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Abstract. We study definability problems and algorithmic issues for infinite struc-
tures that are finitely presented. After a brief overview over different classes of
finitely presentable structures, we focus on structures presented by automata or by
model-theoretic interpretations. These two ways of presenting a structure are re-
lated. Indeed, a structure is automatic if, and only if, it is first-order interpretable
in an appropriate expansion of Presburger arithmetic or, equivalently, in the infinite
binary tree with prefix order and equal length predicate. Similar results hold for
ω-automatic structures and appropriate expansions of the real ordered group. We
also discuss the relationship to automatic groups.

The model checking problem for FO(∃ω), first-order logic extended by the
quantifier “there are infinitely many”, is proved to be decidable for automatic and
ω-automatic structures. Further, the complexity for various fragments of first-order
logic is determined. On the other hand, several important properties not express-
ible in FO, such as isomorphism or connectedness, turn out to be undecidable for
automatic structures.

Finally, we investigate methods for proving that a structure does not admit an
automatic presentation, and we establish that the class of automatic structures is
closed under Feferman–Vaught-like products.

1. Computational Model Theory

The relationship between logical definability and computational complexity is an im-
portant issue in a number of different fields including finite model theory, databases,
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knowledge representation, and computer-aided verification. So far most of the research
has been devoted to finite structures where the relationship between definability and
complexity is by now fairly well understood (see, e.g., [19] and [34]) and has many ap-
plications in particular to database theory [1]. However, in many cases the limitation to
finite structures is too restrictive. Therefore, in most of the fields mentioned above, there
have been considerable efforts to extend the methodology from finite structures to suitable
classes of infinite ones. In particular, this is the case for databases and computer-aided
verification where infinite structures (like constraint databases or systems with infinite
state spaces) are of increasing importance.

Computational model theory extends the research programme, the general approach,
and the methods of finite model theory to interesting domains of infinite structures. From
a general theoretical point of view, one may ask what domains of infinite structures are
suitable for such an extension. More specifically, what conditions must be satisfied by
a domain D of not necessarily finite structures such that the approach and methods of
finite model theory make sense. There are two obvious and fundamental conditions:

Finite representations. Every structure A ∈ D should be representable in a finite
way (e.g. by a binary string, by an algorithm, by a collection of automata, by an
axiomatisation in some logic, by an interpretation, . . . ).

Effective semantics. For the relevant logics to be considered (e.g., first-order logic),
the model-checking problem onD should be decidable. That is, given a sentence
ψ ∈ L and a representation of a structure A ∈ D, it should be decidable whether
A |= ψ .

These are just minimal requirements that may need to be refined according to the
context and the questions to be considered. We may for instance also require:

Closure. For every structure A ∈ D and every formula ψ(x̄), also (A, ψA), the
expansion of A with the relation defined by ψ belongs to D.

Effective query evaluation. Suppose that we have fixed a way of representing struc-
tures. Given a representation of A ∈ D and a formula ψ(x̄) we should be able
to compute a representation of ψA (or of the expanded structure (A, ψA)).

Note that contrary to the case of finite structures, query evaluation does not necessarily
reduce to model checking. Further, instead of just effectiveness of these tasks, it may be
required that they can be performed within some complexity bounds.

After a brief survey on different classes of finitely presented structures in the next
section, we focus on domains where structures are presented by two closely related
methods, namely by finite automata or by model-theoretic interpretations. While auto-
matic groups have been studied rather intensively in computational group theory (see
[22] and [24]) a general notion of automatic structures has only been defined in [36] and
its theory has been developed in [6] and [8]. These structures are defined in Section 3.
Informally, a relational structure A = (A, R1, . . . , Rm) is automatic if it is universe and
its relations can be recognised by finite automata reading their inputs synchronously.
We believe that automatic structures are very promising for the approach of compu-
tational model theory. Not only do automatic structures admit finite presentations, but
there are also numerous interesting examples and a large body of methods that have
been developed in five decades of automata theory. Further, automatic structures admit
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effective evaluation of all first-order queries and possess many other pleasant algorithmic
properties.

Automatic structures can also be defined via interpretations. As we show in Section 4
a structure is automatic if, and only if, it is first-order interpretable in an appropriate
expansion of Presburger arithmetic or, equivalently, in the infinite binary tree with prefix
order and equal length predicate. Similar results hold for ω-automatic structures and
appropriate expansions of the real ordered group.

Such results suggest a very general way for obtaining other interesting classes
of infinite structures suitable for the approach of computational model theory: Fix a
structure A (or a class of such structures) with “nice” algorithmic and/or model-theoretic
properties, and consider the class of all structures that are interpretable in A, for instance,
via first-order or monadic second-order logic. Obviously each structure in this class is
finitely presentable (by an interpretation). Further, since many “nice” properties are
preserved under interpretations, every structure in the class inherits them from A. In
particular, every class of queries that is effective on A and closed under first-order
operations is effective on the interpretation-closure of A.

In Section 5 we turn to decidability and complexity issues. It is shown that the
model-checking problem for FO(∃ω), first-order logic extended by the quantifier “there
are infinitely many”, is decidable for automatic and ω-automatic structures, and the
complexity for various fragments of first-order logic is investigated. On the other hand,
we prove that several properties not expressible in FO, such as isomorphism of automatic
structures or connectivity of automatic graphs, are undecidable.

While it is usually rather easy to show that a structure is automatic (by constructing
an automatic presentation), it is often difficult to prove a structure does not admit any
automatic presentation. In Section 6 we present some methods to achieve this goal.

