational numbers, and integers extended
with both ∞ and−∞ by R∞, Q∞, and Z∞ respectively. We write I(Z∞), I(Q∞),
and I(R∞) for all open or closed intervals over R∞ with endpoints in Z∞, Q∞,
and R∞.

Definition 5.1. A linear hybrid system over M variables (LHS),

K = (V, E, {Pi}i∈J , λ, κ),

is based on a directed graph (V, E), consisting of a set of locations V and
transitions E ⊆ V × V. The labelling function λ : E → Pfin(LM) assigns to
each transition a finite set of labels. The set LM of transition labels consists
of triples l = (I, C, R). The vector C = (C1, . . . , CM) (with Ci ∈ I(R∞) for
i ∈ {1, . . . , M}) represents the constraints each of the variables needs to satisfy
for the transition to be allowed. The interval I ∈ I(R≥0

∞ ) represents the pos-
sible period of time that elapses before the transition is taken. The reset set
R contains the indices of the variables that are reset during the transition, i.e.
i ∈ R means that yi is set to zero. For each i of the finite index set J, the func-
tion Pi : V → R∞ assigns to each location the value of the static quantitative
predicate Pi. The function κ : V → RM assigns to each location and variable
yi the coefficient ai such that the variable evolves in this location according to
the equation dyi

dt = ai.

Please note that although we do not explicitly have any invariants (or con-
straints) in locations, we can simulate them by choosing either the time in-
tervals or variable constraints on the outgoing transitions accordingly. If the
values of predicates and labels range over Q∞ or Z∞ instead of R∞, we talk
about linear hybrid systems over Q and Z, respectively.

The state of a linear hybrid system K is a location combined with a valuation
of all M variables, S = V ×RM

∞ . For a state s = (v, y1, . . . , yM) we say that
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v0

P = ∞

dy0
dt = 1, dy1

dt = 1

v1

P = −∞

dy0
dt = 1, dy1

dt = 0
[0,1]

R={y0}

[0,∞)

R={y0}, y0∈[30,40]

Figure 5.1: Leaking gas burner LHS L = (V, E, P, λ, κ) (not initialised)

a transition (v, v′) ∈ E is allowed by a label (I, C, R) ∈ λ((v, v′)) if y ∈ C (i.e.
if yi ∈ Ci for all i = 1, . . . , M). We say that a state s′ = (v′, y′1, . . . , y′M) is a
successor of s, denoted s′ ∈ succ(s), if there is a transition (v, v′) ∈ E, allowed
by label (I, C, R), such that y′i = 0 for all i ∈ R and there is a t ∈ I such that
y′i = yi + (ai · t) where ai = κi(v) for all i 6∈ R ∈ λ((v, v′)). A run of a linear
hybrid system starting from location v0 is a sequence of states s0, s1, . . . such
that s0 = (v0, 0, . . . , 0) and si+1 ∈ succ(si) for all i. Given two states s and
s′ ∈ succ(s) and a reset set R 6= {1, . . . , M} we denote by s′−R s the increase of

the non-reset variables that occurred during the transition, i.e. y′i−yi
ai

for some
i 6∈ R where s = (v, y) and s′ = (v′, y′).

Definition 5.2. A linear hybrid system K is initialised if for each (v, w) ∈ E and
each variable yi it holds that if κi(v) 6= κi(w) then i ∈ R for R ∈ λ((v, w)).

Intuitively, an initialised system cannot store the value of a variable whose
evolution rate changes from one location to another.

Example 5.3. To clarify the notions we use, we consider a variant of a standard
example for a linear hybrid system, the leaking gas burner.

Our version is depicted in Figure 5.1. This system represents a gas valve that
can leak gas to a burner, so it has two states: v0, where the valve is open (and
leaking gas) and v1 where it is closed. This is also indicated by a qualitative
predicate P that has the value ∞ if the gas is leaking (in location v0) and −∞
otherwise.

The system has two variables. The first variable, y0, is a clock measuring
the time spent in each location, and is reset on each transition, i.e. after each
discrete system change. The variable y1 is a stop watch and measures the total
time spent in the leaking location. Thus, this system is not initialised. The time
intervals on the transitions control the behaviour of the system. On the transi-
tion (v0, v1) there are no restrictions on the variables, but we are only allowed
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v0

P = ∞

dy0
dt = 1, dy1

dt = 1

v1

P = −∞

dy0
dt = 1, dy1

dt = 1
[0,1]

R={y0}

[0,∞)

R={y0}, y0∈[30,40]

Figure 5.2: Leaking gas burner LHS L = (V, E, P, λ, κ) (initialised)

to choose a time unit from [0, 1], i.e. we can stay a maximum of one time unit
in location v0. On the transition (v1, v0) there is a restriction on the value of y0,
it has to have a value between 30 and 40 for this transition to be allowed, while
there is no restriction on the choice for the time unit (of course, this could also
be modelled the other way around). Intuitively, the time intervals indicate that
the gas valve will leak gas for a time interval between 0 and 1 seconds and
then be stopped and that it can only leak again after at least 30 time units.

In Figure 5.2, we show an initialised version of the leaking gas burner. The
only difference is that y1 is not a stop watch anymore but a normal clock. Since
now both variables are just clocks (which means that their evolution rates are
one everywhere), the system is trivially initialised.

Now, we present a version of the quantitative µ-calculus suited to be eval-
uated on linear hybrid systems. It only differs slightly from our definition in
Chapter 2, but for convenience we repeat the whole definition.

Definition 5.4. Given a set X of fixed-point variables X, system variables
{y1, . . . , yM} and predicates {Pi}i∈J , the formulae of the hybrid quantitative µ-
calculus (hQµ) are built in the following way:

(1) Pi is a hQµ-formula,

(2) X is a hQµ-formula,

(3) yi is a hQµ-formula,

(4) if ϕ is a hQµ-formula, then so is ¬ϕ,

(5) if ϕ, ψ are hQµ-formulae, then so are (ϕ ∧ ψ) and (ϕ ∨ ψ),

(6) if ϕ is a hQµ-formula, then so are �ϕ and ♦ϕ,
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(7) if ϕ is a formula of hQµ, then µX.ϕ and νX.ϕ are formulae of hQµ given
that X occurs only positively (i.e. under an even number of negations) in
ϕ.

Let F = { f : S → R∞} be the set of functions from the states of a LHS to
the reals.

Definition 5.5. Given a linear hybrid system K = (V, E, λ, {Pi}i∈J , κ) and an
interpretation I : X → F , a hQµ-formula yields a valuation function JϕKKI :
S→ R∞ defined in the following standard way for a state s = (vs, ys

1, . . . , ys
M).

(1) JPiKKI (s) = Pi(vs),

(2) JXKKI (s) = I(X)(s),

(3) JyiKKI (s) = ys
i ,

(4) J¬ϕKKI (s) = −JϕKKI (s),

(5) Jϕ1 ∧ ϕ2KKI (s) = min{Jϕ1KKI (s), Jϕ2KKI (s)},
Jϕ1 ∨ ϕ2KKI (s) = max{Jϕ1KKI (s), Jϕ2KKI (s)},

(6) J♦ϕKKI (s) = sups′∈succ(s)JϕKKI (s
′),

J�ϕKKI (s) = infs′∈succ(s)JϕKKI (s
′),

(7) JµX.ϕKKI (s) = inf{ f ∈ F : f = JϕKK
I[X← f ]}(s),

JνX.ϕKKI (s) = sup{ f ∈ F : f = JϕKK
I[X← f ]}(s).

