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Abstract

Most of the logics commonly used in verification, such as LTL, CTL,
CTL∗, and PDL can be embedded into the two-variable fragment of the
µ-calculus. It is also known that properties occurring at arbitrarily
high levels of the alternation hierarchy can be formalised using only
two variables. This raises the question whether the number of fixed-
point variables in µ-formulae can be bounded in general.

We answer this question negatively, and prove that the variable-
hierarchy of the µ-calculus is semantically strict. For any k, we provide
examples of formulae with k variables that are not equivalent to any
formula with fewer variables. In particular, this implies that Parikh’s
Game Logic is less expressive than the µ-calculus, thus resolving an
open issue raised by Parikh in 1983.

1 Introduction

The µ-calculus Lµ extends basic modal logic by adding monadic variables
bound to least and greatest fixed points of definable operators. This provides
a notion of recursion which invests the logic with very high expressive power.
On the other side, the monadic fixed points import considerable conceptual
complexity. One well-studied measure of complexity for Lµ is the alternation
depth, that is, the number of genuine alternations between greatest and
least fixed-point operators occurring in a formula. It has been shown by
Bradfield [6] that the alternation hierarchy of the µ-calculus is strict. Variants
of this result have also been proved by Lenzi [14] and Arnold [1].

Interestingly, most of the formalisms commonly used for process descrip-
tion allow translations into low levels of the Lµ alternation hierarchy. On
its first level this hierarchy already captures, for instance, PDL as well as
CTL, while their expressive extensions ∆PDL and CTL∗ do not exceed the
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second level. Still, the low levels of this hierarchy do not exhaust the sig-
nificant properties expressible in Lµ. A comprehensive example of formulae
distributed over all levels of the alternation hierarchy is provided by parity
games. Thus, strictly on level n, there is a formula stating that the first
player has a winning strategy in parity games with n priorities.

By reusing fixed-point variables several times it is possible to write many
Lµ-formulae, even with highly nested fixed-point definitions, using only very
few variables. This is actually the case for Parikh’s Game Logic [16] which
subsumes the aforementioned formalisms, ∆PDL and CTL∗, but also contains
formulae describing the winning position in parity games, for any number of
priorities [3], thus intersecting non-trivially with all levels of the alternation
hierarchy.

In this context, the question arises whether a finite number of variables
is sufficient to express all Lµ-definable properties. We answer this question
negatively by proving that the variable hierarchy of the µ-calculus is strict.

To witness this, we consider Lµ-formulae that describe a given finite
Kripke structure. Specifically, we identify a parameter of directed graphs,
called entanglement, which measures how many variables are sufficient to de-
scribe, up to bisimulation, any Kripke structure over that graph. We prove
that every directed graph of entanglement k can be turned into a Kripke
structure that cannot be described with less than k variables.

Our proof of the hierarchy theorem consists of two main parts. First, we
establish the strictness of the hierarchy for the case of existential formulae,
i.e., formulae built without using universal modalities. It is known that these
characterise precisely the Lµ-definable properties which are preserved under
simulation. We show that no existential formula with less than k variables
can define the simulation type of a Kripke structure of entanglement k, under
a particular labelling.

In the second part, we prove a preservation theorem stating that every
formula defining the simulation type of a strongly connected structure can
be transformed into an existential formula without increasing the number of
variables. Thus the strictness of the variable hierarchy for the full µ-calculus
follows from its strictness in the existential case.

Besides revealing a new aspect of the rich inner structure of the µ-calculus,
this result settles an open question formulated by Parikh in [15] regarding
the expressive power of Game Logic. When interpreted on Kripke structures,
this logic can be translated into the two-variable fragment of Lµ, but it was
unknown, up to now, whether the inclusion in Lµ was proper. The strictness
of the variable hierarchy implies that already the three-variable fragment of
Lµ is more expressive than GL.

Here is an overview of the article. In Section 2 we define the µ-calculus,
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explain parity games and introduce the variable hierarchy. Section 3 is ded-
icated to the notion of entanglement. After defining this measure, we show
that, if a Kripke structures has entanglement k, its bisimulation type – and
also its simulation type – can be described in Lµ using k variables. Further,
we provide a characterisation of entanglement in terms of a game between
a thief and several detectives. With the aid of this characterisation, we es-
tablish the strictness of the variable hierarchy for the existential fragment of
Lµ in Section 4. The technically most involved part of our presentation is
the preservation theorem proved in Section 5, which allows us to generalise
the strictness of the variable hierarchy for the existential fragment to the
full µ-calculus. The hierarchy theorem is stated in Section 6 together with
concrete examples of separating formulae over a language of two actions only.
We conclude with a discussion on the relation between Parikh’s Game Logic
with the alternation and variable hierarchy of Lµ.

2 The modal µ-calculus

2.1 Syntax and semantics

For a set act of actions, a set prop of atomic propositions, and a set var

of monadic variables, the formulae of Lµ are defined by the grammar

ϕ ::= ⊥ | > | p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ

where p ∈ prop, a ∈ act, and X ∈ var.
The syntax tree Tψ of a formula ψ ∈ Lµ is defined inductively, by associ-

ating atomic formulae (propositions and their negations, variables, and the
constants ⊥, >) to isolated nodes, unary constructs 〈a〉ϕ, [a]ϕ, µX.ϕ, νX.ϕ
to trees with a single immediate subtree Tϕ, and binary constructs ϕ1 ∨ ϕ2,
ϕ1 ∧ ϕ2 to trees with two immediate subtrees Tϕ1

and Tϕ2
. If we introduce,

for every leaf corresponding to a variable occurrence X, a link to (the unique
node which corresponds) to its binding definition µX.ϕ or νX.ϕ, we obtain
an operational representation of ψ as a tree with back edges, which we call
its syntax graph Sψ.

The number of distinct fixed-point variables appearing in an Lµ-formula
induces the following syntactic hierarchy.

Definition 1. For any k ∈ N, the k-variable fragment Lµ[k] of the µ-calculus
is the set of formulae ψ ∈ Lµ that contain at most k distinct variables.
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Formulae of Lµ are evaluated on Kripke structures at a particular state.
A Kripke structure for act and prop is a structure

K =
(
V, (Ea)a∈act, (Vp)p∈prop

)

with universe V (whose elements are called states), binary transition relations
Ea ⊆ V ×V for each a ∈ act, and monadic relations Vp ⊆ V for each atomic
proposition p ∈ prop. In general, we consider rooted structures K, u, and
assume that all states are reachable from the designated state u ∈ V . On
trees, we may omit to mention the root explicitly.

Given a formula ψ and a structure K with a state u, we write K, u |= ψ
to express that ψ holds in K at state u. The set of states u ∈ V such that
K, u |= ψ is denoted by [[ψ]]K. Thus, [[⊥]]K := ∅ and [[>]]K := V . For atomic
propositions p ∈ prop, we have [[p]]K := Vp, respectively [[¬p]]K := V \ Vp.
The propositional operators are interpreted as usual,

[[ϕ1 ∨ ϕ2]]
K := [[ϕ1]]

K ∪ [[ϕ2]]
K and [[ϕ1 ∧ ϕ2]]

K := [[ϕ1]]
K ∩ [[ϕ2]]

K.

The meaning of the modal operators is given by:

[[〈a〉ϕ]]K := { v | there exists w such that (v, w) ∈ Ea and w ∈ [[ϕ]]K },

[[[a]ϕ]]K := { v | for all w such that (v, w) ∈ Ea, we have w ∈ [[ϕ]]K }.

To understand the semantics of fixed-point operators, note that a formula
ϕ(X) with a monadic variable X defines on every Kripke structure K (pro-
viding interpretations for all free variables other than X occurring in ϕ)
an operator ϕK : P(V ) → P(V ) assigning to every set X ⊆ V the set
ϕK(X) := [[ϕ]]K,X = {v ∈ V : (K, X), v |= ϕ}. As X occurs only positively
in ϕ, the operator ϕK is monotone for every K, i.e., X ⊆ X ′ implies that
ϕK(X) ⊆ ϕK(X ′). Therefore, by a well-known theorem due to Knaster and
Tarski, ϕK has a least fixed point lfp(ϕK) and a greatest fixed point gfp(ϕK).
Now we put

[[µX.ϕ]]K := lfp(ϕK) and [[νX.ϕ]]K := gfp(ϕK).

Least and greatest fixed points can also be constructed inductively. Given
a formula νX.ϕ, we define for each ordinal α, the stage Xα of the gfp-
induction of ϕK by X0 := V , Xα+1 := [[ϕ]](K,X

α), and Xα :=
⋂
β<αX

β if α is
a limit ordinal. Due to monotonicity, the stages of the gfp-induction decrease
until a fixed point is reached. By ordinal induction, one easily proves that this
inductively constructed fixed point coincides with the greatest fixed point.
The finite approximants of a formula νX.ϕ are defined by ϕ0 := > and
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ϕn+1 = ϕ[X/ϕn] (the formula obtained by replacing every free occurrence of
X in ϕ, by ϕn). For least fixed points the situation is dual. Obviously, νX.ϕ
implies ϕn for all n, and on finite Kripke structures also the converse holds:
If K, v |= ϕn for all n, then also K, v |= νX.ϕ.

Simultaneous Fixed Points. There is a variant of Lµ that admits simul-
taneous fixed points of several formulae. This does not increase the expres-
sive power but allows more transparent formalisations. The mechanism for
building simultaneous fixed-point formulae is the following. Given formu-
lae ϕ1, . . . , ϕn and variables X1, . . . , Xn, we can write an equational system

S := {X1 = ϕ1, . . . , Xn = ϕn} and build formulae (µXi : S) and (νXi : S).
On every structure K, the system S defines an operator SK mapping an n-
tuple X̄ = (X1, . . . , Xn) of sets of states to SK

1 (X̄), . . . , SK
n (X̄) so that, for

each i we have: SK
i (X̄) := [[ϕi]]

(K,X̄). As SK is monotone, it has extremal
fixed points lfp(S) = (Xµ

1 , . . . , X
µ
n ) respectively gfp(S) = (Xν

1 . . . , X
ν
n), and

we set [[(µXi : S)]]K := Xµ
i and [[(νXi : S)]]K := Xν

i .
It is known that simultaneous least fixed points can be eliminated in

favour of nested individual fixed points.