In the final section, Feferman–Vaught-like products are introduced, and it is shown
that every domain of structures that can be characterised via interpretations of a cer-
tain kind is closed under such products. In particular, this applies to automatic and
ω-automatic structures.

2. Finitely Presentable Structures

We briefly survey some domains of infinite but finitely presentable structures which may
be relevant for computational model theory.

Recursive structures are countable structures whose functions and relations are com-
putable and therefore finitely presentable. They have been studied quite intensively in
model theory since the 1960s (see, e.g., [2] and [23]). Although recursive model theory
is very different from finite model theory, there have been some papers studying classical
issues of finite model theory on recursive structures and recursive databases [28], [31],
[32], [46]. However, for most applications, the domain of recursive structures is far too
large. In general, only quantifier-free formulae admit effective evaluation algorithms.

Constraint databases are a modern database model admitting infinite relations that are
finitely presented by quantifier-free formulae (constraints) over some fixed background
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structure. For example, to store geometrical data, it is useful to have not just a finite
set as the universe of the database, but to include all real numbers ‘in the background’.
Also the presence of interpreted functions, like addition and multiplication, is desirable.
The constraint database framework introduced by Kanellakis et al. [35] meets both
requirements. Formally, a constraint database consists of a context structure A, like
(R, <,+, ·), and a set {ϕ1, . . . , ϕm} of quantifier-free formulae defining the database
relations. Constraint databases are treated in detail in [38].

Metafinite structures are two-sorted structures consisting of a finite structure A, a
background structure R (which is usually infinite but fixed), and a class of weight
functions from the finite part to the infinite one. Simple examples are finite graphs whose
edges are weighted by real numbers. For any fixed infinite structure R, the metafinite
structures with background R are finitely presentable and admit effective evaluation of
logics that make use of arithmetic operations on R, but do not admit full quantification
over its elements. Metafinite model theory has been developed in [27] and has been put
to use for studying issues in database theory, optimisation, and descriptive complexity.
In particular, metafinite structures have provided the basis for logical characterisations
of complexity classes over real numbers [29].

Automatic structures are structures whose functions and relations are represented by
finite automata. Informally, a relational structure A = (A, R1, . . . , Rm) is automatic if
we can find a regular language Lδ ⊆ �∗ (which provides names for the elements of A)
and a function ν : Lδ → A mapping every word w ∈ Lδ to the element of A that it
represents. The function ν must be surjective (every element of A must be named) but
need not be injective (elements can have more than one name). In addition it must be
recognisable by finite automata (reading their input words synchronously) whether two
words in Lδ name the same elements, and, for each relation Ri of A, whether a given tuple
of words in Lδ names a tuple in Ri . Automatic structures provide many examples of high
relevance for computer science. There are also interesting connections to computational
group theory, where automatic groups have already been studied quite intensively [22],
[24]. The general notion of structures presentable by automata has been proposed in [36]
and their theory has been developed in [6] and [8]. Recently, results on automatic linear
orders were obtained in [18] and [37]. The notion of an automatic structure can be
modified and generalised in many directions. By using automata over infinite words, we
obtain the notion of ω-automatic structures (which, contrary to automatic structures,
may have uncountable cardinality).

One of the main reasons for the importance of automatic andω-automatic structures
is that they admit effective (in fact, automatic) evaluation of all first-order queries. This
follows immediately from the closure properties of regular and ω-regular relations and
from the decidability of emptiness problems of finite automata. Indeed, we establish a
more general result.

Theorem 2.1. The model-checking problem for FO(∃ω), first-order logic extended by
the quantifier “there are infinitely many”, is decidable on the domain of ω-automatic
structures.

The proof is given in Section 5.
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Tree-automatic structures, which are defined by automata on finite or infinite trees,
are further natural generalisations of automatic structures. They also admit effective
evaluation of first-order formulae. The theory of tree-automatic structures has been
developed in [6]. On the other hand, first-order logic is not effective on another popular
extension of automatic graphs, the so-called rational graphs [41], which are defined by
asynchronous multihead automata.

Tree-interpretable structures are structures that are interpretable in the infinite binary
treeT 2 = ({0, 1}∗, σ0, σ1) via a one-dimensional monadic second-order (MSO) interpre-
tation (see Section 4 for details on interpretations). By Rabin’s theorem, (MSO) formu-
lae can be effectively evaluated on T 2, and since MSO is closed under one-dimensional
interpretations, the same holds for all tree-interpretable structures. Tree-interpretable
structures form a proper subclass of the automatic structures that generalises various no-
tions of infinite graphs that have been studied in logic, automata theory, and verification.
Examples are the context-free graphs [42], [43], which are the configuration graphs of
pushdown automata; the HR-equational and VR-equational graphs [15], which are
defined via graph grammars; and the prefix-recognisable graphs [13], which can for in-
stance be defined as graphs of form (V, (Ea)a∈A)where V is a regular language and each
edge relation Ea is a finite union of sets X (Y × Z) := {(xy, xz)|x ∈ X, y ∈ Y, z ∈ Z},
for regular languages X , Y , Z .

It has been established in a series of papers that some of these classes coincide with
tree-interpretable graphs (see [3], [7], and [13]).

Theorem 2.2. For any graph G = (V, (Ea)a∈A) the following are equivalent:

(i) G is tree-interpretable.
(ii) G is VR-equational.

(iii) G is prefix-recognisable.
(iv) G is the restriction to a regular set of the configuration graph of a pushdown

automaton with ε-transitions.

On the other hand, the classes of context-free graphs and of HR-equational graphs
are strictly contained in the class of tree-interpretable graphs.