Please note that the inclusion of variables does not fundamentally change the
semantics of quantitative µ-calculus. Qµ is evaluated on quantitative transition
systems. A hQµ formula is evaluated on the state graph of a linear hybrid
system, rather than the system itself. Intuitively, a linear hybrid system is a
compact representation of an infinite quantitative transition system (its state
graph). Thus, many properties of the quantitative µ-calculus remain true. For
example, to embed the classical µ-calculus in hQµ one must interpret true as
+∞ and false as −∞.

Example 5.6. The formula µX.(♦X ∨ y1) evaluates to the supremum of the val-
ues of y1 on all runs from some initial state: e.g. to ∞ if evaluated on the simple
initialised leaking gas burner model. To determine the longest period of time
during which the gas is leaking, we use the formula µX.(♦X ∨ (y0 ∧ P)), which
evaluates to 1 on the initial state (v0, 0) in our example.

92



Chapter 5. Qµ on Linear Hybrid Systems

The remainder of this chapter is dedicated to the proof of the following
result which states that JϕKK can be approximated with arbitrary precision on
initialised linear hybrid systems.

Theorem 5.7. Given an initialised linear hybrid system K, a quantitative µ-calculus
formula ϕ and an integer n > 0, it is decidable whether JϕKK = ∞, JϕKK = −∞, or
else a number r ∈ Q can be computed such that |JϕKK − r| < 1

n .

In other words, for every ε we can approximate JϕKK within ε. We stated the
theorem above using n because it makes the representation of ε precise and we
provide a complexity bound: Given on input the system K, the formula ϕ, and
n, we will show how to compute the number r (or output ±∞) in 8EXPTIME.

5.2 Interval Parity Games

In this section, we define a variant of quantitative parity games suited for
model checking hQµ on linear hybrid systems. As mentioned above, a linear
hybrid system can be seen as a compact representation of an infinite quantita-
tive transition system. Similarly, a parity game that is played on a linear hybrid
system can be viewed as a compact, finite description of an infinite quantitative
parity game, as defined in Chapter 3.

Definition 5.8. An interval parity game (IPG) is given by a tuple,

G = (V0, V1, E, λ, κ, ι, Ω),

and is played on a LHS (V, E, λ, κ) (without predicates). V = V0 ·∪ V1 is di-
vided into positions of either Player 0 or 1. The transition relation E ⊆ V ×V
describes possible moves in the game which are labelled by the function λ :
E → Pfin(LM). The function ι : V → M×R∞ ×R∞ assigns to each position
the index of a variable and a multiplicative and additive factor, which are used
to calculate the payoff if a play ends in this position. The priority function
Ω : V → {0, . . . , d} assigns a priority to every position.

Please note that interval parity games are played on linear hybrid systems
without any quantitative predicates, i.e. the set of predicates is empty and
therefore omitted.

A state s = (v, y) ∈ V ×RM
∞ of an interval game is a position in the game

graph together with a variable assignment for all M variables. A state s′ is a
successor of s if it is a successor in the underlying LHS, i.e. if s′ ∈ succ(s). We
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use the functions loc(s) = v and var(s) = y, vari(s) = yi to access the compo-
nents of a state. For a real number r, we denote by r · s = (v, r · var0(s), . . . r ·
varM(s)) and r + s = (v, r + var0(s), . . . r + varM(s)). We call Si the state set
{s = (v, y) : v ∈ Vi} where player i has to move and S = S0 ·∪ S1.

How to play. Every play starts at some position v0 ∈ V with all variables set
to 0, i.e. the starting state is s0 = (v0, 0, . . . , 0). For every state s = (v, y) ∈ Si,
player i chooses an allowed successor state s′ ∈ succ(s) and the play proceeds
from s′. If the play reaches a state s such that succ(s) = ∅ it ends, otherwise
the play is infinite.

Intuitively, the players choose the time period they want to spend in a loca-
tion before taking a specified transition. Note that in this game every position
could possibly be a terminal position. This is the case if it is not possible to
choose a time period from the given intervals in such a way that the respective
constraints on all variables are fulfilled.

Payoffs. The outcome p(s0, . . . , sk) of a finite play ending in sk = (v, y1, . . . , yM)

where ι(v) = (i, a, b) is p(sk) = a · yi + b. To improve readability, from now on
we will simply write ι(v) = a · yi + b in this case. The outcome of an infinite
play depends only on the lowest priority seen infinitely often in positions of
the play. We will assign the value −∞ to every infinite play, where the lowest
priority seen infinitely often is odd, and ∞ to those where it is even.

Goals. The two players have opposing objectives regarding the outcome of
the play. Player 0 wants to maximise the outcome, while Player 1 wants to
minimise it.

Strategies. A strategy for player i ∈ 0, 1 is a function σ : S∗Si → S with
σ(s0, . . . , sn) ∈ succ(sn). A play π = s0s1 . . . is consistent with a strategy σ for
player i, if sn+1 = σ(s0 . . . sn) for every n such that sn ∈ Si. For strategies σ, ρ

for the two players, we denote by π(σ, ρ, s) the unique play starting in state s
which is consistent with both σ and ρ.

The notion of determinacy is as before, see Section 3.1. We say that the
interval game is over Q or Z if both the underlying LHS and all constants in
ι(v) are of the respective kind. Please note that this does not mean that the
players have to choose their values from Q or Z, just that the endpoints of the
intervals and constants in the payoffs are in those sets.

Intuitively, in a play of an interval parity game, the players choose successors
of the current state as long as possible.
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Example 5.9. In Figure 5.3, we show a example of an interval parity game. Po-
sitions of Player 0 are depicted as circles and positions of Player 1 as boxes.
To keep things simple, there is just one clock variable, y0, all constraints are
trivially true, κ assigns 1 to every location, and the reset sets are empty, so we
label the transitions only with the time intervals that the players can choose
from. The priorities are depicted next to the nodes for non-terminal positions
and the evaluation function above the terminal position (in general, also posi-
tions with outgoing edges could be terminal, however in this example this is
not possible as there are no constraints on the variable).

A play of this system starting at node v0 could end after two moves in po-
sition v2, if Player 1 decided to move there (he also has the choice to move
down). The payoff of this play would then depend only on the choice that
Player 0 made in the first move, for example 1

3 ∈ [0, 1
2 ]. Then the payoff would

be 3 · (1
3 + 2)− 1 = 6 (as in this play, the second time interval only permits the

choice 2).
If Player 1 would move down instead of ending the play and the play would

loop infinitely often in the cycle v3, v4, v5 at the bottom, the least priority that
occurs infinitely often would determine the outcome of the play; in this case it
would be 0 at v3 and therefore the payoff would be ∞.

v0 Ω(v0) = 1

v1 Ω(v1) = 1v2ι(v2) = 3 · y0 − 1

v3Ω(v3) = 0

v4Ω(v4) = 2 v5 Ω(v5) = 1

[0, 1
2 ]

[2,2]

[1,1]

[1,1] [1,1]
[1,1]

[1,1]

Figure 5.3: Simple interval parity game

We already mentioned that an interval parity game can be seen as a repre-
sentation of a quantitative parity game, now we want to describe this formally.
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We use the notion from Definition 3.1 and define, for an IPG with M variables

G = (V0, V1, E, λ, κ, ι, Ω),

the corresponding infinite quantitative parity game

G∗ = (V0 ×RM
∞ , V1 ×RM

∞ , E∗, λ∗, Ω∗)

– with (s, s′) ∈ E∗ iff s′ is a successor of s as above,

– Ω∗(v, z) = Ω(v) and

– λ∗(v, z) = α · zi + β iff ι(v) = α · yi + β.

The notions of plays, strategies, values and determinacy for the IPG G are
defined exactly as the ones for the quantitative parity game G∗. In particular,
it follows from the determinacy of quantitative parity games that also interval
parity games are determined.

