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Abstract—We study the descriptive complexity of summation
problems in Abelian groups and semigroups. In general, an input
to the summation problem consists of an Abelian semigroup G,
explicitly represented by its multiplication table, and a subset X
of G. The task is to determine the sum over all elements of X .

Algorithmically this is a very simple problem. If the elements
of X come in some order, then we can process these elements
along that order and calculate the sum in a trivial way. However,
what makes this fundamental problem so interesting for us is that
from the viewpoint of logical definability its tractability is much
more delicate. If we consider the semigroup G as an abstract
structure and X as an abstract set, without a linear order and
hence without a canonical way to process the elements one by one,
then it is unclear how to define the sum in any logic that does not
have the power to quantify over a linear order. Indeed the trivial
summation algorithm cannot be expressed in any polynomial-
time logic or, in fact, in any computational model which works
on abstract mathematical structures in an isomorphism-invariant
way without violating polynomial resource bounds.

The surprising difficulty, in terms of logical definability, of
this basic mathematical problem is the reason why Ben Rossman
asked, more than ten years ago, whether it can be expressed in
the logic Choiceless Polynomial Time with counting (CPT). Note
that, to date, CPT is one of the most powerful known candidates
for a logic that might be capable of defining every polynomial-
time property of finite structures.

In this paper we clarify the status of the definability for
the summation problem for Abelian groups and semigroups
in important polynomial-time logics. In our first main result
we show that the problem can be defined in fixed-point logic
with counting (FPC). Since FPC is contained in CPT this
settles Rossman’s question. Our proof is based on a dynamic
programming approach and heavily uses the counting mechanism
of FPC. In our second main result we give a matching lower
bound and show that the use of counting operators cannot be
avoided: the summation problem, even over Abelian groups,
cannot be defined in pure fixed-point logic without counting.
Our proof is based on a probabilistic argument.

I. INTRODUCTION

The Abelian Semigroup Summation Problem (ASSP)
can be formulated as follows: Given a finite Abelian semigroup
(G,+) and a subset X ⊆ G, determine the sum ∑X = ∑x∈X x
in G. Note that the term ∑X is well-defined since the
semigroup G is Abelian.

Part of this work was carried out while the second and third authors were
visitors at the Simons Institute for the Theory of Computing at UC Berkeley,
in the Logical Structures in Computation Programme. The fourth author was
partially supported by a DFG research grant (PA 2962/1-1).

This is a very basic mathematical problem that appears in
many applications in mathematics and computer science. Of
course there are numerous variations and special cases of this
problem. Probably the most important one is the case where
G is actually an Abelian group. Further, in some applications
the variation appears where the group or semigroup is infinite
and fixed, but the summation is still to be done over a given
finite subset of G.

Our interest in the Abelian Semigroup Summation Problem
is due to the observation that it illustrates, in a mathematically
very pure way, the basic differences between logics and algo-
rithms, or between definability and complexity, that underly
some of the most fundamental and exciting problems of logic
in computer science.

Computationally the Abelian Semigroup Summation Prob-
lem is extremely simple. If we assume that the semigroup is
given by its multiplication table, and the elements in the set X
come in some order, then we can process these elements along
that order and calculate the sum in a trivial way. However, if
we consider the semigroup as an abstract structure and X as
an abstract set, without a linear order and hence without a
canonical way to process the elements of X one by one, then
it is unclear how to define the sum in any logic that does not
have the power to quantify over a linear order. While it is
easy to see that the ASSP is not first-order definable, it has
been unknown whether it is definable in more powerful logics
such as least fixed-point logic (LFP), or in the finite-variable
fragment of infinitary logic Lω

∞ω . Even more interestingly,
it has also been unclear whether the Abelian Semigroup
Summation Problem can be dealt with by the most powerful
logics that can be evaluated in polynomial time, and which
currently still are candidates for logics that might capture
PTIME, such as Rank Logic (FPR) or Choiceless Polynomial
Time (CPT); we remark that in this paper whenever we speak
of Choiceless Polynomial Time (CPT), then we refer to the
variant with counting unless explicitly stated otherwise.

In fact the Abelian Semigroup Summation Problem has
been proposed, more than ten years ago, by Ben Rossman
as a problem that might be used to prove that Choiceless
Polynomial Time falls short of capturing all polynomial time
properties of finite structures. We quote Rossman’s statement
from [5]:

“This is the most basic problem I can think of that appears
difficult for CPT but is obviously polynomial time. I don’t even978-1-5090-3018-7/17/$31.00 ©2017 European Union



know the answer when [the given semigroup] S is an Abelian
group, or even a direct product of cyclic groups Z2.”

We shall answer this question in this paper. It will turn out
that the Abelian Semigroup Summation Problem is actually
definable in fixed-point logic with counting (FPC). Further,
when restricted to Abelian groups, the summation problem
is also expressible in first-order solvability logic. On the
other side, we shall prove that counting (or a linear-algebraic
operator such as a solvability quantifier) is needed to define
the Abelian Semigroup Summation Problem. Indeed, we show
that the ASSP is not definable in LFP or even in Choiceless
Polynomial Time without counting, not even in the case of
Abelian groups, or indeed direct products of cyclic groups Z2.

For semigroups, this can be shown by a simple reduction
from the ”Even Cardinality Problem“, but for groups we need
more sophisticated probabilistic arguments, which may well
be of independent interest.

Let us briefly recall the background concerning the quest
for a logic for polynomial time and some of the logics that
have been proposed in this context; for details we refer to [13],
[18]. A good starting point is fixed-point logic with counting
(FPC), which may be considered as the logic of reference
in the search for a logic for polynomial time. Fixed-point
logic with counting was introduced, somewhat informally, by
Immerman. A more formal definition, based on two-sorted
structures, inflationary fixed-points, and counting terms was
given in [15]. Actually, FPC comes rather close to being a logic
for polynomial time. It is strong enough to express most of
the fundamental algorithmic techniques leading to polynomial-
time procedures and it captures PTIME on many interesting
classes of finite structures, including trees, planar graphs,
structures of bounded tree width, and actually all classes of
graphs with an excluded minor [19]. For a recent survey on
FPC, see [9]. Many polynomial-time queries which had been
proposed as challenging candidates for polynomial-time logics
turned out to be FPC-definable. One striking example is the
result of Anderson, Dawar, and Holm which shows that the
size of a maximum matching in a graph is definable in FPC [2].
This was once considered as a difficult problem even for the
more powerful logic Choiceless Polynomial Time [7], just
as it was the case for the Abelian Semigroup Summation
Problem. Indeed, our new FPC-definability result for the ASSP
is a further notable example which underlines the surprising
expressive power of fixed-point logic with counting.