Proposition 2 ([2]). Every formula in Lµ with simultaneous fixed points can

be translated into an equivalent formula in plain Lµ without increasing the

number of variables.

2.2 Simulation and bisimulation

Definition 3. A simulation from a structure K to a structure K′ is a relation
Z ⊆ V × V ′ respecting the atomic propositions p ∈ prop, in the sense that
K, v |= p iff K′, v′ |= p, for any (v, v′) ∈ Z, which satisfies the following
condition:

For all (v, v′) ∈ Z, a ∈ act, and every w such that (v, w) ∈ Ea,
there exists a w′ ∈ V ′ such that (v′, w′) ∈ E ′

a and (w,w′) ∈ Z.

We say that K′, u′ simulates K, u and write K, u 4 K′, u′, if there is a simu-
lation from K to K′ that contains (u, u′).

An Lµ-formula in which no universal modality [a]ϕ occurs is called ex-

istential. The validity of any existential Lµ-formula ψ is preserved under
simulation, i.e., K, u |= ψ and K, u 4 K′, u′ implies K′, u′ |= ψ.

As a modal logic, the µ-calculus distinguishes between Kripke structures
only up to behavioural equivalence, captured by the notion of bisimulation.
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Definition 4. A bisimulation between two Kripke structures K and K′ is
a simulation Z from K to K′ whose inverse Z−1 is a simulation from K′

to K. We say that the structures K, u and K′, u′ are bisimilar , and write
K, u ∼ K′, u′, if between them there is a bisimulation that contains (u, u′).

An important model-theoretic feature of modal logics is the tree model

property meaning that every satisfiable formula is satisfiable in a tree. This is
a straightforward consequence of bisimulation invariance, since K, u is bisim-
ilar to its tree unravelling.

Definition 5. The unravelling T (K, u) of a Kripke structure K from a node
u is the tree of all paths through K that start at u. More formally,

• the domain of T (K, u) is the set V T consisting of all sequences

π = v0a1v1a2 · · · vr−1arvr

where vi ∈ V and ai ∈ act, such that v0 = u and (vi−1, vi) ∈ Eai
;

• an atomic proposition p ∈ prop is true at v0a1v1a2 . . . vr−1arvr in
T (K, u) if, and only if, it is true at vr in K;

• for all actions a, the relation ET
a contains the pairs (π, πav) in V T×V T .

Obviously, the natural projection p : T (K, u) → K, u which sends every
sequence π = v0a1v1a2 . . . vr−1arvr ∈ V T to its last node vr defines a bisimu-
lation between T (K, u) and K, u.

Another significant feature of Lµ is its finite model property.

Theorem 6 ([12]). Every satisfiable Lµ-formula has a finite model.

Since the unravelling of a finite model is a finitely branching tree, we
obtain the following corollary.

Corollary 7. Every satisfiable Lµ-formula holds in some finitely branching

tree.

For later use, we state a further consequence of the finite model property.

Corollary 8. For ψ ∈ Lµ, let ψ[νn/ν] denote the result of replacing every

occurrence νX.ϕ of a ν-predicate in ψ with its n-th approximant ϕn. Then,

a formula η ∈ Lµ implies ψ if, and only if, η implies ψ[νn/ν], for each n.
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2.3 Model-checking games

The semantics of Lµ can also be described in terms of parity games. Such a
game is given by a Kripke structure G = (V, V0, E,Ω), where V is a set of
positions with a designated subset V0, E ⊆ V × V is a transition relation,
and Ω : V → N assigns to every position a priority. A play of G is a path
v0, v1, . . . formed by two players starting from a given position v0. If the
current position v belongs to V0, Player 0 chooses a move (v, w) ∈ E and
the play proceeds from w. Otherwise, his opponent, Player 1, chooses the
move. When no moves are available at the current position, the player who
has to choose loses. If this never occurs the play goes on infinitely and the
winner is established by looking at the sequence Ω(v0), Ω(v1), . . . If the least
priority appearing infinitely often in this sequence is even, Player 0 wins the
play, otherwise Player 1 wins.

Let V1 := V \ V0 be the set of positions where Player 1 moves. A mem-

oryless strategy for Player i in G is a function σ : Vi → V which indicates
a choice (v, σ(v)) ∈ E for every position v ∈ Vi. (It is called memoryless,
because it does not depend on the history of the play, but only on the current
position.) A strategy σ for Player i is a winning strategy if he wins every
play in which he moves according to σ. We denote the game in which the
moves of Player i are restricted to the strategy σ by Gσ.

The Forgetful Determinacy Theorem states that parity games are always
determined, and the winner has a memoryless winning strategy.

Theorem 9 (Forgetful Determinacy, [7]). In any parity game, one of the

players has a memoryless winning strategy.

Given a Kripke structure K, u and a closed formula ψ ∈ Lµ, the model-
checking game G(K, ψ) is a parity game associated with the problem whether
K, u |= ψ.

The positions in the game G(K, ψ) are pairs (v, ϕ) of states v ∈ V and
subformulae ϕ of ψ. To distinguish between different occurrences of the same
subformula, we represent ϕ by the associated node in the syntax graph Sψ.
The first player, here called Verifier, moves at the positions (v, ϕ1 ∨ ϕ2),
(v, 〈a〉ϕ), (v, p) with v 6∈ p, and (v,¬p) with v ∈ p and his opponent, called
Falsifier, moves from every other position. All plays start at position (u, ψ)
and proceed as follows:

• no moves are possible from (v, α) where α is atomic or negated atomic;

• from (v, ϕ1 ∨ ϕ2) or (v, ϕ1 ∧ ϕ2) there are two available moves leading
to (v, ϕ1) and (v, ϕ2);
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• from (v, 〈a〉ϕ) or (v, [a]ϕ) it is possible to move to any position (w,ϕ)
where w is an a-successor of v;

• from each position (v, λX.ϕ(X)) there is a move leading to (v, ϕ(X)),
where λ stands for either µ or ν;

• from any occurrence of a fixed-point variable (v,X), the play moves to
its binding definition (v, λX.ϕ(X)).

Thus, a play proceeds along the paths in K and in the syntax tree of ψ,
until it hits a fixed-point variable (which is a leaf in the syntax tree). There,
the play resumes with the binding definition of the variable. When this
occurs, we say that the variable (and its definition) is regenerated.

One technically useful property of fixed point formulae is guardedness.
In terms of games this guarantees that between the binding definition of a
variable and its regeneration we always have at least one modal move.

Definition 10. An Lµ-formula ψ is guarded if each path in the syntax tree
of ψ from a fixed point definition λX.ϕ to an occurrence of X passes through
a modality, 〈a〉η or [a]η.

In [13], Kupferman, Vardi, and Wolper give a procedure to transform
any Lµ-formula into an equivalent guarded formula. This procedure does not
increase the number of variables and preserves existential formulae.

Proposition 11. Every existential formula in Lµ[k] is equivalent to a guarded

existential formula in Lµ[k].

By repeatedly regenerating fixed-points, it may happen that neither Veri-
fier nor Falsifier, ever gets stuck. To decide the winner of such plays, priorities
have to be defined appropriately. The intuition is that, to establish the truth
of a µ-formula, Verifier should regenerate it only finitely often whereas ν-
formulae can be regenerated infinitely often. Of course the difficulty may be
that µ- and ν-formulae are deeply nested and there are several fixed-point
formulae that are regenerated infinitely often during a play. But it can be
shown that among these, there is always an outermost one, which determines
the winner: if it is a ν-formula Verifier wins, if it is a µ-formula, Falsifier wins.
Hence, the priority labelling assigns even priorities to positions (v, νX.ϕ) and
odd priorities to positions (v, µX.ϕ). Further, priorities respect dependen-
cies. If νY.ϕ depends on µX.η then priorities of positions (v, νY.ϕ) are higher
than those of positions (w, µX.η). The remaining positions receive priorities
that are higher than those associated with fixed-point formulae. For details
(which are not needed in this article), see [4].
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Theorem 12 ([19]). Verifier has a winning strategy in the model-checking

game G(K, ψ) from position (u, ψ) iff K, u |= ψ.

The meaning of a subformula within a formula is captured by the notion
of closure.

Definition 13. Let ψ ∈ Lµ be a formula without free variables. For each
subformula ϕ in ψ, we define its closure clψ(ϕ) as the formula obtained by re-
placing recursively every free occurrence of a variable in ϕ by its binding defi-
nition. For instance, if ψ = µX.νY ϕ(X,Y ), then clψ(ϕ) = ϕ(ψ, νY ϕ(ψ, Y )).
For a precise definition, see [11]. By cl(ψ) we denote the set of closures of all
subformulae in ψ.

The following property follows from Theorem 12.

Corollary 14. Let K, u be a model of a formula ψ ∈ Lµ and let σ be a

winning strategy for Verifier in the associated model-checking game G(K, ψ).
Then, for every position (v, ϕ) reachable in Gσ from the initial position (u, ψ),
we have K, v |= clψ(ϕ).

A different way to define model-checking games for Lµ refers to the closure
of subformulae rather than their occurrences [7, 13]. The games obtained in
this way are equivalent to those introduced here – in fact, they are bisimi-
lar. We may therefore use this alternative definition where a more semantic
viewpoint is appropriate.

3 Defining bisimulation and simulation types

of finite structures

Throughout this article, we are concerned with formulae that describe finite
Kripke structures, more precisely, the bisimulation-invariant properties at a
given state. In particular, we are interested in existential properties preserved
under simulation.

Definition 15. Let K be a Kripke structure with a designated state u.
A formula ψ ∈ Lµ describes the bisimulation type of K, u if, for any struc-
ture K′, we have K′, u′ |= ψ iff K, u ∼ K′, u′. Likewise, we say that ψ
describes the simulation type of K, u if, for any Kripke structure K′, we have
K′, u′ |= ψ iff K, u 4 K′, u′.