5.3 Model-Checking Games for Hybrid Qµ

For a linear hybrid system K and a Qµ-formula ϕ, we construct an interval
parity game MC[K, ϕ] which is the model-checking game for ϕ on K.

The full definition of MC[K, ϕ] closely follows the construction given in
Chapter 3.2 and is presented below.

Definition 5.10. For a linear hybrid system K = (V, E, {Pi}i∈J , λ, κ) and a
closed hQµ-formula ϕ in negation normal form, the interval game

MC[K, ϕ] = (V0, V1, E, λ, κ, ι, Ω),

which we call the model-checking game for K and ϕ, is constructed in the follow-
ing way, similarly to the standard construction of model-checking games for
the µ-calculus.

Positions. The positions of the game are pairs (ψ, v), where ψ is a subformula
of ϕ, and v ∈ V is a location in the LHS K. Positions (ψ, v) where the top
operator of ψ is �,∧, or ν belong to Player 1 and all other positions belong to
Player 0. A state in the game is denoted by s = (p, y), where p = (ψ, v) is the
position and y is the variable assignment of the location v in the underlying
linear hybrid system K.
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Moves. Positions of the form (Pi, v), (¬Pi, v), (yi, v), and (¬yi, v) are terminal
positions. From positions of the form (ψ ∧ ϑ, v), resp. (ψ ∨ ϑ, v), one can move
to (ψ, v) or to (ϑ, v). Positions of the form (♦ψ, v) have either a single successor
(−∞) in case v is a terminal location in K, or one successor (ψ, v′) for every
v′ ∈ vE. Analogously, positions of the form (�ψ, v) have a single successor
(∞) if vE = ∅, or one successor (ψ, v′) for every v′ ∈ vE otherwise. The moves
corresponding to system moves (v, v′) are labelled accordingly with λ((v, v′)),
all other moves are labelled with the empty label ([0, 0], (−∞, ∞)M, ∅) which
indicates that no time passes, there are no constraints on the variables and
no variable is reset. Fixed-point positions (µX.ψ, v), resp. (νX.ψ, v) have a
single successor (ψ, v). Whenever one encounters a position where the fixed-
point variable stands alone, i.e. (X, v′), the play goes back to the corresponding
definition, to (ψ, v′).

Payoffs. The function ι assigns JPiK(v) to all positions (Pi, v), J¬PiK(v) to posi-
tions (¬Pi, v), ±∞ to all positions (±∞) and yi to positions (yi, v), and −yi to
(¬yi, v). To discourage the players from ending the game at any other position
than a terminal one, ι assigns all other positions outcome −∞ for Player 0’s po-
sitions or ∞ for Player 1’s positions. The payoff p(π) of a play π is calculated
using ι and the priorities as stated before.

Priorities. The priority function Ω is defined as in the classical case using the
alternation level of the fixed-point variables as before.

Example 5.11. We continue our example of the leaking gas burner and present
in Figure 5.4 the model-checking game for the system depicted in Figure 5.2
and the formula µX.(♦X ∨ (y0 ∧ P)) from Example 5.6. In this interval parity
game, ellipses depict positions of Player 0 and rectangles those of Player 1. In
this game, all priorities are odd (and therefore omitted), i.e. infinite plays are
bad for Player 0. There is only one position with a constraints on variable y0

and in only two positions a choice about the time that passes can be made.
Both of these positions belong to Player 0 in this example and are labelled with
the corresponding intervals below (and in both y0 is also reset). In terminal
nodes, either the variable y0 or the predicate P is evaluated for the payoff (this
choice can be made by Player 1 in this example). The value of the game is
1, as is the value of the formula on the system starting from either node, and
an optimal strategy for Player 0 is picking 1 from [0, 1] and then leaving the
cycle where Player 1 is forced to choose between the evaluation of y0 or P at
v1. Since he is minimising, he will choose to evaluate y0.
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µX.(♦X∨(y0∧P)),v0

♦X∨((y0∧P),v0y0∧P,v0

y0

−∞ ♦X,v0

X,v1

R={y0},[0,1]

µX.(♦X∨(y0∧P)),v1

♦X∨((y0∧P),v1

♦X,v1

X,v0

y0∧P,v1

y0

∞

R={y0},y0∈[30,40],[0,∞)

Figure 5.4: Model-checking game for µX.(♦X ∨ (y0 ∧ P)) on initialised leaking
gas burner

We have shown in Section 3.2 that quantitative parity games of any size are
determined and that they are model-checking games for Qµ. These results
translate to interval parity games and we can conclude the following.

Theorem 5.12. Every interval parity game is determined and for every formula ϕ in
hQµ, linear hybrid system K, and a location v of K, it holds that

valMC[K, ϕ]((ϕ, v), 0) = JϕKK(v, 0).

Proof. Determinacy of an interval parity game G follows directly from the de-
terminacy of the infinite QPG G∗ used to define G.

Let ϕ be a Qµ-formula and K a linear hybrid system. Let S(K) = (S, ES)

be the state graph of K, where S is the set of all states, and (s, s′) ∈ ES iff
s′ ∈ succ(s) in K. Let K∗ = (S, ES, Py0 . . . PyM) be the quantitative transition
system with predicates Pyi where Pyi(v, a) = ai. Let us also rewrite the formula
ϕ into a formula without variables, ϕ∗, by replacing each occurrence of yi by
the corresponding Pyi .

Applying the model-checking Theorem 3.7, we conclude that for all v ∈ K∗
it holds valMC[K∗, ϕ∗](ϕ∗, v) = JϕK∗K

∗
(v), i.e. that MC[K∗, ϕ∗] is the model-

checking game for K∗ and ϕ∗. Finally, by definition of IPGs on the one hand
and the semantics of Qµ on the other, it follows that for all x,

valMC[K, ϕ]((ϕ, v), x) = JϕKK(v, x).
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5.4 Simplifying Interval Parity Games

Before we start simplifying interval parity games, we first note that they are
not equivalent to timed systems, although they may look similar. Below, we
give a simple example that illustrates the difference between the two. Then,
we show how to transform an initialised interval game over Q∞ into an easier
game over Z∞ in which all evolution rates are one.

At first sight, interval parity games look similar to timed games. These
games are solved by playing on the region graph and can thus be discretised.
To stress that quantitative payoffs indeed make a difference, we present in Fig-
ure 5.5 an initialised interval parity game with the interesting property that
it is not optimal to play integer values, even though the underlying system
is over Z∞. This simple game contains only one variable (a clock) and has
no constraints on this variable in any of the transitions, so only the time in-
tervals are shown. Also, as infinite plays are not possible, the priorities are
omitted, as well as the indices of non-terminal positions (they are chosen to be
unfavourable for the current player such that she has to continue playing). The
payoff rule specifies the outcome of a play π ending in v2 as p(π) = y0− 1 and
in v3 as p(π) = −y0. This game illustrates that it may not be optimal to play
integer values since choosing time 1

2 in the first move is optimal for Player 0.
This move guarantees an outcome of −1

2 which is equal to the value of the
game.

v0

v1v2

ι(v2) = y0 − 1

v3

ι(v3) = −y0

[0,1]

[0,0] [0,0]

Figure 5.5: Game with integer coefficients and non-integer value

Flattening Initialised Interval Parity Games

So far, we have considered games where the values of variables can change
at different rates during the time spent in locations. In this section, we show
that for initialised games it is sufficient to look at easier games where all rates
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are one, similar to timed games but with more complex payoff rules. We call
these games flat and show that for every initialised IPG, we can construct a flat
IPG with the same value. To do so, we have to consider the regions where the
coefficients do not change and rescale the constraints and payoffs accordingly.

For an interval I = [i1, i2], we denote by q · I and q+ I the intervals [q · i1, q · i2]
and [q + i1, q + i2] respectively, and do analogously for open intervals.