At the moment, there are two main candidates of log-
ics which are known to be more powerful than FPC and
which might still capture polynomial time. One is the logic
Choiceless Polynomial Time (CPT) which was introduced by
Blass, Gurevich, and Shelah in [6], and which is based on
the model of abstract state machines, today known as BGS-
machines. These computational devices operate directly on
relational input structures and not on string encodings such as
Turing machines. Computations of BGS-machines preserve the
symmetries of input structures. The consequence is that such
BGS-computations have to be choiceless which means that

one cannot arbitrarily choose elements along a computation,
which is a feature used by many fundamental polynomial-time
algorithms including depth-first search, Gaussian elimination
etc. To compensate for this, BGS-machines can manipulate
higher-order states which model parallel executions. Instead
of arbitrarily choosing individual elements, which would break
symmetries, they consider all possible choices in parallel
and combine the result of the individual computations in the
end. Choiceless Polynomial Time is the restriction of BGS-
machines to polynomial-time resources. It is known that CPT
is strictly more powerful than FPC. For example, CPT can
express the CFI-query used by Cai, Fürer, and Immerman
to separate FPC from polynomial time and, more generally,
CPT captures polynomial time over interesting classes of
structures over which FPC fails to express all polynomial-time
properties [1].

The second (family of) candidates are extension of logics,
such as FPC, by operators from linear algebra. The motivation
to consider such logics is due to the result by Atserias, Bulatov,
and Dawar [3] showing that FPC cannot express the solvability
of linear equation systems over finite Abelian groups. The
most important such logic is Rank Logic (FPR) which is
the extension of FPC by operators that compute the rank of
definable matrices over finite fields [22], [23], [11], [16], [26].
Again it is known that FPR is more powerful than FPC, but we
do not know much about the relation between CPT and FPR.
In this paper, we will be concerned with first-order solvability
logic (FOS) which is a similar extension of first-order logic
(FO) by solvability quantifiers which express the solvability
of linear equation systems over finite rings. FOS has been
studied in [10], [26]. Note that if we would define FOS only
with solvability quantifiers over finite fields, then FOS would
be embeddable into FPR, because over fields the solvability
of linear equation systems reduces to computing matrix ranks.
However, it is open whether FPR can express the solvability
problem for linear equation systems over finite rings, and, as a
consequence, it is open whether FOS ≤ FPR holds or not. We
shall prove that the summation problem over Abelian groups
can be formulated as the solvability problem for a family of
linear equation systems over finite rings. From this we obtain
our FOS-definability result.

II. LOGICS AND STRUCTURES

We assume that the reader is familiar with the standard
notions, ideas, and concepts from finite model theory and
descriptive complexity theory, see e.g. [12], [13], [24]. In
particular, we assume familiarity with the fixed-point log-
ics LFP and IFP that extend first-order logic by least and
inflationary fixed-point operators, respectively. It is known
that LFP and IFP are equally expressive. Furthermore, we
recall the Immerman-Vardi Theorem which says that LFP (and
equivalently, IFP) captures polynomial time on finite structures
that are equipped with a linear order.

Fixed-point logic with counting: Before we proceed, we
recall the definition of fixed-point logic with counting (FPC).
In a nutshell, FPC is the extension of inflationary fixed-point



logic (IFP) by counting terms. Formulas of FPC are evaluated
over the two-sorted extension of an input structure A by a
copy of the natural numbers. Following [11] we denote by A#

the two-sorted extension of a τ -structure A = (A,R1, . . . ,Rk)

by N = (N,+, ⋅,0,1), i.e. the two-sorted structure A# =

(A,R1, . . . ,Rk,N,+, ⋅,0,1) where the universe of the first sort
(also referred to as vertex sort) is A and the universe of the
second sort (also referred to as number sort or counting sort)
is N.

As usual for the two-sorted setting we have, for both,
the vertex and the number sort, a collection of typed first-
order variables. We agree to use Latin letters x, y, z, . . . for
variables which range over the vertices and Greek letters
ν,µ, . . . for variables ranging over the numbers. Similarly,
for second-order variables R we allow mixed types, that is a
relation symbol R of type (k, `) ∈ N ×N stands for a relation
R ⊆ Ak × N`. Of course, already first-order logic over such
two-sorted extensions is undecidable. In order to obtain a logic
with polynomial-time data complexity we restrict the range of
quantifiers over the number sort by fixed polynomials. More
precisely, FPC-formulas can use quantifiers over the numeric
sort only in the form Qν ≤ nq.ϕ where Q ∈ {∃,∀} and where
q ≥ 1 is a fixed constant. The range of the quantifier Q is
{0, . . . , nq} where n denotes the size of the input structure A.
Similarly, for fixed-point operators we bound the numeric
components of fixed-point variables R of type (k, `) in all
fixed-point definitions as follows:

[ifp Rx⃗ν⃗ ≤ nq . ϕ(x⃗, ν⃗)] (x⃗, ν⃗).

Accordingly, when we determine the inflationary fixed-point
defined by the formula above in an input structure A, then we
only consider relations of the form R ⊆ Ak × {0, . . . , nq}`.

The crucial elements of FPC are counting terms which allow
to define cardinalities of sets. Starting with an arbitrary FPC-
formula ϕ(x) one can form a new counting term s = [#x .ϕ]
whose value in A is just the size of the set defined by ϕ in A. In
particular, the term s is a numeric term, that is s takes its value
in the number sort. More precisely, for an input structure A,
the value sA ∈ N of s in A is the number of elements a ∈ A
such that A ⊧ ϕ(a). One can also allow counting terms of a
more general form without increasing the expressive power of
FPC. In particular, counting terms [#x⃗µ⃗ ≤ nq . ϕ] over mixed
tuples x⃗µ⃗ of (both sorts of) variables can be simulated with
unary counting terms (using variables of the base sort only) as
introduced above; we refer to [25] for this translation, which
makes use of the fixed-point operator of FPC, and also for
more details about fixed-point logic with counting in general.

III. DEFINABILITY IN FIXED-POINT LOGIC WITH
COUNTING

In this section we establish our first main result and show
that the summation problem in Abelian semigroups can be
defined in fixed-point logic with counting (FPC). More pre-
cisely, we show that FPC can define the class of all structures

(G,+,X, y), where (G,+) is a finite Abelian semigroup,
where X ⊆ G, and where y ∈ G is such that

∑X = ∑
x∈X

x = y.

Our FPC-procedure for the ASSP is based on a dynamic
programming approach. A first idea would be to inductively
define, for increasing values of i ≥ 1, the sets Σi ⊆ G consisting
of all elements g ∈ G which can be expressed as sums of
elements from X of length precisely i (without repetitions of
elements), that is

Σi
= {g ∈ G ∶ g = x1 +⋯ + xi, xj ∈X and xk ≠ x` for k ≠ `}.

Of course, if we could define these sets for 1 ≤ i ≤ n in FPC,
where n = ∣X ∣, then we were done: the sum over all elements
in X is the unique element that is contained in Σn.

However, maintaining the sets Σi alone is insufficient, since
it is not clear how to define the successor stage Σi+1 using
only the sets Σj for j ≤ i. Hence we generalise this approach
in a slight but crucial way. Instead of only updating the
membership information about elements g ∈ G in the sets Σi,
we exploit the counting mechanism of FPC and inductively
define the number of witnesses for elements g ∈ Σi, that is the
number of different ways in which g ∈ G can be expressed as
an X-sum of length precisely i. Note that membership in Σi

is a special case which corresponds to checking whether this
number is zero or non-zero.