Tree-constructible structures: the Caucal hierarchy. The question arises whether
there are even more powerful domains than the tree-interpretable structures on which
(MSO) logic is effective. An interesting way to obtain such domains are tree construc-
tions that associate a kind of tree unravelling with any structure. A simple variant is the
unfolding of a labelled graph G from a given node v to the tree T (G, v). Courcelle and
Walukiewicz [16], [17] show that the MSO theory of T (G, v) can be effectively com-
puted from the MSO theory of (G, v). A more general operation, applicable to relational
structures of any kind, has been invented by Muchnik [44]. Given a relational structure
A = (A, R1, . . . , Rm), let its iteration A∗ = (A∗, R∗1 , . . . , R∗m, suc, clone) be the struc-
ture with universe A∗, relations R∗i = {(wa1, . . . , war )|w ∈ A∗, (a1, . . . , ar ) ∈ Ri }, the
successor relation suc = {(w,wa)|w ∈ A∗, a ∈ A}, and the predicate clone consisting
of all elements of form waa. It is not difficult to see that unfoldings of graphs are first-
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order interpretable in their iterations. Muchnik’s theorem states that the monadic theory
of A∗ is decidable if the monadic theory of A is (for proofs, see [5] and [49]). Define
the domain of tree-constructible structures to be the closure of the domain of finite
structures under (one-dimensional) MSO interpretations and iterations. By Muchnik’s
theorem, and since effective MSO model checking is preserved under interpretations,
tree-constructible structures are finitely presentable and admit effective evaluation of
MSO formulae.

Tree-constructible graphs form the Caucal hierarchy, which was defined in [14] in
a slighly different way. The definition easily extends to arbitrary structures: Let C0 be the
class of finite structures, and let Cn+1 be the class of structures that are interpretable in the
iteration A∗ of a structure A ∈ Cn . There are a number of different, but equivalent, ways
to define the levels of the Caucal hierarchy. For instance, one can use the inverse rational
mappings from [13] rather than monadic interpretations, and simple unfoldings rather
than iterations without changing the hierarchy [12]. Equivalently, the hierarchy can be
defined via higher-order pushdown automata. It is known that the Caucal hierarchy is
strict, and that it does not exhaust the class of all structures with decidable MSO theory.
We refer to [48] and [12] for details and further information.

Ground tree rewriting graphs are defined by tree rewriting [39]. Vertices are repre-
sented by finite trees and edges are generated by ground rewriting rules. In this way one
can obtain graphs that are not tree-interpretable (for instance, the infinite two-dimensional
grid), but for which, in addition to first-order theory, the reachability problem also remains
decidable. While universal reachability and universal recurrence (and hence general MSO
formulae) are undecidable on ground tree rewriting graphs, Löding [39] exhibits a frag-
ment of CTL (permitting EF and EGF operations, but not EG, EFG, or until operations)
that can be effectively evaluated on this class.

3. Automatic Structures and Automatic Groups

As usual in logic, we consider structures A = (A, R1, R2, . . . , f1, f2, . . .) where A is
a non-empty set, called the universe of A, where each Ri ⊆ Ari is a relation on A, and
every f j : Asj → A is a function on A. The names of the relations and functions of A,
together with their arities, form the vocabulary of A. We consider constants as functions
of arity 0. A relational structure is a structure without functions. We can associate with
every structure A its relational variant which is obtained by replacing each function
f : As → A by its graph G f := {(ā, b) ∈ As+1| f (ā) = b}.

For a structure A and a formula ϕ(x̄), let ϕA := {ā|A |= ϕ(ā)} be the relation
(or query) defined by ϕ on A.

We assume that the reader is familiar with the basic notions of automata theory
and regular languages. One slightly non-standard aspect is that, in order to present a
structure by a list of finite automata, we need a notion of regularity not just for languages
L ⊆ �∗ but also k-ary relations of words, for k > 1. Instead of introducing synchronous
multihead automata that take tuples w̄ = (w1, . . . , wk) of words as inputs and work
synchronously on all k components of w̄, we reduce the case of higher arities to the unary
one by encoding tuples w̄ ∈ (�∗)k by a single word w1 ⊗ · · · ⊗ wk over the alphabet
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(� ∪ {�})k , called the convolution of w1, . . . , wk . Here � is a padding symbol not
belonging to�. It is appended to some of the wordswi to make sure that all components
have the same length. More formally, for w1, . . . , wk ∈ �∗, with wi = wi1 · · ·wi�i and
� = max{|w1|, . . . , |wk |},

w1 ⊗ . . .⊗ wk :=



w′11
...

w′k1


 . . .



w′1�
...

w′k�


 ∈ ((� ∪ {�})k)∗,

where w′i j = wi j for j ≤ |wi | and w′i j = � otherwise. Now, a relation R ⊆ (�∗)k is
called regular if {w1 ⊗ · · · ⊗ wk |(w1, . . . , wk) ∈ R} is a regular language. Below we do
not distinguish between a relation on words and its encoding as a language.

Definition 3.1. A relational structure A is automatic if there exist a regular language
Lδ ⊆ �∗ and a surjective function ν : Lδ → A such that the relation

Lε := {(w,w′) ∈ Lδ × Lδ|νw = νw′} ⊆ �∗ ×�∗

and, for all predicates R ⊆ Ar of A, the relations

L R := {w̄ ∈ (Lδ)r |(νw1, . . . , νwr ) ∈ R} ⊆ (�∗)r

are regular. An arbitrary (not necessarily relational) structure is automatic if and only if
its relational variant is.