Definition 5.13. An interval parity game G = (V0, V1, E, λ, κ, ι, Ω) is flat if and
only if κi(v) = 1 for all v ∈ V and i = 1 . . . M.

Lemma 5.14. For each initialised interval parity game G, there exists a flat game G ′
with the same value.

Proof. Let G = (V0, V1, E, λ, κ, ι, Ω) be an initialised interval parity game. We
construct a corresponding flat game G ′ = (V0, V1, E, λ′, κ′, ι′, Ω) in the following
way: For a position v ∈ V = V0 ·∪V1 and each variable yi, such that κi(v) = ai,
ι(v) = a · yi + b and for an outgoing edge (v, w) with Ci = [c0, c1] we have in
the corresponding flat game:

– κ′i(v) = 1

– C′i ∈ λ′(v, w) = [ c0
ai

, c1
ai
] = 1

ai
Ci

– ι′(v) = ai · a · yi + b

Note that we only change the functions κ, λ and ι. We show that for every play
π from a starting state s consistent with σ and ρ, we can construct strategies
σ′, ρ′, such that π′(σ′, ρ′, s′) visits the same locations as π and p(π) = p(π′).
Before we proceed with the proof, please note that it is essential that G is an
initialised game. Intuitively, the value of yi in G ′ is the value of yi in G divided
by the coefficient ai of the current position. When the position changes, it
is thus crucial that ai does not change, except if yi is reset – exactly what is
required from an initialised game.

The proof proceeds by induction on the length of the plays. First, if s0 =

(v0, 0) is a state belonging to Player 0 and σ(s0) = s1 = (v1, x) and s′0 = (v0, 0),
then in G ′ we define σ′(s′0) = s′1, where s′1 = (v1, y′), such that y′i = yi

ai
for

any yi 6∈ R ∈ λ(v0, v1). Since (s0, s1) is allowed in G, this means that for all
yi 6∈ R ∈ λ(v0, v1), we have yi ∈ Ci = [c0, c1] ∈ λ(v0, v1). It follows that

c0

ai
≤ y′i =

yi

ai
≤ c1

ai
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for all yi 6∈ R and therefore (s′0, s′1) is allowed in G ′.
Also p(s1) = ι(v1) = a · yi + b and therefore the payoff is equal to

p(s′1) = ι′(v′1) = ai · a ·
yi

ai
+ b.

Let s0, . . . , sk and s′0, . . . , s′k be finite histories in G and G ′, such that they
visit the same locations and p(π) = p(π′). If sk = (vk, y) is a state belonging
to Player 0 and σ(sk) = sk+1 = (vk+1, y) and s′k = (vk, z), then we define
σ′(s′k) = s′k+1 in G ′, where s′k+1 = (vk, w), such that wi = t where ti =

yi
ai

for
any yi 6∈ R ∈ λ(vk, vk+1). Since (sk, sk+1) is allowed in G, this means that for all
yi 6∈ R, yi ∈ Ci = [c0, c1] ∈ λ(vk, vk+1). As

c0

ai
≤ wi =

yi

ai
≤ c1

ai

for all yi 6∈ R, we get that (s′k, s′k+1) is allowed in G ′.
Also p(sk) = ι(vk) = a · yi + b and therefore, the payoff is equal to

p(s′k+1) = ι′(v′k+1) = ai · a · wi + b = ai · a ·
yi

ai
+ b.

The cases for Player 1 are analogous. Note that, for infinite plays, we also
have the same payoff, since for the payoff of infinite games only the locations
(and their priorities) matter. Since we can construct, for each pair of strategies
in G, the corresponding strategies in G ′, and those yield a play with the same
payoff, the values of the two games are equal.

Consequently, from now on, we only consider flat interval parity games and
therefore omit the coefficients, as they are all equal to one.

Multiplying Interval Parity Games

Definition 5.15. For a flat IPG G = (V0, V1, E, λ, ι, Ω) and a value q ∈ Q, we
denote by q · G = (V, E, λ′, ι′, Ω) the IPG where ι′(v) = a · yi + q · b iff ι(v) =

a · yi + b for all v ∈ V, and (I′, C′, R) ∈ λ′((v, w)) iff (I, C, R) ∈ λ((v, w)) with
I′ = q · I and C′i = q · Ci for all (v, w) ∈ E.

Intuitively, this means that all endpoints in the time intervals (open and
closed), and the constraints, and all additive values in the payoff function ι are
multiplied by q. The values of q · G are equal to the values of G multiplied by
q.
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Lemma 5.16. For every IPG G over Q∞ and q ∈ Q, q 6= 0 it holds in all states s that
q · valG(s) = val q · G(q · s).

Proof. We denote by q · σ the strategy with q · σ(q · h) = q · s′ iff σ(h) = s′. The
mapping of G with strategies for both players σ and ρ to q · G with q · σ and
q · ρ is a bijection (in the reverse direction take 1

q ). We also have

q · pG(π(σ, ρ, s)) = q · pG(s0s1 . . . sk) = q · (a · yi + b)

where ι(loc(sk)) = (a, i, b) which is equal to

pq·G(π(q · σ, q · ρ, q · s)) = pq·G(q · s0 . . . q · sk) = a · (q · yi) + q · b

for all finite plays π. Therefore, we know that

inf
ρ

q · p(π(σ, ρ, s)) = inf
q·ρ

p(π(q · σ, q · ρ, q · s))

and the same holds for the supremum and thus, we get the desired result.

Note that all multiplicative factors in ι are the same in G and in q · G. More-
over, if we multiply all constants in ι in a game G (both the multiplicative and
the additive ones) by a positive value r, then the value of G will be multiplied
by r, by an analogous argument as above. Thus, if we first take r as the least
common multiple of all denominators of multiplicative factors in ι and multi-
ply all ι constants as above, and then take q as the least common multiple of all
denominators of endpoints in the intervals and additive factors in the resulting
game G and build q · G, we can conclude the following.

Corollary 5.17. For every finite IPG G over Q∞, there exists an IPG G ′ over Z∞ and
q, r ∈ Z such that valG(s) = valG ′(q·s)

q·r .

From now on we assume that every IPG we investigate is a flat game over
Z∞ if not explicitly stated otherwise.

5.5 Discrete Strategies

Our goal in this section is to show that it suffices to use a simple kind of (al-
most) discrete strategies to approximate the value of flat interval parity games
over Z∞. To this end, we define an equivalence relation between states whose
variables belong to the same Z intervals. This equivalence, resembling the
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standard methods used to build the region graph for timed automata, is a
technical tool needed to compare the values of the game in similar states. We
use the standard meaning of brc and dre, and denote by {r} the number r−brc
and by [r] the pair (brc, dre). Hence, when writing [r] = [s], we mean that r
and s lie in between the same integers. Note that if r ∈ Z then [r] = [s] implies
that r = s.

Definition 5.18. We say that two states s and t in an IPG are equivalent, s ∼ t,
if they are in the same location, loc(s) = loc(t), and for all i, j ∈ {1, . . . , K}:

– [vari(s)] = [vari(t)], and

– if {vari(s)} ≤ {varj(s)} then {vari(t)} ≤ {varj(t)}.

Intuitively, all variables lie in the same integer intervals and the order of
fractional parts is preserved. In particular, it follows that all integer variables
are equal. The following technical lemma allows for the shifting of moves
between ∼-states.

Lemma 5.19. Let s and s′ be two states in a flat IPG over Z such that s ∼ s′. If a
move from s to t is allowed by a label l = (I, C, R), then there exists a state t′, the
move to which from s′ is allowed by the same label l and t′ ∼ t.