We start to make things more precise. For convenience, we
assume that (G,+) is an Abelian monoid, i.e. that it contains
a neutral element 0 ∈ G. If this is not the case, then we can
easily add a fresh neutral element 0 by using a simple first-
order transformation. For all g, h, z ∈ G and 0 ≤ i ≤ n we
define the following sets

Ti(g, h) = {(x1, . . . , xi) ∈X
i
∶ g + x1 +⋯ + xi = h and

xk ≠ x` for 1 ≤ k ≠ ` ≤ i}

R≠z
i (g, h) = {(x1, . . . , xi) ∈ Ti(g, h) ∶ xj ≠ z, j = 1, . . . , i}

Correspondingly, we define values

ti(g, h) = ∣Ti(g, h)∣, r≠zi (g, h) = ∣R≠z
i (g, h)∣.

Note that for i = 0 and all g, h, z ∈ G we have

Ti(g, h) = R
≠z
i (g, h) =

⎧⎪⎪
⎨
⎪⎪⎩

{()}, g = h

∅, else

As before we let n = ∣X ∣. Then we observe:

Remark 1. ∑X = y if, and only if, tn(0, y) > 0.

Hence, in order to express the summation problem it suffices
to define the values ti(g, h) for all g, h ∈ G and 0 ≤ i ≤ n.
More generally, with this information we can determine which
semigroup elements g ∈ G are X-sums of length precisely
i ≤ n. In fact we have Σi = {g ∈ G ∶ ti(0, g) > 0}.

The next three lemmas provide recursive definitions of the
sets Ti(g, h) and R≠z

i (g, h) in terms of the sets Tj(g, h)



and R≠z
j (g, h) for indices j < i. Although the proofs are

straightforward, these three lemmas are the key in order
to obtain an inductive system for the values ti(g, h) and
r≠zi (g, h).

Lemma 2. For all g, h ∈ G and 1 ≤ i ≤ n we have

Ti(g, h) = ⊎
x∈X

{(x,x2, . . . , xi) ∶ (x2, . . . , xi) ∈ R
≠x
i−1(g + x,h)}.

Lemma 3. For all g, h, z ∈ G and 1 ≤ i ≤ n we have

R≠z
i (g, h) = Ti(g, h) ∖ ⊎

j=1,...,i

{(x1, . . . , xi) ∈ Ti(g, h) ∶ xj = z}.

Lemma 4. For all g, h, z ∈ G, 1 ≤ i ≤ n, 1 ≤ j ≤ i we have

∣{(x1, . . . , xi) ∈ Ti(g, h) ∶ xj = z}∣ = ∣R≠z
i−1(g + z, h)∣

= r≠zi−1(g + z, h).

We are now ready to give an inductive definition for the
values ti(g, h), r≠zi (g, h) for g, h, z ∈ G and 0 ≤ i ≤ n in terms
of the respective values for smaller indices.

● The case i = 0 is simple. For all g, h, z ∈ G we have

t0(g, h) = r
≠z
0 (g, h) =

⎧⎪⎪
⎨
⎪⎪⎩

1 g = h

0 else.

● For 1 ≤ i ≤ n we obtain the following equations

ti(g, h) = ∑
x∈X

r≠xi−1(g + x,h) (Lemma 2)

r≠zi (g, h) = ti(g, h) − i ⋅ r
≠z
i−1(g + z, h) (Lemma 3+4)

It remains to be checked that the above system can be
translated into an inductive definition for the invariants ti(g, h)
and r≠zi (g, h) in fixed-point logic with counting. The first thing
we observe is that the values for ti and ri become exponential
in the size of our set X . For example, if y = ∑X , then we have
that tn(0, y) = n! where n = ∣X ∣. On the other hand, a trivial
upper bound for the numbers which can occur as values for ti
and ri is nn. Hence, we can represent the values for ti and ri
in binary using polynomially many bits only. Let us explain
how we can work with the binary encoding of natural numbers
in a logical context. The standard way to do this in the logic
FPC is to use the numeric sort. To be more precise, let us
consider pairs N = (ϕ(µ), t) consisting of an FPC-formula ϕ
with a free numeric variable µ and of a closed numeric term t.
Then the pair N encodes in each input structure A a natural
number NA ∈ N which is determined as

NA
= ∑

i≤tA,A⊧ϕ(i)
2i.

We further observe that, since the values tA of the numeric
term t are polynomially bounded in the size of A, all natural
numbers that we can represent in this way have a binary
representation of polynomial length. Now, since the numeric
sort is ordered it follows by the Immerman-Vardi Theorem
that we can define in FPC every polynomial-time computable
property and function over the numeric sort. In particular

we can define in fixed-point logic with counting the basic
arithmetic on natural numbers (in binary representation) that
is required for the inductive construction of the values ti and
ri according to our system above, such as the multiplication
and addition of natural numbers.

The only non-trivial part that remains is the evaluation of
the sum over the set X in the equation for ti(g, h). Since X
is not ordered we cannot apply the Immerman-Vardi Theorem
here. Instead we use a standard trick to reduce the evaluation
of an unordered sum of natural numbers to the evaluation of
an ordered sum of natural numbers. This reduction is FPC-
definable and is crucially based on the counting mechanism of
FPC. Let us recall the idea by considering our instance of the
unordered sum ti(g, h) = ∑x∈X rx where rx = r≠xi−1(g + x,h).
First we obtain an FPC-definable linear preorder ⪯ on X that is
defined by setting x ⪯ y if rx ≤ ry . Let ∼ denote the associated
equivalence relation, that is x ∼ y if x ⪯ y and y ⪯ x. Then the
equivalence classes [x] ∈ X/ ∼ consist of elements which all
contribute the same value to the above sum. If we denote the
sizes of these classes by ∣[x]∣, then we can rewrite our sum in
an equivalent way as:

∑
x∈X

rx = ∑
[x]∈X/∼

∣[x]∣ ⋅ rx.

Since ⪯ induces a linear order on X/ ∼ and since we can
determine the sizes of the equivalence classes ∣[x]∣ by using
counting terms, this trick reduces the evaluation of the original
sum over X to a sum over the ordered set X/ ∼. At this point
we can make use of the Immerman-Vardi Theorem to see that
evaluating the ordered sum is possible in fixed-point logic with
counting.

Theorem 5. The summation problem in Abelian semigroups
is definable in fixed-point logic with counting.

IV. A REDUCTION TO LINEAR EQUATION SYSTEMS OVER
FINITE RINGS

A particular interesting case of the summation problem over
Abelian semigroups arises when we require that the underlying
semigroup is an Abelian group. Recall that already for this,
apparently simpler, setting of Abelian groups it was open
whether the summation problem can be defined in Choice-
less Polynomial Time which is, to date, the most promising
candidate of a logic which might capture polynomial time.

In this section we show that the summation problem over
Abelian groups can be reduced to linear algebra over fi-
nite rings. More precisely, we describe how to express the
summation problem over Abelian groups as the solvability
problem for systems of linear equations over finite cyclic
rings Zd where d ∈ N is a prime power. Our reduction is
simple in the sense that it can be expressed in first-order
logic. One consequence of this is that the summation problem
over Abelian groups is definable in first-order solvability
logic (FOS). This logic extends pure first-order logic by
new operators that decide the solvability of linear equation
systems over finite cyclic rings. This logic, and also many
similar variants based on different linear-algebraic operators



over finite algebraic domains, have been studied intensively in
recent years, see for example [11], [10], [22], [23], [26]. The
reason for this is that many fundamental problems from linear
algebra over finite domains turned out to be undefinable in
fixed-point logic with counting [3]. This holds, in particular,
for the solvability problem for linear equation systems.