We write AutStr[τ ] for the class of all automatic structures of vocabulary τ . Each
structure A ∈ AutStr[τ ] can be represented, up to isomorphism, by a list d =
〈Mδ, Mε, (MR)R∈τ 〉 of finite automata that recognise Lδ , Lε, and L R for all rela-
tions R of A. When speaking of an automatic presentation of A we either mean the
function ν : Lδ → A or such a list d. An automatic presentation d is called deterministic
if all its automata are, and it is called injective if Lε = {(u, u)|u ∈ Lδ} (which implies
that ν : Lδ → A is injective).

Examples. (1) All finite structures are automatic.
(2) Important examples of automatic structures are Presburger arithmetic (N,+)

and its expansion Np := (N,+, |p) by the relation

x |p y : iff x is a power of p dividing y.

Using p-ary encodings (starting with the least significant digit) it is not difficult to
construct automata recognising equality, addition, and |p.

(3) Natural candidates for automatic structures are those consisting of words. (How-
ever, note that free monoids with at least two generators do not have automatic presenta-
tions.) Fix some alphabet� and consider the structure Tree(�) := (�∗, (σa)a∈�,�, el)
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where

σa(x) := xa, x � y : iff ∃z(xz = y), and el(x, y) : iff |x | = |y|.

Obviously, this structure is automatic as well.

The following two observations are simple, but useful:

(1) Every automatic structure admits an automatic presentation with alphabet
{0, 1} [6].

(2) Every automatic structure admits an injective automatic presentation [36].

Automatic Groups. The class of automatic structures that have been studied most in-
tensively are automatic groups. Let (G, ·) be a group and let S = {s1, . . . , sm} ⊆ G be a
set of semigroup generators of G. This means that each g ∈ G can be written as a product
si1· · · sir of elements of S and hence the canonical homomorphism ν : S∗ → G is surjec-
tive. The Cayley graph�(G, S) of G with respect to S is the graph (G, S1, . . . , Sm)whose
vertices are the group elements and where Si is the set of pairs (g, h) such that gsi = h.
By definition (G, ·) is automatic if there is a finite set S of semigroup generators and a
regular language Lδ ⊆ S∗ such that the restriction of ν to Lδ is surjective and provides
an automatic presentation of �(G, S). (In other words, the inverse image of equality,

Lε = {(w,w′) ∈ Lδ × Lδ|νw = νw′},

and ν−1(Si ), for i = 1, . . . ,m, are regular.)
Note that it is not the group structure (G, ·) itself that is automatic in the sense of Def-

inition 3.1, but the Cayley graph. There are many natural examples of automatic groups
(see [22] and [24]). The importance of this notion in computational group theory comes
from the fact that an automatic presentation of a group yields (efficient) algorithmic
solutions for computational problems that are undecidable in the general case.

ω-Automatic structures. The notion of an automatic structure can be modified and
generalised in a number of different directions (see [6] and [36]). In particular, we obtain
the interesting class ω-AutStr of ω-automatic structures. The definition is analogous to
the one for automatic structures except that the elements of an ω-automatic structure are
named by infinite words from some regular ω-language and the relations of the structure
are recognisable by Büchi automata.

Examples. (1) All automatic structures are ω-automatic.
(2) The real numbers with addition, (R,+), and indeed the expanded structure

Rp := (R,+,≤, |p, 1) are ω-automatic, where p ≥ 2 is an integer and

x |p y : iff ∃n, k ∈ Z: x = pn and y = kx .

(3) The tree automatic structures Tree(�) extend in a natural way to the (uncount-
able) ω-automatic structures Treeω(�) := (�≤ω, (σa)a∈σ ,�, el).
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4. Characterising Automatic Structures via Interpretations

Interpretations constitute an important tool in mathematical logic. They are used to de-
fine a copy of a structure inside another one, and thus permit the transfer of definability,
decidability, and complexity results among theories.

Definition 4.1. Let L be a logic, and let A = (A, R0, . . . , Rn) and B be relational
structures. A (k-dimensional) L-interpretation of A in B is a sequence

I = 〈δ(x̄), ε(x̄, ȳ), ϕR0(x̄1, . . . , x̄r ), . . . , ϕRn (x̄1, . . . , x̄s)
〉

of L-formulae of the vocabulary of B (where each tuple x̄ , ȳ, x̄i consists of k variables)
such that

A ∼= I(B) := (δB, ϕB
R0
, . . . , ϕB

Rn

)
/εB.

To make this expression well-defined we require that εB is a congruence relation on the
structure

(
δB, ϕB

R0
, . . . , ϕB

Rn

)
. We denote the fact that I is an L-interpretation of A in B

by I : A ≤L B. If A ≤L B and B ≤L A we say A and B are mutually L-interpretable.
The epimorphism

(
δB, ϕB

R0
, . . . , ϕB

Rn

)→ A is called a coordinate map and is also
denoted by I. If it is the identity function, i.e., A = I(B), we say that A is L-definable
in B. An interpretation I is injective if its coordinate is injective, i.e., if ε(x̄, ȳ) ≡ x̄ = ȳ.

Examples. (1) Recall that we write a|pb to denote that a is a power of p dividing b. Let
Vp : N→ N be the function that maps each number to the largest power of p dividing
it. It is very easy to see that the structures (N,+, |p ) and (N,+, Vp) are mutually first-
order interpretable. Indeed, we can define the statement x = Vp(y) in (N,+, |p ) by the
formula x |p y∧∀z(z|p y → z|px). In the other direction, Vp(x) = x∧∃z(x+ z = Vp(y))
is a definition of x |p y.