A straightforward approach to describing a finite structure up to bisimu-
lation consists in forming a system of simultaneous fixed points associated to
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the individual states. Given a finite structure K = (V, (Ea)a∈act, (Vp)p∈prop),
the atomic type of any node v ∈ V is described by the formula

αv :=
∧

p∈prop

v∈Vp

p ∧
∧

p∈prop

v 6∈Vp

¬p.

Let S be the system defining, for every node v ∈ V , a proposition Xv via the
equation

Xv = αv ∧
∧

a∈act

( ∧

(v,w)∈Ea

〈a〉Xw ∧ [a]
( ∨

(v,w)∈Ea

Xw

))
.

It can be easily seen that on any Kripke structure K′, the greatest solution
of this system maps each variable Xv to the set { v′ ∈ V ′ | K, v ∼ K′, v′ }.
Hence, the bisimulation type of K, u is described by νXu : S.

If we restrict the definitions of Xv in S to their existential part,

Xv = αv ∧
∧

a∈act

(v,w)∈Ea

〈a〉Xw,

the greatest solution of the obtained system maps every variable Xv to the
set { v′ ∈ V ′ | K, v 4 K′, v′ } and thus νXu : S describes the simulation type
of K, u.

In general, however, this approach uses many more variables than needed.
Any acyclic finite structure can be described already in basic modal logic.
Typically, this is achieved by a formula whose syntax follows the finite tree
obtained by unravelling the structure. We may proceed similarly to describe
structures with cycles in the µ-calculus. Syntactically, Lµ-formulae are trees
with back edges; each reference to a fixed-point variable semantically instan-
tiates its binding definition, which occurred previously in the syntax tree.
This allows us to describe any Kripke structure over a tree with back edges
by associating greatest fixed-point variables to each node with incoming back
edges. We obtain a defining formula following the tree edges, as in the acyclic
case, additionally referencing for every back edge the fixed-point variable as-
sociated to its target. For instance, in a language without propositional
constants, the simulation type of the structure from Figure 1 at state 0 is
described by νX.

(
〈a〉X ∧ 〈b〉〈b〉〈a〉X

)
.

Likewise, it is possible to characterise any finite structure K by describing
a tree with back edges bisimilar to K. Such a tree can be obtained, for
example, by partially performing an unravelling of K as in Definition 5, but
with the difference that, whenever a node that occurred previously on the
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0 1 2

Figure 1: A simple structure with cycles, (a-transitions plain, b-transitions thicker)

K2

0

3

1 2

0

1 2

2′ 3

Figure 2: Viewing a structure as a tree with back edges

current path is reached, a back edge to this occurrence is added instead of
creating a new copy. (Later on, we will formally introduce the notion of
unravelling by generalising this procedure.) For the simulation type of the
structure from Figure 2, we thus obtain the formula:

νX.

(
〈b〉νY.

(
〈b〉〈a〉X ∧ 〈a〉〈a〉Y

)
∧ 〈a〉〈a〉X

)
.

Notice, however, that a given structure may have several structurally dif-
ferent trees with back edges as bisimilar companions, leading to syntactically
different descriptions. In particular, since we introduce variables for every
node entered by a back edge, the number of variables involved in those de-
scriptions may differ, as illustrated by the formulae obtained for the two
bisimilar structures in Figure 3:

νX.〈b〉νY.〈b〉( 〈a〉X ∧ 〈a〉Y ∧ νZ.〈a〉Z )

≡ 〈b〉〈b〉νX.
(
〈a〉〈b〉〈b〉X ∧ 〈a〉〈b〉X ∧ 〈a〉X

)
.

To control this phenomenon, we introduce a structural parameter for
the complexity of finite directed graphs which measures to what extent the
cycles of the graph are intertwined. The definition of this measure, called
entanglement, is characterised in terms of a game similar in spirit to the
cops and robbers games used to describe tree width, directed tree width, and
hypertree width [18, 10, 8]. Nevertheless, there are significant differences
between entanglement and the various incarnations of tree width.

As we will show, the entanglement of a finite Kripke structure provides
an upper bound for the number of fixed-point variables needed to describe it
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0′ 1′

0 1 2

1′′

Figure 3: Bisimilar companions with different cyclic structure

up to bisimulation. In Section 4 and 6 we will further prove that this bound
is tight, in a quite general sense.

3.1 Trees with back edges

Let T = (V,E) be a directed tree. We write ¹E for the associated partial
order on T , i.e, the reflexive, transitive closure of E.

Definition 16. A directed graph T = (V, F ) is a tree with back edges if there
is a partition F = E ∪ B of the edges into tree edges and back edges such
that (V,E) is a directed tree, and whenever (u, v) ∈ B, then v ¹E u.

The following observation shows that up to the choice of the root, the
decomposition into tree edges and back edges is unique.

Lemma 17. Let T = (V, F ) be a tree with back edges and v ∈ V . Then there

exists at most one decomposition F = E ∪ B into tree edges and back edges

such that (V,E) is a tree with root v.

Definition 18. Let T = (V,E,B) be a tree with back edges. The feedback

of a node v of T is the number of ancestors of v that are the target of a
back-edge from a descendant of v. The feedback of T , denoted fb(T ) is the
maximal feedback of nodes in T . More formally,

fb(T ) = max
v∈V

|{u ∈ V : ∃w(u ¹E v ¹E w ∧ (w, u) ∈ B)}|.

We call a node u active at the node v in T , if u is the target of some back
edge (w, u) such that u ¹E v ¹E w.

Notice, that the feedback of the syntax graph of a formula ϕ in Lµ equals
the maximum number of variables occurring simultaneously in a subformula
of ϕ. Thus, after appropriate renaming, the number of variables in a formula
equals the feedback of its syntax graph.
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We now show that the feedback of a tree with back edges provides an up-
per bound on the number of variables needed to describe any Kripke structure
over this graph. Subsequently, we derive therefrom a corresponding bound
for arbitrary Kripke structures via finite unravellings.

Lemma 19. Let T = (V,E,B) be a tree with back edges of feedback k. Then

there exists a partial labelling i : V → {0, . . . , k − 1} assigning to every

target u of a back edge an index i(u) in such a way that no two nodes u, u′

that are active at the same node v have the same index.

Proof. The labelling i is constructed by a breadth-first traversal of T . At
each target u of a back-edge, we choose the least value in {0, . . . , k− 1} that
is not the label of a node active at u. Such a value must exist, because
the number of nodes active at u (including u) is at most k. Except for u,
the index of these nodes is already defined since they are ancestors of u.
In this way, we ensure that no conflict between simultaneosuly active nodes
arises.

Lemma 20. Let T be a Kripke structure over a finite tree with back edges

of feedback k. Then, the bisimulation and the simulation type of T at its root

can be described by a formula in Lµ[k].

Proof. Let i : T → {0, . . . , k − 1} be the partial labelling of T defined in
Lemma 19. On the basis of this labelling, we construct a sequence of formulae
(ψv)v∈T over fixed-point variables X0, . . . , Xk−1 while traversing the nodes of
T in reverse breadth-first order. For every action a ∈ act, the transitions
in T are partitioned into tree edges and back edges Ea ·∪Ba.

To describe a state v ∈ V and the relationship with its successors, let

ϕv := αv ∧
∧

a∈act

( ∧

(v,w)∈Ea

〈a〉ψw ∧
∧

(v,w)∈Ba

〈a〉Xi(w)

∧ [a]

( ∨

(v,w)∈Ea

ψw ∨
∨

(v,w)∈Ba

Xi(w)

) )
,

where αv expresses the atomic type of v, as in the beginning of the section.
If v has an incoming back-edge, we set ψv := νXi(v) . ϕv; otherwise, we let
ψv := ϕv.

Note that since we proceed from the leaves of T to the root, this process
is well-defined, and that in ψv the variables Xi(u) occur free, for any node
u 6= v that is active at v. In particular, all variables in the formula ψu,
corresponding to the root of T , are bound.
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We claim that K, v |= ψu iff K, v ∼ T , u. First, we show that T , u |= ψu,
and hence K, v |= ψu for any K, v ∼ T , u. To see this, we prove that Verifier
has a winning strategy for the associated model-checking game.

Note that, since ψu has only greatest fixed points, any infinite play of the
model-checking game is won by Verifier. It thus suffices to show that from
any position of form (v, ϕv), Verifier has a strategy to make sure that the
play proceeds to a next position of form (w,ϕw), unless Falsifier moves to
position (v, αv) and then loses in the next move. But by the construction of
the formula, it is obvious that Verifier can play so that any position at which
he moves is of one of the following three types.

(i) (v, 〈a〉ψw), where (v, w) ∈ Ea: then, Verifier moves to position (w,ψw).

(ii) (v, 〈a〉Xi(w)), where (v, w) ∈ Ba: in this case, he moves to (w,Xi(w)).

(iii) (w,
∨

(v,z)∈Ea
ψz∨

∨
(v,z)∈Ba

Xi(z)) for some edge (v, w) ∈ Ea∪Ba: in this
case, Verifier selects the appropriate disjunct with z = w and moves
accordingly either to (w,ψw) or to (w,Xi(w)).

In all cases the play will proceed to (w,ϕw). Hence, Falsifier can force a play
to be finite only by moving to a position (v, αv), where he loses. Otherwise
the resulting play is infinite and thus always won by Verifier.

For the converse, suppose that K, v 6∼ T , u. Since T is finite, the non-
bisimilarity is witnessed at a finite stage. That is, there is a basic modal
formula separating K, v from T , u, and Falsifier can force the model-checking
game for ψu on K, v in finitely many moves to a position of form (w, αw) such
that w and w′ have distinct atomic types. This proves that K, v 6|= ψu.

By the same argument, we obtain a description of the simulation type of
K, u using formulae ϕv restricted to their existential part:

ϕv := αv ∧
∧

a∈act

( ∧

(v,w)∈Ea

〈a〉ψw ∧
∧

(v,w)∈Ba

〈a〉Xi(w)

)
.