A. First-order solvability logic

First-order solvability logic (FOS) extends first-order logic
by solvability quantifiers which are logical operators capable
of deciding the solvability of linear equation systems over
finite cyclic rings Zd where d ∈ N is a prime power. Formally,
we add to the syntax of first-order logic the following formula
creation rule.

● Let ϕM(x⃗, y⃗, z⃗) ∈ FOS and ψd(v⃗, w⃗, z⃗) ∈ FOS be
formulas of first-order solvability logic where ∣v⃗∣ = ∣w⃗∣.
Then ψ(z⃗) = slv ([x⃗, y⃗ ϕM ], [v⃗, w⃗ ψd]) is a formula of
FOS as well.

The semantics of ψ(z⃗) over an input structure A (together
with an interpretation z⃗ ↦ c⃗ of the free variables z⃗) is defined
as follows. The idea is that the formula ϕM defines a {0,1}-
coefficient matrix M of a linear equation system M ⋅x = 1 over
Zd where d ∈ N is a prime power and this prime power d is
specified by the formula ψd. More precisely, let k = ∣v⃗∣ = ∣w⃗∣.
Then the formula ψd defines in (A, z⃗ ↦ c⃗) a binary relation
on k-tuples. If this relation happens to be a linear order whose
length d ∈ N is a prime power, then we take this prime power
d to specify the cyclic ring Zd. Otherwise we agree that the
formula is false in A (it can be shown that this case can be
avoided through a syntactic criterion). Further we let ` = ∣x⃗∣
and `′ = ∣y⃗∣. Then the formula ϕM defines in A the I × J-
matrix Mϕ over {0,1} ⊆ Zd where I = A` and J = A`′ and
where for a⃗ ∈ I and b⃗ ∈ J we have Mϕ(a⃗, b⃗) = 1 if, and only
if, A ⊧ ϕM(a⃗, b⃗, c⃗).

Let 1 be the I-identity vector over Zd, that is 1(a⃗) = 1
for all a⃗ ∈ I . Then Mϕ and 1 determine the linear equation
system Mϕ ⋅x = 1 over Zd where x = (xj)j∈J is a J-vector of
variables xj which range over Zd. Finally, A ⊧ ψ(c⃗) if, and
only if, Mϕ ⋅ x = 1 is solvable.

At first glance it might seem that in our definition we
restrict to linear equation systems of a special syntactic form.
Indeed, we require that every linear equation in our system
has the form ∑j∈J aj ⋅xj = 1 with coefficients aj from the set
{0,1} ⊆ Zd. However, it is easy to show that this is not a severe
restriction, because every definable linear equation system in
a general form can be transformed into this kind of syntactic
normal form in first-order logic (see for example Lemma 4.1
in [10]). Hence, we do not limit the expressive power of FOS
by imposing these kinds of syntactic restrictions.

Another important point to observe about our definition
of FOS is that we use a uniform solvability quantifier slv
which takes the prime powers d ∈ N as part of its input.
In contrast one could also annotate the prime powers to the
solvability quantifiers as fixed constants, that is one could
introduce separate solvability quantifiers slvd for every prime
power d ∈ N each for solving linear equation systems over

Zd. It was recently shown that, in general, the logics based
on uniform linear-algebraic operators are strictly stronger than
the logics with separate operators for the domains [16]. We
also expect this to be the case for first-order solvability logic
with respect to the summation problem over Abelian groups.

B. Reducing the summation problem in Abelian groups to
linear equation systems

To explain how our reduction works let us first fix an
instance (G,+,X) of our problem. Recall that in this section
(G,+) is an Abelian group rather than a semigroup. As before
X ⊆ G is a set of elements and we are interested in whether
or not the sum over all elements in X yields some particular
element g ∈ G. Without loss of generality this element g ∈ G
can always be assumed to be the neutral element 0 ∈ G.
Hence the problem we want to express is whether or not
∑X = ∑x∈X x = 0.

In order to reduce the instance (G,+,X) of the summation
problem over Abelian groups to linear equation systems over
finite rings, we first make use of the structure of the finite
Abelian group (G,+). Recall that by the well-known structure
theorem for finite Abelian groups we can find group elements
g1, . . . , gk ∈ G, k ≥ 0, such that:

● G is the direct sum of the cyclic groups ⟨gi⟩ generated
by the group elements gi ∈ G, that is G = ⟨g1⟩⊕⋯⊕⟨gk⟩.

● Each element gi is of prime-power order, that is ∣gi∣ = p
`

for some prime p ∈ P and some ` ≥ 1.
Moreover, the decomposition of G into a sum of cyclic sub-
groups is unique in the sense that the multiset of prime powers
that occur as sizes of cyclic groups in this decomposition only
depends on the group G, but not on the specific choice of
generators g1, . . . , gk.

If we had access to a decomposition of G into cyclic
subgroups ⟨g1⟩ ⊕ ⋯ ⊕ ⟨gk⟩ for g1, . . . , gk ∈ G as above, then
expressing the summation problem in G would be a simple ex-
ercise. Indeed, the following approach could be used to obtain
a definition in least fixed-point logic (even without counting).
To express whether ∑X = 0 holds in G we first project the
elements in X to each of the summands ⟨gi⟩ individually, and
then we check for every summand Gi = ⟨gi⟩ whether the sum
over the projected elements is 0 in this summand Gi. This
reduces the summation problem over general Abelian groups
to the summation problem over cyclic groups which is much
simpler. Indeed, the summation problem over cyclic groups
can be expressed in LFP for trivial reasons. First observe that
on a cyclic group it is easy to define in LFP an order: we
fix a generator and then enumerate the elements of the group
according to this generator one by one. In a second step, we
can make use of the Immerman-Vardi Theorem which says
that as soon as we have an ordered structure as input, we can
simulate all polynomial-time algorithms in least fixed-point
logic LFP.

Unfortunately, it is provably impossible to define a decom-
position of a finite Abelian group (G,+) into cyclic summands
in any of the polynomial-time logics that we consider here
(such as CPT, FPC, and so on). The reason is that in general



the choice of generators g1, . . . , gk is not canonical and, in
fact, the number of isomorphic, but different, decompositions
of G is not polynomially bounded in the size of the group G.
Hence one cannot construct a decomposition of G into cyclic
summands, in an isomorphism-invariant way, without violating
polynomial resource bounds.

To overcome this, our main idea is as follows. Instead of
trying to construct a decomposition of G and to evaluate
the sum in each summand, which is as we just explained
not possible, we rather try to guess one decomposition of G
together with one summand in this decomposition and then
verify that the sum over the projected elements from X in this
summand is not 0. Of course, we have that ∑X ≠ 0 if, and
only if, we can find such a witnessing pair of a decomposition
and a corresponding summand. The important point about this
approach is that the “guessing step” can be formulated using
a family of linear equation systems over finite cyclic rings Zd.