Proof. If R = {1, . . . , K} then let t′ = t. As s ∼ s′, the same constraints are
satisfied by s and s′ and thus the move from s′ to t′ = t is allowed by the same
label.

If R 6= {1, . . . , K} then let w = t−R s ∈ I be the increment chosen during the
move. If w ∈ Z we let t′ = s′ + w, the conditions follow from the assumption
that s ∼ s′ again.

If w 6∈ Z, let i be the index of a non-reset variable with the smallest fractional
part in t, i.e., {vari(t)} ≤ {varj(t)} for all j 6∈ R. To construct t′, we must choose
w′ with [w′] = [w] which makes vari(s′ + w′) the one with smallest fractional
part.

Case 1: {vari(t)} ≥ {w}.
In this case, for all non-reset variables j, it holds that {varj(t)} ≥ {w}, intu-
itively meaning that no variable “jumped” above an integer due to {w} (illus-
trated in Figure 5.6). Let l be the variable with maximum fractional part in s′

(and thus, by definition of ∼, also in s and in this case in t). Set

w′ = bwc+ 0.9 ·
(
dvarl(s′)e − varl(s′)

)
.
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Clearly, [w′] = [w] and indeed, we preserved the order of fractional parts and
integer intervals, thus ∼ is preserved.

0{vari(s)} {vari(t)}

{w}

{varl(s′)}

dvarl(s′)e − varl(s′)

1

Figure 5.6: Lemma 5.19, case 1

Case 2: {vari(t)} < {w} and for all j 6∈ R {varj(s′)} ≥ {vari(s′)}.
In this case, for all non-reset variables j, holds {varj(t)} ≤ {w}, intuitively
meaning that all variables “jumped” above an integer due to {w} (illustrated
in Figure 5.7). Let l be the variable with maximum fractional part in s′ (and
thus also in s). Let

δ = 0.9 ·min
(
{vari(s′)},

(
dvarl(s′)e − varl(s′)

))
be a number smaller than both {vari(s′)} and dvarl(s′)e − varl(s′). We set

w′ = bwc+ dvari(s′)e − vari(s′) + δ.

By the first assumption on δ, we have [w′] = [w] and both the order of fractional
parts and integer bounds in t′ are the same as in t, since

dvarl(t′)e = dvarl(s′ + w′)e ≤ dvarl(s′) + bwc+ 1 + δe = dvarl(t)e

by the second assumption on δ. The inequality in the other direction holds as
well, and we get that t′ ∼ t as required.

1{vari(s′)} {vari(s)} {varl(s′)}

δ
dvari(s′)e − vari(s′)

{vari(t)}+ 1

Figure 5.7: Lemma 5.19, case 2

Case 3: {vari(t)} < {w} and there exists j 6∈ R with {varj(s′)} < {vari(s′)}.
In this case let l be the variable with maximum fractional part in t, i.e. the last
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1{varl(s)} {vari(s)}{varl(t)}

{w}

{vari(t)}+ 1

Figure 5.8: Lemma 5.19, case 3 for s

one which did not “jump” above an integer due to {w}. The variable with the
next greatest fractional part in s (and by ∼ also in s′) is vari(s), as depicted in
Figure 5.8.

To transfer the move to s′, consider these two variables in s′ as depicted in
Figure 5.9 and let δ = {vari(s′)} − {varl(s′)}.

1{varl(s′)} {vari(s′)}

δ dvari(s′)e − vari(s′)

Figure 5.9: Lemma 5.19, case 3 for s′

We set

w′ = bwc+ dvari(s′)e − vari(s′) + 0.9 · δ.

Again [w′] = [w] and clearly i is the variable with smallest fractional part in
t′ by construction. As s ∼ s′, the order of fractional parts in t and in t′ is the
same, and the integer bounds as well, thus t ∼ t′.

Knowing that we can shift a single move and preserve ∼-equivalence, we
proceed to show that for IPGs over Z∞, fully general strategies are not nec-
essary. In fact, we can restrict ourselves to discrete strategies and, using this,
reduce the games to discrete ones. Intuitively, a discrete strategy keeps the
maximal distance of all variable valuations to the closest integer small.

However, for the purposes of constructing an inductive proof of existence of
a good discrete strategy, it is not convenient to work, for a state s, simply with
the maximal distance

maxi{min{vari(s)− bvari(s)c, dvari(s)e − vari(s)}}.
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The reason is that for some moves it is impossible to keep this distance small
for each variable and to go to an equivalent state as illustrated in Figure 5.10.
In the depicted situation, if we move y1 within ε-neighbourhood of Z (below z
and z− 1 depict integers), then y0 leaves it.

z− 1
y0

z− 1 + ε zz− ε

y1

z + ε

Figure 5.10: Move where standard distance is necessarily increased

To give a more suitable notion of distance for a state, let us, for r ∈ R, define

d(r) =
{

r− dre if |r− dre| ≤ |r− brc|;
r− brc otherwise.

This function gives the distance to the closest integer, except that it is negative
if the closest integer is greater than r, i.e. if the fractional part of r is > 1

2 . as
depicted in Figure 5.11.

brc r dre = bsc dses

d(s) < 0d(r) > 0

Figure 5.11: Notation for distances between real numbers and integers

Please observe that for two real numbers a, b ∈ R+, it follows that

|d(a + b)| ≤ |d(a)|+ |d(b)|.

Also, we observe that

– if |d(a) + d(b)| < 1
2 , then d(a + b) = d(a) + d(b);

– otherwise, if d(a), d(b) = 1
2 or d(a), d(b) = 0, then d(a + b) = 0;

– otherwise, if d(a), d(b) > 0, then d(a + b) = d(a) + d(b)− 1 < 0;

– if d(a), d(b) < 0, then d(a + b) = d(a) + d(b) + 1 > 0.
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For a state s, we use the abbreviation di(s) = d(vari(s)). We denote by
dl(s) = mini=1...k{di(s)} and dr(s) = maxi=1...k{di(s)} the smallest and great-
est of all values di(s), and additionally we define the total distance as follows

d∗(s) =


|dl(s)| if di(s) ≤ 0 for all i ∈ {1, . . . , k},
dr(s) if di(s) ≥ 0 for all i ∈ {1, . . . , k},
|dl(s)|+ dr(s) otherwise.

This is illustrated in Figure 5.12, where k stands for an integer and y0 to y2

stand for the fractional parts of the values of the respective variables. In this
example, y0 has the smallest fractional part, i.e. the greatest one greater than 1

2
and y2 has the greatest fractional part (less than 1

2 ).
First, we prove that we can always correct a strategy that makes one step

which is not ε-discrete. By doing so, we guarantee that we reach a state with
the same location that is allowed by the labelling and that the values of the
variables only change within the same intervals.

Lemma 5.20. Let s be a state with d∗(s) ≤ 1
4 and t be a successor of s, where (s, t) is

allowed by l = (I, C, R). Then, for every 0 ≤ ε < d∗(s), there exists a successor t′+ of
s such that

– t ∼ t′+,

– (s, t′+) is allowed by l, and

– d∗(t′+) ≤ d∗(s) + ε.

Proof. We assume that d∗(t) > d∗(s) + ε, otherwise we can take t′+ = t. Let
w ∈ I be the increase in the (non-reset) values from s to t, i.e. w = t−R s. We
make a case distinction regarding the computation of d∗(t).

Case 1: d∗(t) = |dl(t)|.
We correct w in the following way: w′ = w+ c− ε, where c = min{|dr(t)|, |d(w)|}
if d(w) < 0 and c = |dr(t)| otherwise.

k− 1
2

y0 y1y3 y2

k k + 1
2dr−dl

d∗

Figure 5.12: Maximal, minimal and total distance for a state
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First, we have to show that [w′] ∈ [w] and therefore w′ ∈ I. Since dl(t) =

di(t) = vari(t) for one i, we can conclude from

|d(vari(s) + w)| ≤ |d(vari(s))|+ |d(w)|

that |d(w)| > ε and therefore w′ ≥ w, hence w′ ≥ bwc. Furthermore, w′ ≤ dwe.
Otherwise, if d(w) < 0 then

w′ = w + c− ε > dwe = w + |d(w)|.