3.2 Finite unravellings and entanglement

According to Definition 5, every graph G can be unravelled from any node
v to a tree TG,v whose nodes are the paths in G from v. Clearly TG,v is
infinite unless G is finite and no cycle in G is reachable from v. A finite

unravelling of a (finite) graph G is defined in a similar way, but rather than
an infinite tree, it produces a finite tree with back edges. To construct a finite
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unravelling we proceed as in the usual unravelling process with the following
modification: whenever we have a path v0v1 . . . vn in G with corresponding
node π = v0v1 . . . vn in the unravelling, and a successor w of vn that coincides
with vi, for some i ≤ n, then we may either create a new node πw together
with a tree edge from π to πw, or put a back edge from π to its ancestor
v0 . . . vi. Clearly this process is nondeterministic. In this way, any finite
graph can be unravelled, in many different ways, to a finite tree with back
edges.

Note that different finite unravellings of a graph may have different feed-
back.

Definition 21. The entanglement of a rooted graph G, u is the minimal
feedback of its finite unravellings from v:

ent(G, u) = min{ fb(T ) | T is a finite unravelling of G, u }.

Likewise, for Kripke structures K =
(
V, (Ea)a∈act, (Vp)p∈prop

)
, we define

ent(K, u) as the entanglement of the underlying graph (V,E) with edges
E =

⋃
a∈actEa from u.

Notice that if, in a structure K, we consider two states u, u′ from which
all other states are reachable, then ent(K, u) = ent(K, u′). Since we assume
that all states of a structure are reachable from some root, we may simply
write ent(K) instead of ent(K, u), for any root u.

As a direct consequence of Lemma 20, every Kripke structure of entangle-
ment k can be described, up to bisimulation, in the µ-calculus using only k
fixed-point variables.

Proposition 22. Let K be a finite Kripke structure with ent(K) = k. Then,

for any node v of K, the bisimulation type of K, v is described by a formula

of Lµ[k] and its simulation type by an existential formula of Lµ[k].

Proof. For bisimulation types, we show that there exists a formula ψv such
that,

K′, v′ |= ψv iff K′, v′ ∼ K, v.

By definition of entanglement, the structure K can be unravelled from v
to a finite tree with back edges T of feedback at most k. Clearly, we have
T ∼ K, v. Hence, we obtain ψv by describing the bisimulation type of T at
its root, as in Lemma 20. The case of simulation types is analogous.
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3.3 Game characterisation of entanglement

We characterise the entanglement of a graph G = (V,E) by way of a game,
played by a thief against k detectives on G according to the following rules.
At the beginning, the thief is at the given initial position u of G and the
detectives are outside the graph. In any round, the detectives may either
stay where they are, or place one of themselves on the current position v of
the thief. The thief, in turn, has to move to a successor w of v that is not
occupied by any detective. If no such position exists, the thief is caught and
the detectives have won. Note that the thief sees the move of the detectives
before he decides on his own move, and that he is forced to leave his current
position, regardless of whether the detectives move or not.

Lemma 23. Let T be a tree with back edges of feedback k. Then k detectives

have a strategy to capture the thief on T .

Proof. Suppose that fb(T ) = k. By Lemma 19 there is a labelling i of the
targets of the back edges in T by numbers 0, . . . , k − 1 assigning different
values to any two nodes u, u′ that are active at the same node v. This
labelling induces the following strategy for the k detectives: at every node v
reached by the thief, send detective number i(v) to that position or, if the
value is undefined, do nothing. By induction over the stages of the play, we
can now show that this strategy maintains the following invariant: at every
node v occurring in a play on T , all active nodes u 6= v are occupied and,
if the current node is itself active, a detective is on the way. To see this, let
us trace the evolution of the set Z ⊆ T of nodes occupied by a detective. In
the beginning of the play, Z is empty. A node v can be included into Z if
it is visited by the thief and active with regard to itself. At this point, our
strategy appoints detective i(v) to move to v. Since, by construction of the
labelling, the designated detective i(v) must come from a currently inactive
position and, hence, all currently active positions except v remain in Z. But
if every node which becomes active is added to Z and no active node is ever
given up, the thief can never move along a back-edge, so that after a finite
number of steps he reaches a leaf of the tree and loses. But this means that
we have a winning strategy for k detectives.

Proposition 24. The minimal number k ∈ N such that k detectives have

a strategy to catch the thief on a graph G starting from a node u is the

entanglement of G, u.

Proof. Notice that any winning strategy for the k detectives on a finite un-
ravelling of G, u immediately translates to a winning strategy on G, u. Ac-
cordingly, for any finite unravelling T of a graph G, u, we have k ≤ fb(T ).
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It remains to show that for any graph G, u there exists some finite unrav-
elling T with fb(T ) ≤ k. To prove this, we associate winning strategies for k
detectives to finite unravellings of G with feedback k.

A strategy for k detectives is a k-tuple (g0, . . . , gk−1) of partial functions
mapping every initial segment π of a possible play in G, u to a path gi(π) that
is a prefix of π. The intended meaning is the following: if the thief covers
the path gi(π), then detective i is placed at the current node and there he
remains as long as the thief proceeds along π.

An unravelling function for a rooted graph G, u is a partial function ρ
between finite paths from u through G that maps every path v0, . . . , vr−1, vr
in its domain to a strict prefix v0, v1, · · · , vj−1 such that vj−1 = vr. The
unravelling of G, u driven by ρ is the tree with back edges T defined as
follows:

• the domain of T is the smallest set T which contains v0 := u and for
each path π ∈ T , it also contains all prolongations πv in G at which ρ
is undefined;

• the tree-edge partition is

ET := { (v0, . . . , vr−1, v0, . . . , vr−1, vr) ∈ T × T | (vr−1, vr) ∈ EG };

• for all paths π := v0, . . . , vr−1 ∈ T where ρ(πv) is defined, the back-
relation BT contains the pair (π, ρ(πv)) if (vr−1, v) ∈ EG.

Informally, a function ρ describes an unravelling that starts at the root
and follows finite paths through G; whenever the current path π can be
prolonged by a position v and the value of ρ at πv is undefined, a fresh
copy of v corresponding to πw is created as a successor of π. (This happens
in particular whenever v has not yet been visited.) Otherwise, if ρ(π v) is
defined, then the current path π is prolonged by inserting a back-edge to its
prefix ρ(π) which also corresponds to a copy of v.

To any strategy (g0, . . . , gk−1), we now associate an unravelling function ρ
as follows: for every path π and any possible prolongation by v, if for some i,
the end node of gi(π) is v, we set ρ(π v) := gi(π); otherwise we leave the
value of ρ(π v) undefined. It is easy to verify that, if g is a winning strategy
for the detectives, the associated unravelling is finite and has feedback k.

4 The existential hierarchy

As we have seen in the previous section, the entanglement of a graph provides
an upper bound for the number of variables required to describe any Kripke
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structure over this graph. However, the descriptive complexity depends not
only on the underlying graph, but also on the labelling of transitions and
states with actions and atomic propositions. For instance, the simulation
type of any strongly connected Kripke structure over a language with only one
action and no propositional symbols is described by the formula νX.〈a〉X,
regardless of the entanglement of the underlying graph.

In the sequel of this article we show that, with a particular labelling of
edges, the structural complexity of a graph, in terms of entanglement, is
reflected in the descriptive complexity of its simulation type measured by
the number of variables needed to describe it in the µ-calculus.

Definition 25. A Kripke structure K is deterministic if every state v ∈ V
has at most one a-successor, for all actions a ∈ act; it is co-deterministic

if every state has at most one a-predecessor, for all actions a. Further, we
say that a structure is singular with respect to simulation, if there are no
two states v 6= w such that K, v 4 K, w. A finite structure is rigid, if it is
deterministic, co-deterministic, and singular with respect to simulation.

Lemma 26. Every connected finite graph can be labelled in such a way that

the resulting Kripke structure is rigid.

Proof. Given a finite graph G = (V,E), the Kripke structure which assigns
to every edge (v, w) ∈ E a distinct action label is obviously rigid. Formally,
this yields a structure over a set of actions act := E, with state domain V
and singleton transition relations Evw := {(v, w)}, for all (v, w) ∈ E.

According to Proposition 22, the simulation type of any structure with
entanglement k can be described by an existential formula in Lµ[k]. In this
section we prove that, if the structure is rigid, no existential formula from
Lµ[k− 1] can describe its simulation type. This establishes that the variable
hierarchy is strict for the existential fragment of Lµ.

For a simple example of a rigid Kripke structure with entanglement k,
consider the complete graph over k vertices labelled as in Lemma 26.

Our argument pivots around the model-checking game G(K, ψ) associated
to a Kripke structure K, u and a formula ψ defining its simulation type.
Obviously, Verifier has a winning strategy in this game. In general, we may
understand the subgame Gσ induced by a (memoryless) winning strategy σ
of Verifier in G(K, ψ) as a proof for K, u |= ψ. We will argue that, on the one
hand, if K is rigid, the entanglement of such a proof cannot be lower than
the entanglement of K itself. On the other hand, we will show that this proof
is already contained in the syntax graph of ψ, and hence its entanglement is
not higher than the number of variables used in ψ.
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4.1 Definite formulae

The rigidity of a structure ensures that the simulation types of its states do
not overlap. This allows us to narrow the gap between the semantics and the
syntax of formulae ψ describing the simulation type of a rigid structure K, u.
Concretely, we show that the proof of K, u |= ψ, i.e., the subgame induced by
a winning strategy in the associated model-checking game, can be embedded
into the syntax graph of ψ.

Definition 27. We call a formula ψ definite on a Kripke structure K, if
for every subformula η ∈ cl(ψ), there exists precisely one state v such that
K, v |= η.

The notion is meaningful only over structures without propositional sym-
bols. Notice that, if we consider rigid structures under this proviso, the
formulae constructed in Lemma 20 as a description of their simulation type
are indeed definite.

Lemma 28. Let K be a rigid Kripke structure with a designated state u.
Then, every existential formula ψ ∈ Lµ defining the simulation type of K, u
can be transformed, without increasing the number of variables, into an equiv-

alent existential formula that is definite on K.

Proof. First, we dispose of the subformulae of ψ that do not hold at any
node of K. Let ψ′ be the formula obtained from ψ by replacing every such
subformula with ⊥. Then, ψ′ is still true on K and, being existential, on
all models of ψ. On the other hand, ψ′ obviously implies ψ so that we have
ψ′ ≡ ψ.