Let us make this idea more precise. We define a witness
(showing that ∑X ≠ 0 in G) as a pair (ϕ, d) consisting of a
prime power d ∈ N and a (group) homomorphism ϕ ∶ G→ Zd

such that ∑ϕ(X) = ∑x∈X ϕ(x) ≠ 0. Note that since ϕ is a
homomorphism we have that ϕ(∑X) = ∑ϕ(X). Hence if we
find a witness, then clearly ∑X ≠ 0 in G. On the other hand,
if ∑X ≠ 0 in G, then we can also find a witness for this.
Indeed, consider some decomposition of G as above, that is
let G = ⟨g1⟩ ⊕ ⋯ ⊕ ⟨gk⟩ for some choice of group elements
g1, . . . , gk ∈ G. If ∑X ≠ 0, then we can find at least find
one component ⟨gi⟩ such that the (projected) sum over X in
this component is not 0. Recall that ∣gi∣ = d is a prime power
and, as a cyclic group, that ⟨gi⟩ is isomorphic to Zd. Then
it is easy to see that we can choose ϕ ∶ G → Zd to be the
composition of the projection of G onto the summand ⟨gi⟩
and the isomorphism from ⟨gi⟩ to Zd so that we obtain a
witness (ϕ, d) as claimed. We conclude that ∑X ≠ 0 holds
in G if, and only if, we can find a witness (ϕ, d) for this.

We next want to show that the existence of a witness (ϕ, d)
for a prime power d ∈ N reduces to the solvability problem
of a linear equation system over Zd. To this end we consider
for every group element g ∈ G a distinct variable xg over
the domain Zd. Intuitively the value of xg should be ϕ(g).
Hence, the first thing we have to express is that the values of
the variables xg really define a homomorphism from G to Zd.
This can easily be achieved by including the following set of
linear equations in our system:

xg + xh = xg+h, for all g, h ∈ G.

What remains is to capture the condition ∑ϕ(X) ≠ 0 by
a linear equation. This, however, turns out to be impossible
since, in general, this condition does not define an affine space.
Instead we consider the following parameterised version. Let
z ∈ Zd, z ≠ 0. Instead of the equation ∑ϕ(X) ≠ 0, we
consider the equation ∑ϕ(X) = z parameterised by z and
formulate this as a linear equation in our system. To check the
original condition “≠ 0” we then just go through all possible
choices for the parameter z ∈ Zd, z ≠ 0 and check the resulting
systems with parameter z for solvability. To summarise, we

have that a witness exists if, and only if, for some parameter
z ∈ Zd, z ≠ 0, the resulting linear equation system with respect
to this parameter z is solvable. The condition ∑ϕ(X) = z
readily translates into the following linear equation:

∑
g∈X

xg = z.

It is clear that the above described linear equation systems
are definable over (G,+,X) in first-order logic. Using the
solvability operators over Zd we can express their solvability
in FOS and hence we can express in FOS whether a witnesses
(ϕ, d) exists for some prime power d ∈ N. However, in order
to do this we also have define this prime power d ∈ N in FOS
(recall that the solvability operators get the prime powers d as
part of their inputs in the form of a linear order of length d).

First of all, note that we only have to consider such prime
powers d ∈ N which divide the order ∣G∣ of the group G.
We make use of the fact that the reachability problem in
undirected graphs reduces to the solvability problem for linear
equations systems, see [11]. This shows that the logic FOS can
simulate the logic STC which is the extension of first-order
logic by a symmetric transitive closure operator, see [13], [24].
Over ordered structures, it is known that STC can express
every LOGSPACE-computable property of finite structures. In
particular, STC can express whether a given linear order has
length d ∈ N for some prime power d. Furthermore, we claim
that in STC we can define for every group element g ∈ G a
linear order whose length is the order ∣g∣ = ∣{i ⋅ g ∶ i ∈ N}∣

of g in G. Note that if we can show this, then we are done,
because we can then check in STC whether this linear order
has length d = ∣g∣ for some prime power d. Moreover, for every
prime power d which divides the order of G we can find a
group element g ∈ G of that order. To verify the above claim,
consider for a group element g ∈ G the graph Hg = (G,Eg)

with the edge relation defined by (e, f) ∈ Eg ∶⇔ e + g = f .
The graph Hg consist of disjoint cycles each of length ∣g∣
corresponding to the different cosets of the cyclic group ⟨g⟩
generated by g in G. Our claim follows, since it is an easy
exercise to define a linear order on a cycle in STC.

Theorem 6. The summation problem over finite Abelian
groups is definable in first-order solvability logic FOS.

V. LOWER BOUNDS FOR THE SUMMATION PROBLEM

In this section we obtain matching lower bounds and show
that counting operators, or solvability quantifiers, are really
necessary in order to define the summation problem over
Abelian semigroups. Actually, this is easy to show if one con-
siders the general ASSP, that is the summation problem over
Abelian semigroups. In fact, over semigroups, it is possible
to reduce the “Even Cardinality” problem to the summation
problem. From this we immediately get an undefinability result
for Choiceless Polynomial Time without counting and thus,
in particular, for first-order logic and least fixed-point logic.
However, if we consider the summation problems over Abelian
groups, then our inputs have more structure and our proof
for the lower bound becomes much more sophisticated. In



fact, in order to obtain our lower bound for the finite-variable
fragment of infinitary logic, and thus for least fixed-point logic,
over Abelian groups we make use of a probabilistic argument,
which can then be extended to Choiceless Polynomial Time
without counting.

A. Abelian semigroups

Let us start with the simple case of the summation problem
over Abelian semigroups. Recall that the Even Cardinality
Problem is to determine whether the universe of a finite
structure (over the empty signature) has even cardinality. It is
known that the Even Cardinality Problem cannot be expressed
in Choiceless Polynomial Time without counting [6], [27].

Theorem 7. The Abelian Semigroup Summation Problem is
not definable in Choiceless Polynomial Time without counting.

Proof. In order to prove the statement it suffices to show
that the Even Cardinality Problem reduces to the Abelian
Semigroup Summation Problem. Let M be a finite set with
at least two elements and 0 ∉ M . We define the Abelian
semigroup S(M) = (M ∪ {0},+) with x + y ∶= 0 for all
x, y ∈ M ∪ {0}. Now consider the semigroup Z2 × S(M).
Then

∣M ∣ is even ⇔∑{1} ×M = (0,0).

Clearly, the mapping M ↦ (Z2 × S(M),{1} × M, (0,0))
is definable in first-order logic and hence also in Choiceless
Polynomial Time without counting.

B. Abelian groups

We next prove that even in the case of finite Abelian
groups, the summation problem is not definable in the in-
finitary logic Lω

∞ω , and therefore also not in LFP. Recall
that Lω

∞ω = ⋃k<ω Lk
∞ω , where Lk

∞ω extends the k-variable
fragment of first-order logic by conjunctions and disjunctions
over arbitrary sets of formulae. It is well-known that, over any
class of structures of bounded cardinality, and thus in particular
for finite structures, LFP can be embedded into Lω

∞ω .
Our approach is probabilistic. We first establish a limit law

for Lω
∞ω on random relational expansions of vector spaces

(Zp)
n. We shall then show, again by a simple probabilistic

argument, that the definability of Abelian group summation
problem in Lω

∞ω would permit to construct a sentence that
would violate that limit law.

We consider the group (Zp,+,0), for some prime p, and
an arbitrary finite relational vocabulary τ = {X1, . . . ,X`}.
For each n ∈ N, we consider the probability spaces Sn(Zp),
consisting of all expansions of (the additive group of) the
vector space (Zp)

n by relations from τ , with the uniform
probability distribution.