This is a contradiction, since by definition c ≤ |d(w)|.
If d(w) > 0, we also conclude w′ ≤ dwe, since c− ε < 1

2 .
Next, we have to show, that all variables that are not reset stay in the same

interval. We consider the case, where all values of the variables are increased,
therefore we know that vari(t′+) ≥ bvari(t)c for all i 6∈ R. We now have to
show that also vari(t′+) ≤ dvari(t)e. Let j be the index of the variable which is
the closest to the integers (in this case), i.e. j, such that d(varj(t)) = dr(t).

varj(t′+) = varj(s) + w′

= varj(s) + w + c− ε

= varj(t) + c− ε

< dvari(t)e = varj(t) + |dr(t)|

Also, we have to show: d∗(t′+) ≤ d∗(s) + ε. We know that

|dl(t)| − |dr(t)| ≤ d∗(s) and d∗(t′+) = |dl(t′+)| = |d(varj(t′+))|

for one j and varj(t′+) = varj(s) + w + c− ε. Hence,

d(varj(t′+)) = dl(t) + c− ε, since |dl(t) + c− ε| ≤ 1
2

.

We can conclude that dl(t′+) = d(varj(t′+)) ≤ d∗(s) + ε.
Case 2: d∗(t) = |dr(t)|.
Subcase 1: d(w) > 0:

We correct w in the following way:

w′ = w + (1− c)− ε, where c = max{|dl(t)|, |d(w)|}.
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t = y1y2

|dr|

|dl | > d∗(s) + ε

1− |dl |

≤ d∗(s)

t′+ =
y1y2

|dl | ≤ d∗(s) + ε

Figure 5.13: Lemma 5.20, case 1

First, we have to show that [w′] ∈ [w] and therefore w′ ∈ I.
Since dr(t) = di(t) = vari(t) for one i, we can conclude from

|d(vari(s) + w)| ≤ |d(vari(s))|+ |d(w)|

that |d(w)| > ε and therefore w′ ≥ w, hence w′ ≥ bwc. Furthermore, w′ ≤ dwe.
Otherwise, since d(w) > 0 and we assume that

w′ = w + (1− c)− ε > dwe = w + (1− |d(w)|).

This is a contradiction, since by definition c ≥ |d(w)|.
Next, we have to show, that all variables that are not reset stay in the same

interval. We consider the case, where all values of the variables are increased,
therefore we know that vari(t′+) ≥ bvari(t)c for all i 6∈ R. We now have to
show that also vari(t′+) ≤ dvari(t)e. Let j be the index of the variable which is
the closest to the integers (in this case), i.e. j, such that d(varj(t)) = dl(t).

varj(t′+) = varj(s) + w′

= varj(s) + w + (1− c)− ε

= varj(t) + (1− c)− ε

< dvari(t)e = varj(t) + (1− |dl(t)|

Also, we have to show: d∗(t′+) ≤ d∗(s) + ε. We know that

dr(t)− dl(t) ≤ d∗(s) and d∗(t′+) = |dr(t′+)| = |d(varj(t′+))| for one j and
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varj(t′+) = varj(s) + w + (1− c)− ε.

Hence,

d(varj(t′+)) = dr(t) + (1− c) + ε− 1 = dr(t)− c + ε.

We can conclude that

dr(t′+) = d(varj(t′+)) ≤ d∗(s) + ε.

by definition of c.
Subcase 2: d(w) < 0 :

In this case, from d∗(s) < 1
4 and d∗(t) = dr(t) it follows that d(vari(s)) < 0 for

all i. Thus, we set w′ = w + dwe − ε and the lemma holds.

t = y1y2

|dl |

|dr| > d∗(s) + ε

1− |dr|

≤ d∗(s)

t′+ =
y1y2

|dl | ≤ d∗(s) + ε

Figure 5.14: Lemma 5.20, case 2

Case 3: d∗(t) = dr(t) + |dl(t)|.
We correct w in the following way:

w′ = w + c− ε

2
where c = min{|dl(t)|, |d(w)|}.

First, we have to show that [w′] ∈ [w] and therefore w′ ∈ I. Since dr(t) =

di(t) = vari(t) for one i and dl(t) = dj(t) = varj(t) for one j, we can conclude
from

|d(vari(s) + w)| ≤ |d(vari(s))|+ |d(w)|
and |d(varj(s) + w)| ≤ |d(varj(s))|+ |d(w)|
and |d(varj(s) + w)|+ |d(vari(s) + w)|
≤|d(vari(s))|+ |d(w)|+ |d(varj(s))|+ |d(w)| ≤ d∗(s) + 2|d(w)|

and |d(varj(s) + w)|+ |d(vari(s) + w)| > d∗(s) + ε
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therefore |d(w)| > ε
2 . Hence, w′ ≥ bwc. Furthermore, w′ ≤ dwe, otherwise if

d(w) < 0 then assume

w′ = w + c− ε

2
> dwe = w + |d(w)|.

Then c− ε
2 > |d(w)|. Contradiction. Otherwise, if d(w) > 0, then w′ ≤ dwe,

since by definition c ≤ 1
2 .

Next, we have to show, that all variables that are not reset stay in the same
interval. We consider the case, where all values of the variables are increased,
therefore we know that vari(t′+) ≥ bvari(t)c for all i 6∈ R. We now have to
show that also vari(t′+) ≤ dvari(t)e. Let j be the index of the variable with
d(varj(t)) = dl(t).

varj(t′+) = varj(t) + w′

= varj(t) + w + c− ε

2
= varj(t) + c− ε

2
< dvari(t)e = varj(t) + |dl(t)|

Thus we have to show: d∗(t′+) ≤ d∗(s) + ε. We know that

|dr(t)− (1 + dl(t))| ≤ d∗(s) and d∗(t′+) = |dl(t′+)| = |d(vari(t′+))|

for j such that d(varj(t)) = dr(t). Also,

varj(t′+) = varj(s) + w + c− ε

2
.

We can conclude that d∗(t′+) ≤ d∗(s) + ε
2 .

Knowing that in one step the move can always preserve small total distance,
we can finally define discrete strategies.

Definition 5.21. We call a strategy σ ε-discrete if for every sn+1 = σ(s0, . . . , sn) it
holds that if d∗(sn) ≤ ε then d∗(sn+1) ≤ d∗(sn) +

ε
2n+1 , and if for each i s′i ∼ si,

then σ(s0, . . . , sn) ∼ σ(s′0, . . . , s′n).

Observe that it follows directly from the definition that if d∗(s0) ≤ ε
2 and

both players play discrete strategies, then d∗(sn) ≤ ε(1− 1
2n+1 ).
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t = y1y2

|dl |dr ≤ d∗(s)

t′+ =
y1y2

|dl | ≤ d∗(s) + ε

Figure 5.15: Lemma 5.20, case 3

Example 5.22. To see that decreasing ε in each step is sometimes crucial, con-
sider the game with one variable depicted in Figure 5.16. In each move Player 0
has to choose a positive value in (0, 1). Player 1 can then decide to continue the
play or leave the cycle and end the play with the negative accumulated value,
i.e. −y0, as payoff. He cannot infinitely often decide to stay in the cycle as then
the payoff would be ∞ as the priority is 0. An ε-optimal strategy for Player 0 as
the maximising player is thus to start with ε

2 and decrease in each step. Please
note that the value of the game is 0.