Further, we successively eliminate all subformulae true at more than one
node. Assume that for some η ∈ cl(ψ) we have K, v1 |= η and K, v2 |= η with
v1 6= v2 and let ψ′ be the formula obtained from ψ by replacing η with >.

Clearly, ψ implies ψ′. To prove the converse, we will construct for every
tree an extension that satisfies η at all nodes while preserving the validity
of ψ. Notice that every extension of a tree T is similar to T . Consequently,
existential formulae are preserved under extensions.

Let T be a tree with edges labelled by act. We establish a matching
correspondence between the nodes of T and K in the following way. For
any node x ∈ T , consider the sequence of actions on the path from the
root to x. In K, there is at most one node w reachable from the designated
root u via this sequence of actions, since the structure is deterministic. We
set matchT (x) := w, if the sequence is indeed executable in K, otherwise we
leave the value undefined. Now let T ′ be the extension of T obtained by
attaching at every node x the unravelling T K

w of K from the node w := v1 if
matchT (x) 6= v1 and w := v2 otherwise.
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Claim. For any tree T , the constructed extension T ′ has the following prop-

erties:

(i) If T |= ψ′ then T ′ |= ψ.

(ii) If T ′ |= ψ then T |= ψ.

(i) Every subtree of T ′ rooted at a node x ∈ T extends an unravelling
T K
w of K, w, where η holds. Since η is existential and thus preserved under

extensions, it follows that also T ′
x , the subtree of T ′ rooted at x, is a model

of η. Moreover, if σw is a winning strategy for Verifier in G(T K
w , η), it will

also be a winning strategy in G(T ′
x , η).

By means of this, we can extend any winning strategy σ of Verifier in
G(T , ψ′) to a strategy in G(T ′, ψ) as follows. At every position (x, ϕ) where
x ∈ T and ϕ 6= η choose according to σ. As Falsifier cannot move in the tree,
the play will stay on nodes of T unless a position (x, η) is reached. When this
occurs, Verifier drops σ and proceeds with the strategy σw which is winning
in G(T K

w , η) and thus in G(T ′
x , η). In that way, every play of G(T ′, ψ) is won

by Verifier which means that T ′ |= ψ.
(ii) Assuming that T ′ |= ψ, let Z be a simulation relation witnessing that

K, u 4 T ′. Then, the relation

Z ′ := { (v, x) ∈ Z | x ∈ T and v = matchT ′(x) }

is a simulation from K, u to T .
Obviously, Z ′ relates u with the root of T . Since Z is a simulation, for

any (v, x) ∈ Z ′, a ∈ act, and every a-successor u of v there exists an a-
successor y of x such that (u, y) ∈ Z. Clearly, matchT ′(y) = u, so we just
need to show that y ∈ T . Let us assume, towards a contradiction, that y
is a new node, y ∈ T ′ \ T . Then, in K there is a node w 6= matchT (x)
with a-successor u′, so that y ∼ u′. On the other hand, (u, y) ∈ Z, hence
u 4 y. As K is singular with respect to simulation, this means that u and u′

are actually the same node. But then this node would have two different a-
predecessors, w and v, in contradiction to the fact that K is co-deterministic.
Hence, Z ′ witnesses the simulation K 4 T . This proves the second part of
our claim and we can conclude that ψ′ ≡ ψ.

Notice that whenever the subformulae 〈a〉 > and η ∨ > occur, they are
also removed as they hold at more than one node; if the atom > appears as
a conjunct we can safely drop it.

With this rewriting, ψ will eventually consist only of subformulae satisfied
at precisely one node of K.
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In particular, definiteness implies that every fixed-point definition holds
at precisely one state. Accordingly, for any winning strategy σ in this game,
the projection (v, ϕ) 7→ ϕ induces an embedding of Gσ(K, ψ) into the syntax
graph Sψ.

Corollary 29. Let ψ be an existential formula that is definite on a rigid

structure K and assume K, u |= ψ. Then, for any winning strategy σ for

Verifier in the game G(K, ψ) the induced subgame Gσ(K, ψ), is embeddable

into the syntax graph of ψ.

4.2 Cast structure

Up to now, we have seen that, in our specific setting, any formula describing
a structure contains a proof of its validity on that structure. In the next step
we argue that, moreover, this proof essentially contains (a bisimilar copy of)
the structure in question.

Observe that a model-checking game does not necessarily explore the
entire structure on which it is played. For example, if we are interested in
the property µX.(〈a〉X ∨ 〈b〉 >) expressing that a b-transition is reachable
in the model, a winning strategy for Verifier would just display an a-path
ending with a b-transition. To capture the part of a model explored by a
winning strategy, we introduce the notion of structure cast by a strategy.

Definition 30. Given a Kripke structure K, and an existential Lµ-formula ψ
such that K, u |= ψ, let σ be a winning strategy for Verifier in the model-
checking game G(K, ψ), inducing the subgame Gσ. The cast of σ, is the

Kripke structure Ĝσ = (V̂ , (Êa)a∈act) over a subset V̂ of vertices from Gσ
consisting of the root (u, ψ) and the target (w, η) of every possible move
(v, 〈a〉η) → (w, η) in Gσ. Between two of these vertices (v, ϕ), (w, η) we allow

an Êa-transition if in Gσ there is a path from (v, ϕ) to a predecessor (v, 〈a〉η)

of (w, η) which avoids V̂ .

Model-checking games are constructed out of a Kripke structure and a
formula. By casting a winning strategy we perform a reverse operation,
where we set out from a specific game, or a proof, and extract the relevant
structural component. In line with this intuition, the following lemma points
out that every model-checking game for an existential formula contains a
model of the formula.

Lemma 31. Let ψ be an existential Lµ-formula and let K, u be a model of ψ.

Then, for any winning strategy σ of Verifier in the model-checking game

G := G(K, ψ), the cast of Gσ at state (u, ψ) is also a model of ψ.
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Proof. We show that Verifier wins the model-checking game G ′ := G(Ĝσ, ψ)
for ψ on the cast structure starting from position ((u, ψ), ψ). Towards this,
we perform a generic play of G ′ while replicating, on the side, a play of G
according to the Verifier strategy σ. Thereby we transfer every move of
Falsifier from G ′ to G and, conversely, every move of Verifier back to G ′ so that
the parallel plays maintain the following invariant in each turn: whenever the
current position in G ′ is ((v, α), β), the current position in G is (v, β).

This is done in the following way. At the starting position, the proposed
invariant obviously holds. If Falsifier moves in the main game G ′ from some
position ((v, α), η1∧η2) to ((v, α), ηi), we move in the secondary game G from
the current position (v, η1 ∧ η2) to (v, ηi). If Verifier is in turn to move in the
main game G ′ at a disjunction, e.g., ((v, α), η1∨η2), the current position in the
secondary game G is (v, η1 ∨ η2). In this case we first execute the move in G
to (v, ηi) according to σ and then choose ((v, α), ηi) in G ′. Similarly, when
the current position in the main game is ((v, α), 〈a〉β), and, hence, (v, 〈a〉β)
in the secondary game, we first perform in G the move (w, β) indicated by σ
and then choose ((w, β), β) in G ′.

It can be easily checked that the choices transferred between the games
are always available. Particularly, in the case of modal moves, this follows
from the definition of the cast structure. Hence, Verifier can always move
in G ′ if he can move in G. Since σ is a winning strategy for the latter game, a
play can end only at positions (v,>) in which case the play of G ′ also reaches
a terminal position ((w, β),>), where Verifier wins. Otherwise, both plays
are infinite and the sequences of formulae they visit are the same; accordingly,
thanks to his winning strategy in G, Verifier simultaneously wins G ′.

For the case of formulae describing the simulation type of a Kripke struc-
ture, the cast of a winning strategy must, hence, be similar to the structure
itself. Moreover, for structures that are singular with respect to simulation,
this relation has natural witnesses.

Lemma 32. Given a structure K, u that is singular with respect to simu-

lation, let ψ ∈ Lµ be an existential formula describing its simulation type,

and let σ be a winning strategy for Verifier in G(K, ψ). Then, there exists a

simulation from K, u to Ĝσ, (u, ψ) such that, Z ⊆ { ( v, (v, ϕ) ) | K, v |= ϕ }.

Proof. According to Lemma 31, we have Ĝσ, (u, ψ) |= ψ. As ψ describes

the simulation type of K, u, this implies that K, u 4 Ĝσ, (u, ψ). Among the
simulations witnessing this, let Z be minimal (with respect to set inclusion).

Then, for any pair (v, (w,ϕ)) ∈ Z, we have K, v 4 Ĝσ, (w,ϕ). On the other

hand, we also have Ĝσ, (w,ϕ) 4 K, w, since Gσ is a model checking game and
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the modal moves follow the transitions of K. Thus, we obtain K, v 4 K, w
and, by our assumption that K is singular, it follows that v = w.

It is not hard to show that a relation Z of the above kind is, in fact, a
bisimulation between K′ and the structure induced by its range in Ĝσ.

4.3 The separation theorem

As a last step towards proving that simulation-type descriptions are hard
formulae for the existential variable hierarchy, we show that the entanglement
of a structure is bounded by the number of variables of any existential formula
describing its simulation type.

Lemma 33. Let K be a singular structure with respect to simulation and

consider a distinguished node u. If there exists an existential formula ψ ∈
Lµ[k] that is definite on K and describes the simulation type of K, u, then

ent(K) ≤ k.

Proof. According to Lemma 10, we may assume that ψ is guarded. Let
ψ1, . . . ψn be the fixed-point subformulae in ψ, i.e., ψi = λY.ϕi with λ ∈ {µ, ν}
and Y ∈ {X0, . . . , Xk−1}. Throughout this proof we write cl(ψi) rather than
clψ(ψi) for the closure of ψi in ψ. Recall that by the definiteness of ψ, there
is a unique node vi with K, vi |= cl(ψi). Recall further that ψj depends on
ψi, if in the syntax graph Sψ (which is a tree with back edges), the node ψi
is active at ψj, i.e., there is a descendent Y of ψj with a back-edge to ψi.