For every sentence ψ (in whatever logic) of vocabulary
{+,0} ∪ τ , let µn(ψ) denote the probability that a randomly
chosen structure A ∈ Sn(Zp) is a model of ψ. We prove the
following limit law.

Theorem 8. For every τ and for every sentence ψ ∈ Lω
∞ω of

vocabulary {+,0} ∪ τ ,

lim
n→∞µn(ψ) =

r

2`
, for ` = ∣τ ∣ and some r ≤ 2`.

Proof. Let δ1, . . . , δm be the m = 2` atomic τ -types in the
constant 0 (and without variables). For each j, δj is a con-
junction over ` atoms or negated atoms of form Xi(0, . . . ,0),
for Xi ∈ τ . Obviously, for all j ≤m and all n, µn(δj) = 1/m.

For any collection a1, . . . , ak of elements of (Zp)
n let

span(a1, . . . , ak) be the subspace generated by a1, . . . , ak.
Clearly, the size of span(a1, . . . , ak) in (Zp)

n is bounded by
pk, for any n.

Recall that an atomic k-type t(x1, . . . , xk) of a vocabulary
σ is a maximal consistent set of atoms and negated atoms
in the variables x1, . . . , xk. In our case, σ = {+,0} ∪ τ ,
and a k-type t(x1, . . . , xk) specifies the linear dependencies
and independencies of x1, . . . , xk and the truth values of all
atoms X(y1, . . . , yr) where X ∈ τ , and each yi is a Zp-linear
combination of x1, . . . , xk.

Definition 9. For each j ≤m , we define ATj to be the set of
all atomic types t(x1, . . . , xk) of vocabulary {+,0} ∪ τ such
that

(1) t is consistent, i.e. realisable in some (Zp)
n.

(2) t ⊧ δj ,
(3) t implies, for each i ≤ k, that xi ∉ span(x1, . . . , xi−1).
We then define Tj to be the theory of all extension axioms

exts,t ∶= ∀x̄(s(x̄) → ∃xk+1t(x̄, xk+1))

where s and t are, respectively, atomic k and k + 1-types in
ATj with t ⊧ s.

Proposition 10. Every extension axiom exts,t ∈ Tj has asymp-
totic probability one on the sequence of spaces Sn(Zp).

Proof. Let (a1, . . . , ak) be a realization of the atomic type
s(x̄) ∈ ATj in some randomly chosen expansion A of (Zp)

n.
The type s(x̄) fixes the truth values of all τ -atoms in the
variables x1, . . . , xk and the constant 0, and t(x̄, xk+1) ad-
ditionally fixes truth-values for the τ -atoms that contain at
least one term with the variable xk+1. There is a bounded
number q of such atoms. Therefore, if we fix some element
b ∈ (Zp)

n ∖ span(a1, . . . , ak), then the probability that A ⊧
t(ā, b) is 2−q .

The elements b that we have to explore are those outside
of span(a1, . . . , ak). Each of them fixes ∣span(a1, . . . , ak, b)∖
span(a1, . . . , ak)∣ ≤ (p − 1)pk new elements, so there are at
least pn−k−1 independent choices for b. Since there are fewer
than pnk realizations of s(x̄) in A, the probability that one of
them cannot be extended to a realization of t(x̄, xk+1) is at
most

pnk(1 − 2−q)p
n−k−1

which tends to 0 exponentially fast as n goes to infinity.
Thus, the asymptotic probability of every extension axiom

exts,t ∈ Tj is one on Sn(Zp).



For every j ≤ m, k < ω, let θkj be the conjunction of all
extension axioms in Tj with at most k variables. Further, let
E(k, j) be the class of all expansions A of (Zp)

n (for any
finite n ≥ k) such that A ⊧ δj ∧ θkj .

Lemma 11. limn→∞ µn(δj ∧ θ
k
j ) = 1/m for all j ≤m,k < ω.

Proposition 12. For every ψ ∈ Lk
∞ω and every j ≤ m, either

A ⊧ ψ for all A ∈ E(k, j), or A ⊧ ¬ψ for all A ∈ E(k, j).

Proof. Take any two structures A,B ∈ E(k, j). From the
fact that both structures satisfy δj ∧ θ

k
j we immediately get

a winning strategy for the k-pebble game on A and B (for
background on the model comparison games for k-variable
logic, see [12], [24]). Hence the two structures are Lk

∞ω-
equivalent, so it cannot be the case that ψ is true in one and
false in the other.

Given any formula ψ ∈ Lk
∞ω , let r(ψ) = ∣{j ≤ m ∶

ψ is true in all A ∈ E(k, j)}∣. It follows that

lim
n→∞µn(ψ) =

r(ψ)

m
.

Hence the limit law holds for Lω
∞ω .

Theorem 13. The Abelian group summation problem is not
definable in Lω

∞ω .

Proof. Suppose that the Abelian group summation problem
is definable by a formula ϕ(x) ∈ Lk

∞ω such that for every
Abelian group (H,+,0), all X ⊆H and every h ∈H ,

(H,+,0,X) ⊧ ϕ(h) ⇐⇒ ∑X = h.

Consider the sentence ψ ∶= ∃x(ϕ(x)∧X(x)∧X(0)), which
expresses that both 0 and the sum over all elements of X
are contained in X . Let G = (Z2,+,0) and H = Zn

2 . For
a randomly chosen X ⊆ H all elements of H have equal
probability to be the sum of all elements of X . The probability
that this sum is itself an element of X quickly converges
to 1/2. Thus the asymptotic probability of ψ on the spaces
Sn(Z2) converges to 1/4.

However, since we use only one random relation, the
denominator of the asymptotic probabilities in the limit law is
2, so µn(ψ) should converge to either 0,1, or 1/2. Contradic-
tion.

Categoricity

A classical result about limit laws for finite random struc-
tures states that the theory of all extension axioms is ω-
categorical, i.e. it has, up to isomorphism, precisely one
countable model. We can prove an analogous categoricity
result in our setting.

Let Z∗p be the weak ω-product of Zp. Its elements are the
functions g ∶ ω → Zp such that g(n) = 0 for all but finitely
many n, addition is defined component-wise in the obvious
way, and 0 is the constant function mapping all n ∈ ω to
0. The next observation says that the theories {δj} ∪ Tj are
categorical for expansions of Z∗p.

Proposition 14. Let Aω and Bω be any two expansions of Z∗p
to {+,0} ∪ τ -structures which are both models of {δj} ∪ Tj .
Then Aω and Bω are isomorphic.

Proof. The universes of both Aω and Bω are the same as for
Z∗p. Fix an enumeration g0,g1,g2, . . . of this set, and define
a sequence (fn)n∈ω of partial isomorphisms from Aω to Bω

as follows. Let f0 = {(0,0)}. Since both Aω and Bω are
models of δj , this is indeed a partial isomorphism. Suppose
now that, for k ≥ 0, pk has already been defined, with domain
span(a1, . . . ,ak), and image span(b1, . . . ,bk). Since fk is a
partial isomorphism (a1, . . . ,ak) and (b1, . . . ,bk) realize the
same atomic type s(x̄).