(2) For every p ∈ Nwe write Tree(p) for the tree structure Tree({0, . . . , p−1}). The
structures Np and Tree(p) are mutually interpretable, for each p ≥ 2 (see [6] and [26]).

If I : A ≤FO B, then every first-order formula ϕ over the vocabulary of A can be
translated to a formula ϕI over the vocabulary of B by replacing every relation symbol R
by its definition ϕR , by relativising every quantifier to δ, and by replacing equalities by ε.

Lemma 4.2 (Interpretation Lemma). If I : A ≤FO B, then

A |= ϕ(I(b̄)) iff B |= ϕI(b̄) for all ϕ ∈ FO and b̄ ⊆ δB.

This lemma states the most important property of interpretations. For any logic L , a
notion of interpretation is considered suitable if a similar statement holds, and if the
logic is closed under the operation ϕ �→ ϕI . Note that in the case of MSO, arbitrary
k-dimensional MSO interpretations are too strong since they translate sets to relations
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of arity k which takes us out of MSO. On the other hand, the Interpretation Lemma does
hold for one-dimensional MSO interpretations.

Interpretations provide a general and powerful method to obtain classes of finitely
presented structures with a set of desired properties. One fixes some structure B hav-
ing these properties and chooses a kind of interpretation that preserves them. Then one
considers the class of all structures which can be interpreted in B. Each structure A

of this class can be represented by an interpretation I : A ≤FO B which is a finite
object, and model checking and query evaluation for such structures can be reduced to
the corresponding problem for B. If I : A ≤FO B, then Lemma 4.2 implies that

ϕA = {ā |A |= ϕ(ā)} = {I(b̄) |B |= ϕI(b̄)}.

Hence, the desired representation of ϕA can be constructed by extending the interpreta-
tion I to 〈I, ϕI〉 : (A, ϕA) ≤FO B.

Automatic structures are closed under first-order interpretations.

Proposition 4.3. If A ≤FO B and B is (ω-) automatic, then so is A.

Proof. Since B is automatic there are regular languages Lδ for the universe, Lε for
equality, and L R for each relation R of B. By the closure of regular languages under
boolean operations and projections it follows that, for each first-order formula ϕ, the
language encoding the relation ϕB is also regular.

Corollary 4.4. The classes of automatic, resp. ω-automatic, structures are closed un-
der (i) extensions by definable relations, (ii) factorisations by definable congruences,
(iii) substructures with definable universe, and (iv) finite powers.

As stated above the class of automatic structures can be characterised via first-order
interpretations.

Theorem 4.5. For every structure A, the following are equivalent:

(i) A is automatic.
(ii) A ≤FO Np for some (and hence all) p ≥ 2.

(iii) A ≤FO Tree(p) for some (and hence all) p ≥ 2.

Proof. The facts that (ii) and (iii) are equivalent and that they imply (i) follow immedi-
ately from the mutual interpretability of Np and Tree(p), from the fact that these struc-
tures are automatic, and from the closure of automatic structures under interpretation.

It remains to show that every automatic structure is interpretable in Np (or Tree(p)).
Suppose that d is an automatic presentation of A with alphabet [p] := {0, . . . , p−1} for
some p ≥ 2 (without loss of generality, we could take p = 2). For every wordw ∈ [p]∗,
let val(w) be the natural number whose p-ary encoding isw, i.e., val(w) :=∑i<|w|wi pi .
By a classical result, sometimes called the Büchi–Bruyère Theorem, a relation R ⊆ Nk
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is first-order definable in (N,+, Vp) if and only if

{(val−1(x1), . . . , val−1(xk))|(x1, . . . , xk) ∈ R}

is regular. (See [10] for a proof of this fact and for more information on the relationship
between automata and definability in expansions of Presburger arithmetic.) The formulae
that define in this sense the regular language and the regular relations in an automatic
presentation of A provide an interpretation of A in (N,+, Vp). Hence also A ≤FO Np.

For automatic groups we are not free to change the coordinate map. Indeed, the
definition of an automatic group requires that the function ν : Lδ → G be the restriction
of the canonical homomorphism from S∗ to G. Hence the arguments used above give us
a characterisation of automatic groups in terms of definability rather than interpretability.

Theorem 4.6. (G, ·) is an automatic group if and only if there exists a finite set S ⊆ G
of semigroup generators such that �(G, S) is first-order definable in Tree(S).

By definition, if G is an automatic group, then for some set S of semigroup genera-
tors, the Cayley graph �(G, S) is an automatic structure. Contrary to a claim in [36] the
converse does not hold. A counterexample, which has been pointed out by Senizergues,
is the Heisenberg group H which is the group of affine transformations of Z3 generated
by the maps

α : (x, y, z) �→ (x + 1, y, z + y),

β : (x, y, z) �→ (x, y + 1, z),

γ : (x, y, z) �→ (x, y, z + 1).

Using this matrix representation of H, it is not difficult to construct a (three-dimensional)
interpretation of �(H, S) in (N,+), which implies that �(H, S) ∈ AutStr. However, in
[22] it is shown that H is not automatic.

Proposition 4.7. There exist groups G with a set of semigroup generators S such that
the Cayley graph�(G, S) is an automatic structure without G being an automatic group.