Consider a winning strategy σ for Verifier in the model checking game
associated to K, u |= ψ. By Corollary 29, the induced subgame Gσ is em-
bedded in the syntax graph Sψ via the projection (v, ϕ) 7→ ϕ. On the other

hand, its cast simulates K, u. We fix a simulation Z from K, u to Ĝσ, (u, ψ)
as in Lemma 32.

On the basis of this, we define a strategy for k detectives in the entan-
glement game on K starting at u. To each state v of K reached by the thief
in a play against this strategy, we will associate a position (v, ϕ) in Ĝσ such
that (v, (v, ϕ)) ∈ Z.

The initial state u is associated to position (u, ψ). Suppose that, in a
round of the play, the thief sits at some position v in K which is associated to
(v, ϕ) in Ĝσ. Each free variable Xj in ϕ is defined at a fixed-point subformula
ψj,ϕ ∈ {ψ1, . . . , ψn} and, by definiteness, there exists precisely one state vϕ,j
in K where the closure cl(ψj,ϕ) holds. The strategy of the detectives is to move
those detectives j < k to v for which vj,ϕ = v. If now the thief, in turn, moves
from v to some successor w not occupied by any detective, we associate with
w a successor (w, ϑ) of (v, ϕ) in Ĝσ such that (w, (w, ϑ)) ∈ Z, and proceed to
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the next round. Lemma 32 guarantees that a suitable successor (w, ϑ) always

exists in Ĝσ. Accordingly, in Gσ there is a path from (v, ϕ) leading to (w, ϑ)
via positions of the form (v, ϕ′). This establishes a correspondence between
plays of the entanglement game on K, u and paths in Gσ and furthermore,
their projections to paths in Sψ.

We shall prove that the strategy defined in this way is winning for the
detectives. Towards a contradiction, assume that the thief can form an infi-
nite path π from u through K when playing against this strategy. We look at
the associated path π′ through Gσ and at its projection π′′ to a path through
the syntax graph Sψ. Since π, and hence π′′ is infinite, some fixed-point
definition ψj must be regenerated infinitely often on π′′. We want to show
that this cannot happen.

Indeed, suppose that at node (v, ϕ) the fixed-point formula ψi is regen-
erated. This means that there is a variable Xj such that ψj,ϕ = ψi and
vj,ϕ = v. Since ψ is guarded, Xj must be free in ϕ. By definiteness, any
next regeneration of ψi must also take place at v. But, at the moment when
the thief moves from v to w, detective j is at v and stays there until, on the
corresponding path π′′ a new fixed point formula ψ` with the same variable
Xj is opened, and a node v′ 6= v is reached where cl(ψ`) holds. Before this
has happened, the thief cannot move back to v.

Thus, in order to have a further regeneration of ψi the path π′′ must go
through the following steps:

1. From ψi the path proceeds to a fixed point definition ψm = λY.ϕm with
a different variable Y 6= Xj so that ψm depends on ψi (i.e., ψi is active
at ψm);

2. from there the path must reach a definition ψ` = λXjϕ`, so that in the
corresponding path on K, the detective j is lured away from v;

3. then the path must regenerate Y to ψm, and

4. proceed from ψm to Xj where it can finally regenerate ψi.

Hence, we have seen that between any two regenerations of ψi on π′′

we must have a regeneration of a formula ψm that depends on ψi. As a
consequence, all fixed point formulae are regenerated only finitely often on π ′′.

At this point we are ready to state our separation theorem.

Theorem 34. Let G be a finite directed graph of entanglement k such that

every node of G is reachable from u. Then, there exists a Kripke structure K
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over G so that the simulation type of K, u can be described by an existential

formula in Lµ[k], but not by any existential formula in Lµ[k − 1].

Proof. According to Lemma 26, it is possible to assign transition labels to
the edges of G so that the resulting Kripke structure K is rigid; no atomic
atomic predicates are set.

Since ent(K) = k, an existential formula χ ∈ Lµ[k] describing the simula-
tion type of K, u can be constructed, according to Proposition 22.

Towards a contradiction, assume that there is an existential formula ψ ∈
Lµ[k − 1] defining the simulation type of K, u. According to Lemma 28,
we can assume without loss of generality, that ψ is definite. But then, by
Lemma 33 it would follow that ent(K) ≤ k − 1.

As a conclusion, this shows that every existential formula describing the
simulation type of a k-entangled rigid structure requires at least k variables.
However, this does not yet exclude the existence of equivalent Lµ-formula
over fewer variables but with universal modalities. In the next section we
argue that this can not be the case.

Also notice that at this stage, we consider vocabularies with arbitrarily
many action symbols. However, in Section 6 we will construct formulae that
separate the levels of the variable hierarchy using only two variables.

5 An existential preservation theorem

The key argument in our proof of the hierarchy theorem consists in the
following preservation property, which implies that the formulae we used
to separate the hierarchic levels of the existential fragment also witness the
strictness of the variable hierarchy in the case of the full µ-calculus.

Theorem 35. Let K be a finite Kripke structure over a strongly connected

graph. Then every formula ψ ∈ Lµ[k] that defines the simulation type of a

state K, u is equivalent to an existential formula ψ ′ ∈ Lµ[k].

To show that universal modalities can be safely eliminated from any for-
mula ψ of the considered kind, we take a detour and first show that they
can be eliminated from the formula expressing that some node at which ψ
holds is reachable. To refer to this formula, we use a shorthand borrowed
from temporal logics:

Fψ := µX.ψ ∨
∨

a∈act

〈a〉X.
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Lemma 39 in the second part of this section then states that from any formula
equivalent to Fψ, an existential formula equivalent to ψ can be recovered
without increasing the number of variables.

Lemma 36. Let K be a finite strongly connected structure with a distin-

guished state u and let ψK be a formula defining the simulation type of K, u.
Then, every formula χ ≡ FψK can be transformed, without increasing the

number of variables, into an equivalent formula χ′ with the following proper-

ties:

(i) no universal modalities occur in χ′;

(ii) χ′ is of shape Fψ, where ψ contains no µ-operators;

(iii) every formula ϕ ∈ cl(χ′) holds at some state of K.

Proof. (i) Given an Lµ-formula χ, we say that a subformula 〈a〉ϕ starting
with a diamond is vital , if clχ(ϕ) implies FψK. Dually, a subformula [a]ϕ
starting with a box is vital, if the negation ¬clχ(ϕ) implies FψK.

We will perform several transformation steps and use χ′ to also denote
intermediary formulae equivalent to χ.

Eliminating vital boxes. For χ ≡ FψK, let χ′ be the formula obtained
by replacing any occurrence of a vital box-subformula [a]ϕ with >. Then, χ
obviously implies χ′. For the converse, let us consider a tree model T of χ′.
If, at all its nodes, T , v |= [a]clχ(ϕ) holds, then T |= χ. Else, there exists
a node v ∈ T with T , v |= 〈a〉¬clχ(ϕ). But, since [a]ϕ is vital, this means
that T , v and hence T verifies FψK. Either way, we obtain T |= χ and hence
χ ≡ χ′.

Eliminating non-vital modalities. By iterating the above elimination
step a finite number of times, we obtain a formula χ ≡ FψK without vital
box-subformulae. Let now χ′ be the formula obtained from χ by substituting
simultaneously all remaining (i.e., non-vital) box-subformulae with ⊥ and all
non-vital diamond-subformulae with >.

We will first show that the resulting formula χ′ implies χ. Let T be a tree
model of χ′ and, for every non-vital subformula 〈a〉ϕ of χ, let Tϕ be a tree
model of clχ(ϕ)∧¬FψK. Using the latter models, we construct an extension
T ′ of T by introducing for every node v ∈ T and every non-vital subformula
〈a〉ϕ of χ, a fresh copy of Tϕ which we connect to v via an a-edge.

Since χ′ contains no box-subformulae, it is preserved under extensions.
Consequently T ′ |= χ′ and Verifier has a winning strategy σ in the model-
checking game G(T ′, χ′). Also, for every tree Tϕ, Verifier has a winning
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strategy σϕ in the game G(Tϕ, clχ(ϕ)). We can combine these strategies, to
obtain a winning strategy for Verifier in the game G(T ′, χ) as follows. Move
according to σ unless a position with a non-vital subformula of χ is met; up
to that point, the play cannot leave T , otherwise, since FψK is falsified at
any node w ∈ T ′ \ T , any vital subformula 〈a〉ϕ would fail at w. Moreover,
no subformula [a]ϕ can occur, as it would correspond to a ⊥ position in
G(T ′, χ′). Consequently, σ leads the play to a position (v, 〈a〉ϕ) where v ∈ T
and 〈a〉ϕ is non-vital. At that event, let the Verifier choose the a-successor
to the root of Tϕ and proceed with his memoryless winning strategy σϕ for
the remaining game. In this way, Verifier finally wins any play of G(T ′, χ).
Notice that, for all nodes w ∈ T ′ \ T , we have T ′, w 6|= FψK, and hence T ′

verifies FψK (or, equivalently, χ) if, and only if, T does. Hence, we have the
following chain of implications, showing that χ′ implies χ:

T |= χ′ =⇒ T ′ |= χ′ =⇒ T ′ |= χ =⇒ T |= χ.

For the converse, consider a tree model T |= χ and, for every (non-vital)
subformula [a]ϕ of χ, a tree model T¬ϕ |= ¬clχ(ϕ)∧¬FψK. As in the previous
step, we construct an extension T ′ of T by connecting every node v ∈ T via
an a-edge to a fresh copy of T¬ϕ, for every subformula [a]ϕ of χ. Since
χ ≡ FψK is preserved under extensions, T ′ is still a model of χ. Let σ be a
winning strategy for Verifier in the model-checking game G(T ′, χ). We will
show that σ is also a winning strategy for Verifier in G(T , χ′).