For even k, let ak+1 be the first element in the enumeration
g0,g1,g2, . . . that does not appear in the domain of pk, and let
t(x̄, xk+1) be the atomic type realized by (a1, . . . ,ak,ak+1).
Since Bω ⊧ exts,t the tuple (b1, . . . ,bk) can be extended by
a suitable element bk+1 to a realization of t(x̄, xk+1). This
defines an extension of fk to a partial isomorphism fk+1 from
span(a1, . . . ,ak+1) to span(b1, . . . ,bk+1).

For odd k we proceed similarly, by choosing for bk+1 the
first element in the enumeration of the universe that is not
contained in the image of fk. Since the appropriate extension
axiom holds in Aω the element bk+1 can then be matched by
an element ak+1 to provide the extension fk+1.

The union f = ⋃k∈ω fk will then be the desired isomorphism
between Aω and Bω .

Choiceless Polynomial Time without counting

Shelah has proved that, on finite relational structures, the
properties that are decided in Choiceless Polynomial Time
without counting obey a zero-one law (see [4] for a clear
exposition). We can show that this proof can be adapted
to prove a limit law for this logic over structures over the
sequence of spaces Sn(Zp), entirely analogous to that proved
for Lk

∞ω above. We formulate the result and give an overview
of the proof here, as a full proof would require more space.

Fix as above an atomic k-type s in ATj and let T denote
the number of distinct k + 1-types t ∈ ATj such that t ⊧ s.
We write strong-exts,t for the statement that asserts that for
every k-tuple of type s, there are pn/2T distinct elements
witnessing extensions of this tuple to type t. Note that this is
not a fixed first-order statement as it depends on n, the number
of elements in the structure. Nonetheless, a calculation similar
to that in [4] establishes that strong-exts,t has asymptotic
probability one for all s and t. Again, let Θk

j be the conjunction
of all statements strong-exts,t with s a k-type in ATj . Then, the
limit law for Choiceless Polynomial Time can be formulated
as follows.

Lemma 15. If M is a Choiceless Polynomial Time machine
(without counting), then there is an m such that if A,B ⊧

Θm
j ∧ δj and M halts with a result on both inputs A and B,

then M accepts A if, and only if, it accepts B.

The proof of this limit law has a number of ingredients. The
key is to show that we can define a finite substructure H(A) of



the universe of the hereditary finite sets over A which includes
all sets constructed by M in the computation on input A (this
is standard, see [4]). We then show that, if A and B satisfy
sufficiently many strong extensions axioms, then H(A) cannot
be distinguished from H(B) in Lk

∞ω . The key is to show that
the sets constructed in the course of the computation have
certain symmetries. These symmetries cannot be expressed by
automorphisms of A, since it can be shown that a random
expansion of Zp does not have any non-trivial automorphisms.
Instead we rely on partial automorphisms as in [4]. Showing
that these symmetries are preserved in H(A) can be done
along the same lines as in [4] through the construction of
supported sets, though the combinatorics are different for
the space Sn(Zp) than they are for random graphs. As a
consequence we can generalise Theorem 13.

Theorem 16. The summation problem for Abelian groups is
not definable in Choiceless Polynomial Time without counting.

VI. FINITE SUMS IN INFINITE SEMIGROUPS

Summation problems in groups and semigroups arise in
different variations. In some important applications we deal
with summations over a finite set in some fixed infinite group
or semigroup. This raises the questions whether our method
for defining the summation problem in fixed-point logic with
counting can be adapted to this case, and moreover, whether
the summation problems becomes simpler, say LFP-definable,
for certain important classes of semigroups.

Question: For which (possibly singleton) classes of finite
and/or infinite Abelian semigroups does there exist a formula
in FPC, or in LFP or even in FO, that defines, for each
semigroup G in the class and all finite subsets X of G, the
sum over X in G?

Actually, our results in Sect. III show that an appropriately
defined variant of FPC (with relativisations of quantifiers to X
and bounds for numbers defined by ∣X ∣) works in all cases.
We add a few observations about definability of summation
problems in simpler logics.

Obviously, the summation problem is first-order definable
for all finite classes of finite semigroups. Moreover it is
first-order definable for the class of all semilattices, i.e. all
commutative semigroups which are idempotent, which means
that g + g = g for all g ∈ G. In that case, for every set X ⊆ G
the sum ∑X is the least upper bound wrt to the partial order
defined by g ≤ g′ ∶↔ ∃h(g + h = g′).

In an arbitrary monoid (G,+,0) the relation ≤ is always
a pre-order (being reflexive and transitive), but it need not
necessarily be a partial order since it is not always anti-
symmetric. Clearly, if ≤ is actually a linear order then the
summation problem is LFP-definable due to the Immerman-
Vardi Theorem.

Another interesting case of LFP-definable summation prob-
lems arise when the summation is done over a linearly
independent set X , say in a vector space over Z2. We can
then take the obvious LFP-definition

[lfpY x .Xx ∨ ∃y∃z(Y y ∧Xz ∧ x = y + z)](x)

of the subgroup that is generated by X . Since ∑X is the
unique element that is included in this fixed point at the last
stage, it is definable due to the Stage Comparison Theorem
for LFP.

The above idea can be generalised. Let G be a finite Abelian
group, with a subset X , so that we can define in LFP (possibly
with parameters) a set B = {b1, . . . , bk} such that

G ≅ ⟨b1⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨bk⟩.

Then we claim that the representation of any element g ∈ G
in terms of B is LFP-definable. In fact, if g = ⊕i zi ⋅ bi, for
0 ≤ zi < ∣bi∣, then zi is the unique number in {0, . . . , ∣bi∣ − 1}
which satisfies that g−zi ⋅bi ∈ G−i = ⟨b1, . . . , bi−1, bi+1, . . . , bk⟩.
As we can define in LFP the subgroup G−i, as we saw above,
the claim follows. What this shows is that we can define in LFP
the isomorphism from G to ⟨b1⟩⊕⋅ ⋅ ⋅⊕⟨bk⟩. This means that we
can reduce problems over G to the cyclic summands ⟨bi⟩ in
LFP. Since cyclic groups can be ordered in LFP, by fixing
a generator, it follows from the Immerman-Vardi Theorem
that every polynomial-time property of cyclic groups is LFP-
definable. Hence, LFP captures all polynomial-time problems
over Abelian groups in which we can define a basis B as
above. In particular, we can express the summation problem.

VII. APPLICATIONS IN DATABASE THEORY

The problem of computing the sum over a set of a priori
unknown and potentially unbounded size in a monoid appears
in a number of applications. We mention here two of them
that arise in database theory. The first one concerns aggregate
operations in databases query languages, the second database
provenance.

A. Aggregate operations
In logical terms, an aggregate operation Γ allows us to

derive from a query ϕ(x̄, ȳ) functions Fϕ(x̄) ∶= Γȳϕ(x̄, ȳ),
taking values typically in some numerical domain such as N
or Q. A value Fϕ(ā) is obtained by collecting all tuples b̄
such that ϕ(ā, b̄) holds, and applying the operation Γ to this
collection. Depending on the operation Γ it may be important
that this collection is understood as a multiset, rather than a
set, which means that duplicates are not eliminated. Standard
aggregates, which are present in all commercial database
systems, include count, max, min, sum, product, and statistical
aggregate functions such as average or standard deviation, and
for all of theses, except max and min, it is essential that we
treat the collection of values ϕ(ā, b̄) as a multiset.