We now turn toω-automatic structures. To provide a similar characterisation we can
use an equivalent of the Büchi–Bruyère Theorem for encodings of ω-regular relations.
One such result has been obtained by Boigelot et al. [9]. Using natural translations be-
tween ω-words over [p] and real numbers, they prove that a relation over [p]ω can be
recognised by a Büchi automaton if and only if its translation is first-order definable in
the structure (R,+, <,Z, X p) where X p ⊆ R

3 is a relation that explicitly represents
the translation between [p]ω and R. X p(x, y, z) holds iff there exists a representation
of x by a word in [p]ω such that the digit at the position specified by y is z. A some-
what unsatisfactory aspect of this result is the assumption that the encoding relation X p

must be given as a basic relation of the structure. It would be preferable if more natural
expansions of the additive real group (R,+) could be used instead.
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We show here that this is indeed possible if, as in the case of Np, we use a re-
stricted variant of the divisibility relation. Recall that the structures Rp and Treeω(p)
(introduced at the end of Section 3) are ω-automatic. As a first step we show that the
behaviour of Büchi automata recognising regular relations over [p]ω can be simulated by
first-order formulae in Treeω(p). Secondly we show that Treeω(p) and Rp are mutually
interpretable. As a result we obtain the following model-theoretic characterisation of
ω-automatic structures.

Theorem 4.8. For every structure A, the following are equivalent:

(i) A is ω-automatic.
(ii) A ≤FO Rp for some (and hence all) p ≥ 2.

(iii) A ≤FO Treeω(p) for some (and hence all) p ≥ 2.

Proof. In order to construct interpretations of Treeω(p) in Rp and vice versa we define
formulae which allow us to access the digits of, respectively, some number in Rp and
some word in Treeω(p). In the latter case we set

digk(x, y) := ∃z(el(z, y) ∧ σk z � x)

which states that the digit of x at position |y| is k. For Rp the situation is more compli-
cated as some real numbers admit two encodings. The following formula describes that
there is one encoding of x such that the digit at position y is k (this corresponds to the
predicate X of [9]):

digk(x, y) := ∃s∃t (|x | = s + k · y + t ∧ p · y|ps ∧ 0 ≤ s ∧ 0 ≤ t < y).

For Rp ≤FO Treeω(p) we represent each number as a pair of words. The first one
is finite and encodes the integer part, the other one is infinite and contains the fractional
part. In the other direction we map finite words a1 · · · ar ∈ [p]∗ to the interval [2, 3] via

p−r+1 +
r∑

i=1

ai p−i + 2 ∈ [2, 3].

Infinite words a1a2 · · · ∈ [p]ω are mapped to two intervals [−1, 0] and [0, 1] via

±
∑

i

ai p−i ∈ [−1, 1].

This is necessary because some words, e.g., 0(p − 1)ω and 10ω, would be mapped to
the same number otherwise. Now the desired interpretations can be constructed easily
using the formulae digk defined above.

It remains to prove that if R ⊆ ([p]ω)n is ω-regular, then it is definable in Treeω(p).
Let M = (Q, [p]n,�, q0, F) be a Büchi–automaton for R. Without loss of generality
assume Q = [p]m for some m and q0 = (0, . . . , 0). We prove the claim by constructing
a formula ψM(x̄) ∈ FO stating that there is a successful run of M on x1 ⊗ . . .⊗ xn . The
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run is encoded by a tuple (q1, . . . , qm) ∈ ([p]ω)m of ω-words such that the symbols of
q1, . . . , qm at some position equal k1, . . . , km iff the automaton is in state (k1, . . . , km)

when scanning the input symbol at that position. ψM(x̄) has the form

∃q1 · · · ∃qm[ADM(q̄, x̄) ∧ START(q̄, x̄) ∧ RUN(q̄, x̄) ∧ ACC(q̄, x̄)],

where the admissibility condition ADM(x̄, q̄) states that all components of x̄ and q̄ are
infinite, START(x̄, q̄) says that the first state is 0̄, ACC(x̄, q̄) says that some final state
appears infinitely often, and RUN(x̄, q̄) ensures that all transitions are correct.

Define the following auxiliary formulae. To access the digits of a tuple of words at
some position we define Symā(x̄, z) :=∧i digai

(xi , z), and to characterise the ω-words
of [p]≤ω we set

Inf(x) := ∀y(x � y → x = y).

ADM and START are defined as

ADM(q̄, x̄) :=
m∧

i=1

Inf(qi ) ∧
n∧

i=1

Inf(xi ),

START(q̄, x̄) := Sym0̄(q̄, ε),

RUN states that at every position a valid transition is used,

RUN(q̄, x̄) := ∀z
∨

(k̄,ā,k̄ ′)∈�

(
Symk̄(q̄, z) ∧ Symā(x̄, z) ∧ Symk̄ ′(q̄, σ0z)

)
,

and ACC says that there is one final state which appears infinitely often in q̄:

ACC(q̄, x̄) :=
∨
k̄∈F

∀z∃z′
(|z′| > |z| ∧ Symk̄(q̄, z′)

)
.

5. Model Checking and Query Evaluation

In this section we study decidability and complexity issues for automatic structures. Two
fundamental algorithmic problems are:

Model checking. Given a (presentation of a) structure A, a formula ϕ(x̄), and a tuple
of parameters ā in A, decide whether A |= ϕ(ā).

Query evaluation. Given a presentation of a structure A and some formula ϕ(x̄),
compute a presentation of (A, ϕA). That is, given automata for the relations of A,
construct an automaton that recognises ϕA.

Decidability. We first observe that all first-order queries on (ω-)automatic structures
are effectively computable since the construction in Proposition 4.3 is effective. In fact,
this is the case not only for first-order logic but also for formulae containing the quan-
tifier ∃ω meaning “there are infinitely many”. To prove this result for the case of ω-
automatic structures we require some preparations.
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Lemma 5.1. Let R ⊆ �ω⊗�ω be regular. There is a regular relation R′ ⊆ R such that

(i) if (x, y) ∈ R, then there is some y′ such that (x, y′) ∈ R′, and
(ii) for all x there is at most one y with (x, y) ∈ R′.