Notice that, in G(T ′, χ) Falsifier has a winning strategy from every po-
sition (v, [a]ϕ) with v ∈ T , by moving to the a-successor of v at the root
of T¬ϕ. Consequently, any play according to Verifier’s strategy σ will avoid
such positions. Besides this, at every position (v, 〈a〉ϕ) where v ∈ T and
〈a〉ϕ is a vital subformula of χ, the strategy σ will appoint a successor posi-
tion (w,ϕ) with w ∈ T , otherwise, since any a-successor w′ ∈ T ′ \ T falsifies
FψK, ϕ would fail too. Summarising, every play of G(T ′, χ) according to σ,
will avoid universal modalities and meet only nodes v ∈ T , unless a position
with a non-vital subformula 〈a〉ϕ occurs. But under these conditions, we
can replicate every play of G(T ′, χ) according to σ as a play of G(T , χ′): in
case a non-vital subformula 〈a〉ϕ of χ is met in the former game, Verifier
immediately wins G(T , χ′), since the non-vital diamond-subformulae have
been replaced by >. Otherwise, the outcome of the play is the same for both
games and Verifier wins as well.

This concludes the proof that χ ≡ χ′.

(ii) By the above result, we can assume without loss that χ ≡ FψK contains
no box-modalities. For n the number of states in K, let ψ be the formula
obtained by replacing every occurrence of a least fixed-point subformula µX.ϕ
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in χ by it’s n-th approximant ϕn. Then, by definition of the µ-operator, ψ
implies χ and thus Fψ implies Fχ, which is equivalent to χ. Conversely,
since K, u |= χ and K has n states, we have K, u |= ψ. As ψ is preserved
under simulation, this means that ψK implies ψ. Accordingly FψK, which is
equivalent to χ, implies Fψ. Hence, χ ≡ Fψ.

Note that if χ contains any fixed-point variables, the transformation into
Fψ does not increase the number of variables, as we can pick any of the
variables already occurring in χ to expand the F-notation.

(iii) By the previous argument, we can assume that χ is of shape Fψ where ψ
contains no boxes, i.e., χ = µX.ψ ∨

∨
a〈a〉X. Clearly, χ itself holds at every

node of K and therefore, for every transition a occurring in K, there is a
node v ∈ V where 〈a〉χ, and thus clχ

(
〈a〉X

)
, holds. Hence, any subformula

ϕ of χ, with K, v 6|= clχ(ϕ) for all v, must actually be a subformula of ψ. Let
ψ′ be the formula obtained by replacing every such occurrence ϕ in ψ with
⊥. On the one hand, ψ′ then obviously implies ψ. On the other hand, as
K, u |= Fψ, there must exists a node v of K where ψ holds. At that node
we also have K, v |= ψ′ and, because ψ′ is preserved under simulation, this
means that ψK

v implies ψ′. But then FψK implies Fψ′ and, by Fψ ≡ FψK, it
follows that Fψ implies Fψ′.

Radical formulae and crisp models. Before we proceed towards proving
the Theorem 35, we will introduce some notions which will be useful in the
proof of Lemma 39

Given a formula ψ ∈ Lµ, we call a subformula ϕ radical , if it appears
directly under a modal quantifier in ψ. We refer to the closure of radicals in
ψ by

cl0(ψ) := {ψ} ∪ {ϕ ∈ cl(ψ) | 〈a〉ϕ ∈ cl(ψ) or

[a]ϕ ∈ cl(ψ) for some a ∈ act }.

Radical formulae are the first to be met when a play of the model-checking
game reaches a new node of the Kripke structure. For this reason, we need to
take care of game positions carrying radical formulae when merging strategies
of different games.

Let K, u be a model of ψ ∈ Lµ and σ a winning strategy for Verifier in
G(K, ψ). For any node v ∈ V , we define the strategic type of v in K, u under
σ as follows:

tpK
σ (v) := {ϕ ∈ cl0(ψ) | position (v, ϕ) is reachable in Gσ(K, ψ) }.
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In arbitrary games, the type of a node can be rather complex. However, for
existential formulae, Verifier has full control over the moves in the Kripke
structure. In the ideal case, he can foresee for every node, a single radical
formula to be proved there.

Given a Kripke structure K, u and a formula ψ, we say that a Verifier
strategy σ in the model-checking game G(K, ψ) is crisp, if the strategic type
tpK
σ (v) of any v ∈ V consists of not more than one radical. Accordingly, we

call a model K, u of ψ crisp (under σ), if Verifier has a crisp winning strategy
σ in the associated model-checking game.

The subsequent lemmas, that can be easily proved, provide us with sharp
tools for manipulating models of existential formulae.

Lemma 37. Given a structure K, u every existential formula ψ ∈ Lµ with

K, u |= ψ also has a tree model T bisimilar to K, u which is crisp. Moreover,

if K is finitely branching, then T can be chosen so as well.

Lemma 38. Let T be a crisp tree model of a formula ψ ∈ Lµ under a

strategy σ and let x ∈ T be a node with strategic type tpT
σ (x) = {ϕ}. Then,

for every crisp tree model S of ϕ, the tree T [x/S] |= ψ, obtained by replacing

the subtree of T rooted at x with S, is still a crisp model of ψ.

We are now ready for the final step, the elimination of the F-operator.

Lemma 39. Let K be a finite strongly connected structure with a state u
and let ψK describe the simulation type of K, u. If ψ ∈ Lµ is a formula such

that Fψ ≡ FψK, then it can be transformed, without increasing the number of

variables, into a formula ψ′ without universal modalities, such that ψ′ ≡ ψK.

Proof. According to Lemma 36, we can assume that ψ contains no univer-
sal modalities or least fixed point operators and that (the closure of) every
subformula is true at some node in K.

We will first show that for any node v in K, there is a subformula ϕ of ψ
whose closure clψ(ϕ) implies ψK

v . Actually, we always find a radical formula
with this property.

Towards a contradiction, let us assume that ψK
v is not implied by any

radical subformula of ψ. This means that every ϕ ∈ cl0(ψ) has a tree model
Tϕ which falsifies ψK

v . According to Corollary 8, we can choose Tϕ to be a
finitely branching tree that falsifies already an approximant of ψK

v to some
finite stage mϕ. Observe that this approximant (ψK

v )[νmϕ/ν] is a modal
formula. Let us denote its modal depth by nϕ. Further, let us fix a number
n which is greater than any nϕ for ϕ ∈ cl0(ψ) and co-prime to every number
up to the size of the domain V .
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By Lemma 37, we can assume without loss of generality that each Tϕ is a
crisp model of ϕ, this being witnessed by a crisp winning strategy for Verifier
in the game G(Tϕ, ϕ). In particular, Tψ is a crisp model of ψ. Let σψ be a
crisp winning strategy for Verifier in the model-checking game G(Tψ, ψ).

With the aid of these, we construct a sequence of trees (Ti)0≤i<ω, together
with crisp Verifier strategies σi witnessing that Ti |= ψ. To start, we set
T0 := Tψ and σ0 := σψ. In every step i > 0, the tree Ti+1 is obtained from
Ti by performing the following manipulations at depth n(i + 1). For each
subtree of Ti rooted at a node x of this depth, we check whether Ti, x |= ψK

v .
If this is not the case, the subtree remains unchanged. Else, we look at the
strategic type of x under σi. If the type is empty, we simply cut all successors
of x. Otherwise, tpTi

σi
(x) consists of a single radical formula ϕ, and we replace

the subtree Ti, x with Tϕ. According to Lemma 38, the resulting tree Ti+1 is
a model of ψ, and the composition of the strategy σi with the crisp strategies
σϕ on the newly appended subtrees Tϕ yields a crisp Verifier strategy σi+1

for the model-checking game G(Ti+1, ψ).
By construction, each of the trees Ti is finitely branching and the sequence

(Ti)0≤i<ω converges in the prefix topology of finitely branching trees (see [9]).
Let Tω be the limit of this sequence. Since no µ-operators occur in ψ, its
model class is topologically closed on finitely branching trees, according to [9].
Consequently, Tω is still a model of ψ. By our hypothesis, ψ implies FψK.
Thus, at some depth d in Tω a node x with Tω, x |= ψK

v appears. Since K
is strongly connected, v must lie on a cycle in K. Hence, for k ≤ |V | being
the length of such a cycle, there exist nodes y with Tω, y |= ψK

v at every
depth d + jk. However, our construction eliminated all subtrees carrying
the similarity type of v at depths multiple of n. Since n was chosen to be
co-prime to any integer up to |V |, it follows that Tω cannot satisfy ψ. This
is a contradiction which invalidates our assumption that ψK

v is not implied
by any ϕ ∈ cl0(ψ).

Hence, for every node v ∈ V , there exists a formula ϕv ∈ cl0(ψ) imply-
ing ψK

v . We can show that the converse also holds, if v is maximal with
respect to the preorder 4, in the sense that for every w with v 4 w we have
w 4 v. Recall that, by Lemma 36 (iii), the formula ϕv must be verified at
some node w in K. Since ϕv is existential and thus preserved under exten-
sion, it follows that ψK

w implies ϕv, which further implies ψK
v . But this means

that v 4 w and, by maximality of v, that w and v are bisimilar. Hence,
K, v |= ϕv and consequently ψK

v ≡ ϕv.
This concludes the proof for the case when u is maximal in K with respect

to 4. Otherwise, we could not guarantee, of course, that ϕu ≡ ψK
u . But in

that case, a formula equivalent to ψK
u can be recovered from cl0(ψ) without

great difficulty.
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6 The hierarchy theorem

Up to now we have shown how to construct, for every level k of the variable
hierarchy, existential formulae which are not equivalent to any existential
formula from a lower hierarchical level. However, this left open the question
whether there exist equivalent formulae in Lµ[k − 1] which use universal
quantification. Due to Theorem 35, we are now able to assert that this
cannot be the case.

Theorem 40. For every k, there exist formulae ψ ∈ Lµ[k] that are not

equivalent to any formula in Lµ[k − 1].

Proof. Consider a rigid strongly connected Kripke structure K of entangle-
ment k and let ψK ∈ Lµ be a formula describing the simulation type of K, u
for some state u.

Towards a contradiction, assume that there exists a formula ψ ∈ Lµ[k−1]
equivalent to ψK. Since ψ defines the simulation type of K, a finite strongly
connected structure, we can apply Theorem 35 to conclude that there also
exists a formula ψ′ ∈ Lµ[k − 1] using only existential modalities which is
equivalent to ψK. But this contradicts the separation theorem 34 for the
existential fragment.