Ω(v0) = 0

v0

Ω(v1) = 0

v1 v2

ι(v2) = −y0(0,1)

[0,0]

[0,0]

Figure 5.16: Flat IPG where Player 0 has to decrease the value in every step

We now extend the previous lemma to one that allows for the shifting of a
whole move.

Lemma 5.23. Let s be a state and t a successor of s, where (s, t) is allowed by l. Let
s′ be a state with d∗(s′) ≤ 1

4 , such that s ∼ s′. Then, for every ε > 0, there exists a
successor t′ of s′ allowed by l such that

– s′ ∼ t′ and

– d∗(t′) ≤ d∗(s′) + ε.
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Proof. Since s ∼ s′ and t ∈ succ(s) is allowed by l, we know, by Lemma 5.19,
that there exists a state t′ ∈ succ(s′) allowed by the same label l, such that
t′ ∼ t. We also know from Lemma 5.20 that, for every choice of ε, there exists
t+ ∈ succ(s′) such that d∗(t+) ≤ d∗(s′) + ε and t′ ∼ t+. Since t′ ∼ t, this also
means that t+ ∼ t, hence t+ fulfils the requirements above.

We can conclude that discrete strategies allow for the approximation of game
values.

Lemma 5.24. Fix an ε-discrete strategy ρd of Player 1− i in G, ε < 1
4 . For every

strategy σ of Player i, there exists an ε-discrete strategy σd, such that, for every starting
state s0 with d∗(s0) < ε

2 , if π(σ, ρd, s0) = s0, s1, . . . and π(σd, ρd, s0) = s′0, s′1, . . .,
then si ∼ s′i for all i.

Proof. We only prove this lemma for Player 0, the case of Player 1 is analogous.
We define σd inductively. Let s0 be the starting state. If σ(s0) = s1, then by
Lemma 5.23, there is a s′1 ∼ s1 with d∗(s′1) ≤ d∗(s0) +

ε
4 , and we set σd(s0) = s′1.

Let h = s0, . . . , sk and h′ = s′0, . . . , s′k be finite play histories such that h is a
prefix of π(σ, ρd, s0) and h′ is consistent with ρd and σd as defined thus far. Note
that s0 = s′0 and by inductive assumption, si ∼ s′i for 0 < i ≤ k, and d∗(sk) ≤
ε(1− 1

2k+1 ). If σ(s0 . . . sk) = sk+1 ∈ succ(sk), then, by Lemma 5.23, there also
exists a state s′k+1 ∈ succ(s′k) such that s′k+1 ∼ sk+1 and d∗(s′k+1) ≤ d∗(sk) +

ε
2 .

Thus, we set σd(s′0 . . . s′k) to s′k+1. For all other histories h′′ = s′′0 , . . . , s′′k with
s′′i ∼ si, we set σ(h′′) = s′′k+1 for any s′′k+1 equivalent with sk, which exists by
Lemma 5.19, and we can pick a discrete one if d∗(s′′k ) < ε by Lemma 5.23.

By construction, the strategy σd is discrete and if π(σ, ρd, s0) = s0, s1, . . . and
π(σd, ρd, s0) = s′0, s′1, . . . then si ∼ s′i.

Proposition 5.25. Let G be a flat interval parity game. Let Γi be the set of all strategies
for player i and ∆i the set of all discrete strategies for player i and m be the highest
value that occurs as a multiplicative factor in ι. Then it holds, for every starting state
s, that∣∣∣∣∣sup

σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s))− sup
σ∈∆0

inf
ρ∈∆1

p(π(σ, ρ, s))

∣∣∣∣∣ ≤ m.

Proof. Case 1: assume that

sup
σ∈∆0

inf
ρ∈∆1

p(π(σ, ρ, s))− sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s)) > m.

113



5.5. Discrete Strategies

Then there exists a strategy σd ∈ ∆0 such that

inf
ρ∈∆1

p(π(σd, ρ, s))− inf
ρ∈Γ1

p(π(σd, ρ, s) > m.

Fix a strategy ρinf ∈ Γ1, for which

p(π(σd, ρinf, s)) ≤ inf
ρ∈Γ1

p(π(σd, ρ, s)) + ε.

From Lemma 5.24, we know that there is a discrete strategy ρinfd
∈ ∆1 which

is a discrete version of ρinf against σd. From the above, it follows that

p(π(σd, ρinfd
, s))− p(π(σd, ρinf, s)) > m.

This is a contradiction, since we know from Lemma 5.24 that all states in both
plays are equivalent, so for finite plays also the final states are equivalent,
which means that the payoffs cannot differ by more than m as it is the highest
occurring multiplicative factor in ι. If both plays are infinite, then, by definition
of ∼, the payoffs are equal.

Case 2: assume that

sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s))− sup
σ∈∆0

inf
ρ∈∆1

p(π(σ, ρ, s)) > m.

By Theorem 3.7 every interval parity game is determined, thus

sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(π(σ, ρ, s)).

In the next section, we show that restricting to discrete strategies corresponds
to playing a counter-reset game, and since these are again determined games,
we get that

sup
σ∈∆0

inf
ρ∈∆1

p(π(σ, ρ, s)) = inf
ρ∈∆1

sup
σ∈∆0

p(π(σ, ρ, s)).

Therefore we can rewrite the assumption of this case as

inf
ρ∈Γ1

sup
σ∈Γ0

p(π(σ, ρ, s))− inf
ρ∈∆1

sup
σ∈∆0

p(π(σ, ρ, s)) > m.

Then there exists a strategy ρd ∈ ∆1 such that

sup
σ∈Γ0

p(π(σ, ρd, s))− sup
σ∈∆0

p(π(σ, ρd, s)) > m.
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Fix a strategy σsup ∈ Γ0, for which

p(π(σsup, ρd, s)) ≥ sup
σ∈Γ0

p(π(σ, ρd, s))− ε.

From Lemma 5.24, we know, that there again is a discrete strategy σsupd
∈ ∆0

which is a discrete version of σsup against ρd. From the above, it follows that

p(π(σsup, ρd, s))− p(π(σsupd
, ρd, s)) > m,

which again contradicts that all states in these two plays are equivalent.

5.6 Counter-Reset Games

In this section, we introduce counter-reset games and show, using the discreti-
sation results from the previous section, that approximating the value of an
IPG over Z∞ can be reduced to solving a counter parity game. We then solve
these games using an algorithm from [2] for counter parity games, a generali-
sation of our games.

By Proposition 5.25 above, we can restrict both players in a flat IPG to use
ε-discrete strategies to approximate the value of a flat interval game up to the
maximal multiplicative factor m. Multiplying the game by any number q does
not change the multiplicative factors in ι but multiplies the value of the game
by q. Thus, to approximate the value of G up to 1

n , it suffices to play ε-discrete
strategies in n · m · G. If the players only use discrete strategies, the chosen
values remain close to integers (possibly being up to ε greater or smaller). It
can be stored in the state whether the value is greater, equal or smaller than an
integer as well as whether the value of a variable is smaller or greater than any
of the (non-infinite) bounds in constraint intervals. This way, we can eliminate
both ε’s and constraints and are left with the following games.

Definition 5.26. A counter-reset game is a flat interval parity game in which in
each label l = (I, C, R) the constraints C are trivially true and the interval I is
either [0, 0] or [1, 1], i.e. either all variables are incremented by 1, reset or left
intact.