Proof. Without loss of generality, assume that R �= ∅. First we introduce some notation.
By v[i, k) we denote the factor vi · · · vk−1 of v = v0v1 · · · ∈ �ω. Similarly, v[i, ω) is
equal to vivi+1 · · ·, and v[i] := v[i, i + 1).

Let A = (Q, � × �,�, q0, F) be a Büchi automaton recognising R. Fix an order-
ing � of Q such that all final states are less than non-final ones. For a run (sequence of
states) � ∈ Qω define

Inf(�) := {q ∈ Q|there are infinitely many i such that �[i] = q},
µ(�) := min Inf(�).

Let fi (�) be the greatest number such that �[k, fi (�)) contains exactly i times the
state µ(�) where k is the least position such that all states appearing only finitely often
are contained in �[0, k).

Denote the lexicographically least run of A on x ⊗ y by �(x, y). Fix x ∈ �ω and
set µ(y) := µ(�(x, y)), fi (y) := fi (�(x, y)). We define an order on �ω by

y ≤ y′ iff µ(y) < µ(y′),
or µ(y) = µ(y′) and there is some n such that

fn(y) < fn(y
′) and fi (y) = fi (y

′) for all i < n,

or µ(y) = µ(y′), fi (y) = fi (y
′) for all i , and

y is lexicographically less than or equal to y′.

It should be obvious that the relation ≤ is regular. Finally, R′ is defined by

R′ := {(x, y) ∈ R | there is no y′ < y such that (x, y′) ∈ R}.

Clearly, R′ is regular, is contained in R, and satisfies (ii). Hence, it remains to prove
(i). We directly construct the minimal element of V := {y | (x, y) ∈ R} as follows. Let
Y−1 ⊆ V be the subset of those y with minimal µ(y). We define a sequence of sets
Y−1 ⊇ Y0 ⊇ Y1 ⊇ · · · by

Yi := { y ∈ Yi−1 | fi (y) ≤ fi (y
′) for all y′ ∈ Yi−1 }.

For i ≥ 0, fix some element yi ∈ Yi such that yi [0, fi ) is lexicographically minimal.
Hence, y0 ≥ y1 ≥ · · ·. Define ŷ by

ŷ[n] := limk yk[n].

We claim that ŷ is the minimal element of V .
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(a) ŷ exists. Set fn := limk fn(yk) = fn(yn). The pointwise limit of yk exists since
yn+1[0, fn) = yn[0, fn) for all n. For, otherwise, there is some k < fn such that

yn+1[0, k) = yn[0, k) and yn+1[k] �= yn[k].

Since yn , yn+1 ∈ Yn it follows that yn[k] < yn+1[k]. On the other hand, y′ :=
yn[0, fn)yn+1[ fn, ω) is in V and thus in Yn+1, as �(x, yn)[ fn] = �(x, yn+1)[ fn]. Thus,
yn+1[k] ≤ y′[k] = yn[k] by choice of yn+1. Contradiction.

(b) ŷ ∈ V . An accepting run of A on x ⊗ y is given by �̂ where

�̂[ fn−1, fn) = �(x, yn)[ fn−1, fn)

since �̂[ fn] = µ(y0) ∈ F for all n.
(c) ŷ is minimal. Suppose y′ ≤ y for some y′ ∈ V . Then µ(y′) ≤ µ(ŷ) and, by

induction on n, one can show that y′ ∈ Yn since fn(y′) ≤ fn(ŷ). Thus by construction
µ(y′) = µ(ŷ) and fn(y′) = fn(ŷ). Suppose y′ < y. Then y′ must be lexicographically
less than ŷ and there exists some k such that y′[0, k) = ŷ[0, k) and y′[k] < ŷ[k]. Choose
n such that fn−1 ≤ k < fn . Then yn ≤ y′ by construction. However, yn[0, fn) =
ŷ[0, fn) and hence yn[0, k) = y′[0, k) which implies that y′[k] ≥ yn[k] = ŷ[k].
Contradiction.

Proposition 5.2. Every (ω-)automatic structure has an injective presentation.

Proof. For automatic structures this result is due to Khoussainov and Nerode [36].
Let ν : D → A be a presentation of an ω-automatic structure A. By the preceding

lemma applied to the relation {(x, y)|νx = νy} there is a function e such that

(i) νx = νex for all x ∈ �ω, and
(ii) νx = νy implies ex = ey.

Thus we obtain a regular subset D′ ⊆ D containing exactly one representation for each
element of A by defining D′ := {x ∈ D|ex = x}.

We say that a logic L effectively collapses to L0 ⊆ L on a structure A if, given a
formula ϕ(x̄) ∈ L , one can compute a formula ϕ0(x̄) ∈ L0 such that ϕA

0 = ϕA.

Proposition 5.3.

(1) FO(∃ω) effectively collapses to FO on Tree(p).
(2) FO(∃ω) effectively collapses to FO on Treeω(p).

Proof. (1) In the case of automatic structures the quantifier ∃ω can be handled using a
pumping argument. Consider for simplicity the formula ∃ωxψ(x, y). By induction the
formulaψ is equivalent to some first-order formula and, hence, there is some automaton
recognising the relation defined by ψ . There are infinitely many x satisfying ψ iff for
any m there are infinitely many such elements whose encoding is at least m symbols
longer than that of y. If we take m to be the number of states of the automaton for ψ
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then, by the Pumping Lemma, the last condition is equivalent to the existence of at least
one such x . Thus ∃ωxψ(x, y) ≡ ∃x(ψ(x, y) ∧ “x is long enough”) for which we can
obviously construct an automaton.