6.1 Separating formulae with two modalities

The results of the previous sections provide us with a generic technique to
construct witnesses for the Lµ-variable hierarchy. The first examples for the
strictness of the existential hierarchy, which turn out to be valid witnesses
for the unrestricted case too, have been presented in [5]. They rely on rigid
k-cliques where every action is labelled differently, leading to formulae over
a vocabulary with k2 modalities.

To show that already over a fixed vocabulary, the variable hierarchy re-
mains strict, we construct rigid Kripke structures over only two modalities
leading to formulae that are strict at each level of the variable hierarchy.

Definition 41. For every k > 0, let Ck := (V,Ea, Eb) be the Kripke structure
with state set V = {0, . . . , k − 1} × {0, . . . , k − 1} and transition relations

Ea := {
(
(i, j), (i, j − 1)

)
| i ≥ 0, j > 0 }

∪ {
(
(i, 0), (i− 1, k − 1)

)
| i > 0 } and

Eb := {
(
(i, j), ((i+ j) mod k, (j − 1) mod k)

)
| 0 ≤ i, j < k }.

Let us first verify that these structures Ck indeed fulfil the premises for-
mulated in the proof of the separation theorem 34.
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Figure 4: The Kripke structure C3 (a-transitions thicker, b-transitions plain)

(0, 0) (0, 1) (0, 2)

(1, 2) (1, 1) (1, 0)

(2, 0) (2, 1) (2, 2)

Lemma 42. For every k, the structure Ck = (V,Ea, Eb) satisfies the following

conditions:

(i) ent(Ck) = k;

(ii) Ck is deterministic and co-deterministic;

(iii) Ck is singular with respect to simulation.

Proof. To prove (i), we use our characterisation of entanglement in terms of
games, and show that the thief has a winning strategy in any game on Ck

with less than k detectives, but he loses when they come in k or more.
We will refer to the rows Ci := { i, j | 0 ≤ j < k } of the state set as

islands. Each island induces a cycle, and there is an edge between any pair
of islands. Intuitively, if there are less than k cops, at every moment at least
one of the islands must be unguarded and the thief can always navigate from
his current position to that island without meeting a detective by pursuing
the following strategy: Whenever the current island i is unguarded and,
moreover, no detective is on his way to the current position, move to a
successor in Ci. In the event that a detective is sent to the current position,
at least one island j must be left unguarded. Since the current island was
previously unguarded, the path from the current position to the safe island j
is free. Hence, set out on this path and follow it until reaching the island j.
Upon arrival, j will still be an unguarded island so that the strategy can be
reiterated.

In case k or more detectives are available, they can distribute to the
different islands, e.g., by following the thief to any position (i, 0) he reaches
during the play. Then the thief must move to a fresh island after at most
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k− 1 steps. But after k iteration, there are no unguarded islands left, so the
thief loses.

It is easily seen that K is deterministic and co-deterministic. To verify
that it is also singular with respect to simulation, observe that the subgraph
of Ck induced by a-transitions is acyclic and each node is uniquely determined
by the length of the maximal a-path available from it.

According to this, the structures Ck can be used as witnesses in the proof
of the separation theorem 34 yielding strict formulae for each level k of the
existential variable hierarchy. Since Ck is strongly connected, Theorem 35,
establishes that these formulae actually witness the strictness of the variable
hierarchy of the µ-calculus, already over a language with two modalities only.

Corollary 43. For every integer k, there are bimodal existential formulae

ψk ∈ Lµ[k] that are not equivalent to any formula in Lµ[k − 1].

We explicitly construct witnessing formulae describing the simulation
type of Ck, (0, 0), as in the proof of Proposition 22. Towards this, we build a
sequence of formulae (ϕi,j)0≤i,j<k over the fixed-point variables X0, . . . , Xk−1

by induction on j, setting for all i simultaneously ϕi,0 := Xi and for every
j > 0:

ϕi,j := 〈a〉ϕi,j−1 ∧ 〈b〉ϕi+j,j−1.

Then, we define the system S of rules

X0 := 〈b〉ϕ0,n−1 and Xi := 〈a〉ϕi−1,k−1 ∧ 〈b〉ϕi,n−1 for 0 < i < k.

The formula νX0.S obtained as a description for the simulation type of Ck

at state (0.0) is strict for the level k of the variable hierarchy.

7 Parikh’s Game Logic and hierarchies of the

µ-calculus

Parikh’s Game Logic GL, introduced in [16], is a formalism for reasoning
about the dynamics of games. It extends propositional logic by the addition
of modal operators whose meanings are assigned by games. Specifically, path-
forming games for two players, Angel and Demon, are described. The syntax
of GL is based on the language of PDL augmented with a game dualisation
operator.
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Definition 44. Starting from a set prop of atomic propositions and a set
act of atomic game actions, the expressions of GL are of two sorts, formulae
and games, generated respectively by the following grammar:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ

γ := a | ϕ? | γ; γ | γ ∪ γ | γ∗ | γd

where p ∈ prop and a ∈ act.

Typically, 〈γ〉ϕ expresses that Angel has a strategy to play the game γ
starting at v in such a way that either ϕ is true when the game ends, or the
game breaks and Demon fails. The game expressions specify a schedule for
the two players, according to the following outline. The sequential composi-
tion of two games γ1; γ2 means: play γ1 first, then γ2. The nondeterministic
choice operator γ1 ∪ γ2 lets Angel decide which of the two games γ1 or γ2

shall be played. The iteration operator γ∗ allows to play the game γ repeat-
edly, for a finite number of times, where Angel can decide before each round
whether a new round is to be played. Finally, the test operator (ϕ?) invokes
an independent observer to check whether ϕ holds; if so, the play just ends,
otherwise it breaks and Angel loses. As a new construct, beyond PDL, the
formalism introduces an explicit alternation operator γd, which directs Angel
and Demon to play γ with interchanged roles. This notion of dualisation,
corresponds to a form of game-theoretic negation.

Originally, the semantics of Game Logic was defined over neighbourhood
structures, which are more general than Kripke structures, with transition
relations between sets of states. But GL is also a very interesting logic when
interpreted on Kripke structures. In this variant, atomic games are associated
to transitions. For precise definitions, we refer to Pauly’s thesis [17] which
offers an extensive survey of Game Logic.

If the dualisation operator is not used, Game Logic over Kripke structures
is just PDL. However, with dualisation, the expressive power of the language
increases significantly. For instance ∆PDL, the extension of PDL with a
looping operator can easily be captured. This already implies that GL is
more expressive than CTL∗, which is subsumed by ∆PDL [20].

Furthermore, it turns out that the expressive power of GL goes far beyond
that of commonly used process logics.

Proposition 45 ([3]). For every n ∈ N, there exists a GL-formula Wn so

that for any parity game G with n priorities we have G, u |= Wn if, and only

if, Player 0 has a winning strategy for G starting from position u.

Since, for every n, the property described by the formula Wn is hard for
the n-th level of the µ-calculus alternation hierarchy [6], and the size of any
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Wn is linear in n, this has significant consequences regarding the conceptual
and computational complexity of GL.

Corollary 46. (i) No finite level of the µ-calculus alternation hierarchy

captures the expressive power of GL.

(ii) Model-checking for the µ-calculus can be performed efficiently iff this is

the case for GL.

On the other hand, when compared to the µ-calculus, the syntax of GL

seems considerably simpler, as it does not explicitly introduce variables. In-
deed, it turns out that, even though GL-formulae may involve deeply nested
iterations, they can be written in Lµ using, and re-using, only two fixed-point
variables.

Lemma 47. Every GL-formula over Kripke structures, can be translated into

an equivalent formula in Lµ[2].

Proof. For a formula ψ ∈ GL, we construct three mappings ·X , ·Y , and ·]

inductively over its subexpressions. The translations ·X and ·Y associate to
every game expression γ an Lµ-formula γX(X) and γY (Y ), respectively, with
one free fixed-point variable:

aX := ♦X aY := ♦Y

(γ1 ∪ γ2)
X := γX1 ∨ γX2 (γ1 ∪ γ2)

Y := γY1 ∨ γY2

(γ1; γ2)
X := γX1 [X := γX2 ] (γ1; γ2)

Y := γY1 [Y := γY2 ]

(ϕ?)X := ϕ] ∧X (ϕ?)Y := ϕ] ∧ Y

(γd)X := ¬γX [X := ¬X] (γd)Y := ¬γY [Y := ¬Y ]

(γ∗)X := µY.X ∨ γY (γ∗)Y := µX.Y ∨ γX

The mapping ·] associates to every GL-formula an Lµ-formula without
free variables, setting p] := p, and

(¬ϕ)] := ¬ϕ], (ϕ1 ∨ ϕ2)
] := ϕ]1 ∨ ϕ

]
2, (〈γ〉ϕ)] := γX [X := ϕ]].

In this way, we obtain for any ψ ∈ GL a formula ψ] ∈ Lµ[2] with the same
Kripke models.

In his first paper on this topic [15], Parikh announced Game Logic as
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[a logic] which lies in expressive power between the PDL of Fischer
and Ladner and the µ-calculus of Kozen. It is stronger than
the first, but might possibly be equal in expressive power to the
second.

As a direct consequence of our hierarchy theorem, we can now separate
the expressive power of GL and the µ-calculus. Since Game Logic can be
translated into the two variable fragment of Lµ, its expressive power is strictly
subsumed already by Lµ[3]. It is an open problem whether Game Logic is
equivalent to Lµ[2].

Corollary 48. The modal µ-calculus is strictly more expressive than Game

Logic interpreted over Kripke structures.

Moreover, since our examples of strict formulae for the variable hierarchy
involve only greatest fixed points, it follows that already the alternation-free
level of Lµ contains formulae inexpressible in Game Logic. This shows that
the variable hierarchy and the alternation hierarchy of Lµ are orthogonal.

Acknowledgements

This research has been partially supported by the European Community
Research Training Network “Games and Automata for Synthesis and Val-
idation”. The authors wish to thank Thomas Colcombet for his valuable
feedback on this article. The third author expresses his gratitute to André
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