Example 5.27. In Figure 5.6, we depict a simple counter-reset game. As usual,
circles represent positions of Player 0 and rectangles those of Player 1. Priori-
ties, payoff functions, intervals, and reset sets are also depicted as usual next to
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the corresponding nodes or above transitions. In this game, we have two vari-
ables, y0, y1 and as mentioned above, there are no constraints on these variables
in counter-reset games, but they can be reset. The only choice in this game that
Player 0 has is to increase all variables (“choose” 1 from [1, 1]) and Player 1
can do the same or end the game and get a payoff of −y0. Since he wants to
minimise, his best strategy is to loop as long as possible but not infinitely long,
as the lowest priority on the according cycle is 0. Since he can achieve arbitrary
small values this way, the value of this game (starting at v0 or v1) is −∞.

Ω(v0) = 0

v0

Ω(v1) = 1

v1 v2

ι(v2) = −y0[1,1]

R={y1}

[1,1]

R=∅

[0,0]

R=∅

Figure 5.17: Simple counter-reset game

Lemma 5.28. Let G be an IPG over Z∞ with maximal absolute value of the multi-
plicative factor in ι equal to m. For each n ∈ N there exists a counter-reset game G ′n
such that for all states s in which all variables are integers:∣∣∣∣valG(s)− valG ′n(n ·m · s)

n ·m

∣∣∣∣ ≤ 1
n

.

Proof. Consider first the game G ′′ = n ·m · G. By construction, the multiplica-
tive factors in ι do not change and thus their maximal value in G ′′ is still m. By
Lemma 5.16, in all states s holds

valG(s) = valG ′′(s)
n ·m .

Moreover, by Proposition 5.25 applied to G ′′∣∣∣∣∣valG ′′(s)− sup
σ∈∆0

inf
ρ∈∆1

p(πG′′(σ, ρ, s))

∣∣∣∣∣ ≤ m,

and therefore,∣∣∣∣∣∣∣valG(s)−
sup
σ∈∆0

inf
ρ∈∆1

p(πG′′(σ, ρ, s))

n ·m

∣∣∣∣∣∣∣ ≤
1
n

.
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We show how to construct the counter-reset game G ′ with value equal to,

sup
σ∈∆0

inf
ρ∈∆1

p(πG′′(σ, ρ, s)),

i.e., to the value of G ′′ when both players play ε-discrete strategies. To this end,
we first construct the game G ′0 which still has constraints, but in which all inter-
vals are [k, k] for some k ∈N. The game G ′0 is constructed from G ′′ by replacing
each position v by 3M positions vi1...iM . The sequence i1 . . . iM ∈ {−1, 0, 1}M

keeps track, for each variable, whether it is currently smaller, greater, or equal
to an integer. The interval labels are now converted in the following way. If a
move with interval [n, n + k) and resets R is taken from a position vi1...iM in G ′0
and would lead to w in G ′′, then a sequence of moves with labels [l, l] for each
n ≤ l ≤ n + k is added, with the l-labelled move leading to wj1...jM such that:

– if one jk > ik then all jk > ik for k ∈ {0, . . . , M}, and the same if jk < ik or
jk = ik,

– if l = n then each jk ≥ ik (interval was downwards-closed), and

– if l = k then each jk < ik (interval was upwards-open).

The situation for open, closed, and open-closed intervals is analogous. The
plays which use discrete strategies in G ′′ can now be directly transferred to
plays in G ′0 in which indeed in vi1...iM the sign of the fractional part of yj is
equal to ij. The same can be done in the other direction, as the constraints listed
above allow to choose a value in the interval which leads to the appropriate
change in the sign sequence. Therefore,

valG ′0 = sup
σ∈∆0

inf
ρ∈∆1

p(πG′′(σ, ρ, s)).

To eliminate the constraints from move labels in G ′0, we determine the highest
non-infinite bound b which appears in these constraints (both on the left and on
the right side of an interval). Then, we construct G ′ as the synchronous product
of G ′0 with a memory of size (b + 2)M which remembers, for each variable yi,
whether yi is greater than b or equal to b, b− 1, . . . , 0. With this memory, we
resolve all constraints and remove them from move labels in G ′.

Counter-reset games are a special case of a class of counter parity games
which were recently studied by Berwanger, Leßenich and Kaiser in [2]. Counter
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parity games are more general than counter-reset games, they allow the coun-
ters to be updated by arbitrary affine transformations. The authors give an al-
gorithm to solve such games, improving our previous decidability result [18].
Interestingly, the determinacy of counter parity games is a consequence of our
determinacy result for quantitative parity games, Proposition 3.26.

Theorem 5.29 ([2]). For any finite counter parity game G and initial vertex v, the
value valG(v) can be computed in 6EXPTIME. When the number of counters is fixed,
the value can be computed in 4EXPTIME.

Corollary 5.30. For any finite counter-reset game G with a starting state s where all
counters are integers, the value valG(s) can be computed in 6EXPTIME. With fixed
number of counters, the value can be computed in 4EXPTIME.

We conclude by completing the proof of our main Theorem 5.7. We first
observe that, by Theorem 5.12, evaluating a hQµ-formula on a system is equiv-
alent to calculating the value of the corresponding model-checking game. We
can then turn this game into a flat one by Lemma 5.14 and then into one over
Z∞ by Corollary 5.17. By Lemma 5.28, the value of such a game can be approx-
imated with arbitrary precision by counter-reset games, which we can solve by
Corollary 5.30.

Altogether, we proved that it is possible to approximate the values of quan-
titative µ-calculus formulae on initialised linear hybrid systems with arbitrary
precision. With the recent result on counter parity games, we are even able to
provide an elementary algorithm – as the game G ′n in Lemma 5.28 is doubly-
exponential in G and n, the combined complexity of the above procedure is
8EXPTIME (note the doubly-exponential increase compared to Corollary 5.30).
Although there is room for improvement regarding the complexity, our result
lays a foundation for using quantitative temporal logics in the verification of
hybrid systems.
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determinacy, 25, 38
determined

– positionally, 25

125



Index

DPG, 75
DTS, 68

forth condition, 22

game arena, 38

interval parity game
– flat, 100

IPG, 93

LHS, 89
linear hybrid system, 89

– initialised, 90
logical equivalence up to r, 21

modal logic
– discounted, 70
– quantitative, 16

modal nesting depth, 21
model-checking game

– for Qµ, 42
– for dQµ, 79
– for hQµ, 96

negation normal form, 17

outcome
– bisimulation game, 24
– DPG, 75
– IPG, 94
– QPG, 38

parity game
– discounted, 75
– interval, 93
– quantitative, 38

propositional distance, 22

QPG, 38
QTS, 14

state
– of a linear hybrid systems, 89
– successor, 89

strategy, 24
– ε-discrete, 111
– ε-optimal, 45
– consistent with, 38
– optimal, 39
– positional, 25

transition system
– discounted, 68
– pointed, 14
– qualitative, 14
– quantitative, 14

truncated game, 50

unfolding, 51

value
– of a bisimulation game, 25
– of a QPG, 38

variable
– bound, 16
– free, 16

well-named, 17

126


	Introduction
	The Modal -Calculus
	Quantitative Logics
	Organisation and Main Results
	Impact

	The Quantitative -Calculus Q
	Syntax and Semantics
	Bisimulation Relation and Games
	Bisimulation Invariance
	Characteristic Formulae

	Quantitative Parity Games and Model Checking
	Quantitative Parity Games
	Model-Checking Games for Q
	Unfolding Quantitative Parity Games
	Bisimulation via Model Checking

	Q on Discounted Systems
	Syntax and Semantics of Discounted Q
	Negation Operators
	Discounted Quantitative Parity Games
	Model-Checking Games for Discounted Q
	Definability of Game Values

	Q on Linear Hybrid Systems
	Syntax and Semantics of Hybrid Q
	Interval Parity Games
	Model-Checking Games for Hybrid Q
	Simplifying Interval Parity Games
	Discrete Strategies
	Counter-Reset Games

	Bibliography
	Index