Some database systems also have mechanisms for user-
defined aggregate operations [28], so a bit of theory is useful to
determine what an aggregate precisely is and what properties
it should satisfy. Since the outcome of a query should not
depend on the internal representation of the database in the
system, aggregate function need to be defined on the basis of
commutative and associative operations, which naturally leads
to monoids.

Beyond databases, a general concept of aggregate functions
based on multiset operations has also been defined in metafi-
nite model theory [14].



B. Summation problems for multisets and monoid aggregation
functions

Multisets (or bags) generalize sets by admitting multiple
occurrences of elements. Given that for some applications,
summation problems over multisets are more natural than over
sets, it is useful to notice that, for the concerns of this paper,
there is no important difference. We can easily go back and
forth between summation problems for sets and for multisets.

Formally, a multiset X over a domain A is given by a
function mX ∶ A → N and can be seen as the set of pairs
{(a,n) ∶ a ∈ A,n < m(a)} ⊆ A × N. If mX(a) = 0 then we
say that a does not occur in X . The union X ∪ Y of two
multisets X,Y over A is given by the function mX∪Y (a) =
mX(a) +mY (a). Finite multisets can also be described by
listing the elements explicitly in the form {{a, a, b, b, b, . . .}}.
For any set A, let Mult(A) be the collection of all multisets
over A.

An instance of the multiset summation problem for Abelian
monoids is given by a monoid (A,+,0) and a function
mX ∶ A → N (describing a multiset X), with the task of
determining ∑X = ∑a∈AmX(a) ⋅ a in A. The set summation
problem is just the special case where mX only takes values in
{0,1}. Conversely, every multiset summation problem, given
by (A,+,0,m ∶ A → N), is equivalent to the set summation
problem in the monoid A ×N with (a, i) + (b, j) ∶= (a + b,0)
over the the set X = {(a, i) ∶ a ∈ A, i <m(a)}.

Clearly (Mult(A),∪,∅) is a commutative monoid, called
the multiset monoid over A. Let M = (M,+,0) be an arbitrary
commutative monoid. Then every map h ∶ A → M induces
a monoid homomorphism H ∶ Mult(A) → M generated by
H({{a}}) ∶= h(a).

This leads to a rather general kind of aggregate operations,
the monoid aggregates [8]. In fact, it has been argued that
“most aggregates in databases are either monoidal or can
be obtained from monoidal aggregates by means of simple
arithmetic operations” [21].

Definition 17. A monoid aggregation function H on a domain
A is given by an arbitrary commutative monoid M = (M,+,0)
and a function h ∶ A → M . The function H is then the
homomorphism induced by h, from the multiset monoid over
A into M. It associates with every multiset X ∈ Mult(X) the
value H(X) ∈M .

Note that the computation of the aggregation H(X) corre-
sponds to solving the summation problem over a multiset in
the underlying monoid M . Indeed, H(X) = ∑{{ha ∶ a ∈X}}.

For such operations, the underlying monoid can be finite or
infinite, but the multisets over which the sum is computed is
always finite.

The standard aggregate operations present in, say, SQL,
are based on monoids that are totally ordered by the monoid
operation (in the sense that x ≤ y ↔ ∃z(x + z = y), but there
are very simple other aggregates for which this is not the case.
The simplest one is the parity operation.

Our results on the Abelian semigroup summation problem
can be understood as saying that a database query language
with the power to formulate monoidal aggregates can in fact
also define the results of such aggregate queries, if it provides
both fixed-point recursion and counting, but that relational
recursion alone may be insufficient.

C. Database provenance.

There are several other areas in databases where the Abelian
semigroup summation problem arises. Several variants of
calculations in relational algebra with annotated relations
appear for incomplete databases, probabilistic databases, bag
semantics and provenance. It has been shown, for instance in
[17], that these can be understood as instances of a general
algorithmic approach involving semiring computations. Based
on an evaluation of the atomic facts not just by Boolean truth
values, but by values in an arbitrary commutative semiring,
one can compute values for arbitrary queries from relational
algebra or Datalog, which provide more information than just
the truth or falsity of the query, and are relevant for issues
such as cost, reliability, confidence, access control and others.

While the complexity of computing such values in a semir-
ing (K,+ ⋅ ,0,1) may be hard, in fact #P-complete in many
cases, there are simpler instances of queries that require solv-
ing the summation problem in the additive monoid (K,+,0)
of the semiring. In particular, this is the case for existential
projections. Given a query ϕ(x̄) ∶= ∃ȳR(x̄, ȳ) and a valuation
V mapping atoms R(ā, b̄) to K then the value of ϕ(ā) is given
as the sum, in (K,+,0) over the set of all values V (R(ā, b̄))
for arbitrary tuples b̄.

VIII. CONCLUSION

We proved that the summation problem in Abelian semi-
groups (ASSP) is definable in fixed-point logic with counting.
Furthermore, we showed that counting is really necessary:
the summation problem cannot be expressed in Choiceless
Polynomial Time without counting even over Abelian groups.
Moreover, we saw that over Abelian groups the summa-
tion problem can be reduced to systems of linear equations
over finite rings which lead to a definability result for first-
order solvability logic. These results clarify the descriptive-
complexity-theoretic status of the ASSP and, in particular, they
answer an open question of Rossman.

Let us mention some questions for future research. First of
all, our definability result for first-order solvability logic (FOS)
only holds over Abelian groups, and it remains open whether
it can be generalised to Abelian semigroups. At least, note
that our proof techniques for the lower bounds for Choiceless
Polynomial Time without counting do not work for FOS, be-
cause in FOS one can express modulo counting. Also it would
be interesting to study whether for the FOS-definability result,
solvability quantifiers over finite rings are really necessary or
whether solvability quantifiers over finite fields suffice. This
question is related to the question of whether rank operators
over finite fields can express the solvability of linear equation
systems over finite rings, see e.g. [10].



A second question is whether the ASSP can also be ex-
pressed in logics with data complexity in LOGSPACE, such as
STC or LREC with counting [20]. Note that the ASSP can
clearly be decided by a LOGSPACE-algorithm.

Finally, let us remind of our question from Section VI where
we asked for classes of (infinite) semigroups over which the
summation problem is definable in LFP. More generally, it
would be interesting to identify classes of semigroups over
which LFP can express every polynomial-time property of
semigroups extended by unary predicates. Of course, it would
also be quite interesting to study this question for stronger
logics such as FPC and CPT, and also over Abelian groups. In
particular, we ask whether FPC captures polynomial time over
the class of all finite Abelian groups with unary predicates.
Indeed, over the class of all (pure) Abelian groups (G,+)
one can show that FPC can express every polynomial-time
property via a simple canonisation argument. However, as we
saw in this paper, things already become non-trivial if we add a
single unary predicate X and try to express a computationally
very simple polynomial-time property, such as the summation
problem, in FPC.
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[15] E. Grädel and M. Otto. Inductive Definability with Counting on Finite
Structures. In Computer Science Logic, CSL 92, volume 702 of LNCS,
pages 231–247. Springer, 1992.
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