(2) For ω-automatic structures the proof is more involved.
Let M be a deterministic Muller automaton with s states recognising the language

L(M) ⊆ �ω ⊗�ω. For w ∈ �ω let V (w) := {v ∈ �ω|w ⊗ v ∈ L(M)}.
Let v, w ∈ �ω and define v ≈∗ w iff v[n, ω) = w[n, ω) for some n. Let

[v]∗ := {v′ ∈ V (w)|v′ ≈∗ v} be the ≈∗-class of v in V (w).

Claim. V (w) is infinite if and only if there is some v ∈ �ω such that [v]∗ ∈ V (w)/≈∗
is infinite.

Proof. (⇐) is trivial and (⇒) is proved by showing that V/≈∗ contains at most s finite
≈∗-classes.

Assume there are words v0, . . . , vs ∈ V (w) belonging to different finite ≈∗-
classes. Denote the run of M on w ⊗ vi by �i . Define Ii j := {k < ω|�i [k] = �j [k]}.
Since there are only s states, for each k < ω there have to be indices i , j such that
k ∈ Ii j , i.e.,

⋃
i, j Ii j = ω. Thus, at least one Ii j is infinite. For each [vi ]∗ there is a

position ni such that v[ni , ω) = v′[ni , ω) for all v, v′ ∈ [vi ]∗. Let m be the maxi-
mum of n0, . . . , ns . Fix i, j such that Ii j is infinite. Since vi �≈∗ vj there is a position
m ′ > m such that vi [m,m ′) �= vj [m,m ′). Choose some m ′′ ∈ Ii j with m ′′ ≥ m ′. Let
u := vi [0,m)vj [m,m ′′)vi [m ′′, ω). Thenw⊗vi ∈ L(M) iffw⊗u ∈ L(M)which implies
that u ∈ [vi ]∗. However, u[m, ω) �= vi [m, ω) in contradiction to the choice of m.

To finish the proof let ϕ(x̄) := ∃ωyψ(x̄, y) and A be ω-automatic. One can express
that [v]∗ is finite by

finite(x̄, v) := ∃n∀v′[ψ(x̄, v′) ∧ v ≈∗ v′ → equal(v, v′, n)],

where

equal(v, v′, n) := n = 1i 0ω ∧ v[i, ω) = v′[i, ω).

Clearly, ≈∗ and equal can be recognised by ω-automata. By the claim above,

ϕ(x̄) ≡ ∃v(ψ(x̄, v) ∧ ¬finite(x̄, v)).

Hence, we can construct an automaton recognising ϕA.

We are now ready to prove Theorem 2.1, saying that the model checking problem
for FO(∃ω) is decidable on ω-automatic structures.

Proof of Theorem 2.1. Given a presentation of an ω-automatic structure A, and a for-
mula ϕ ∈ FO(∃ω) we compute an injective interpretation I : A ≤FO Treeω(p). Since
FO(∃ω) is closed under injective interpretations, we have that ϕI ∈ FO(∃ω) and A |= ϕ
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iff Treeω(p) |= ϕI . By Proposition 5.3 we can effectively compute a formula ψ ∈ FO
that is equivalent to ϕI on Treeω(p). Since the first-order theory of any ω-automatic
structure is decidable, the result follows.

Corollary 5.4. The FO(∃ω) theory of any (ω)-automatic structure is decidable.

As an immediate consequence we conclude that full arithmetic (N,+, ·) is neither
automatic nor ω-automatic. For most of the common extensions of first-order logic used
in finite model theory, such as transitive closure logics, fixed point logics, MSO logic,
or first-order logic with counting, the model-checking problem on automatic structures
becomes undecidable.

Complexity. The complexity of model checking can be measured in three different
ways. First, one can fix the formula and ask how the complexity depends on the input
structure. This measure is called structure complexity. The expression complexity on the
other hand is defined relative to a fixed structure in terms of the formula. Finally, one
can look at the combined complexity where both parts may vary.

Of course, the complexity of these problems may very much depend on how au-
tomatic structures are presented. Since the decision methods for Np and Tree(p) are
automaton based, a presentation d consisting of a list of automata, is more suitable
for practical purposes than using an interpretation. Here, we focus on presentations by
deterministic automata because these admit boolean operations to be performed in poly-
nomial time, whereas for non-deterministic automata, complementation may cause an
exponential blow-up.

In the following we always assume that the vocabulary of the given automatic struc-
tures and the alphabet of the automata we deal with are fixed. Furthermore, the vocabulary
is assumed to be relational when not stated otherwise. For a (deterministic) presentation d

of an automatic structure A, we denote by |d| the maximal size of the automata in d, and,
fixing some surjective function ν : L(Mδ)→ A, we define λ : A → N to be the function

λ(a) := min{|x ||ν(x) = a}

mapping each element ofA to the length of its shortest encoding. Finally, letλ(a1, . . . , ar )

be an abbreviation for max{λ(ai )|i = 1, . . . , r}.
While we have seen above that query evaluation and model checking for first-order

formulae are effective on AutStr, the complexity of these problems is non-elementary,
i.e., it exceeds any fixed number of iterations of the exponential function. This follows
immediately from the fact that the complexity of Th(Np) is non-elementary (see [26]).

Proposition 5.5. There exist automatic structures such that the expression complexity
of the model-checking problem is non-elementary.

It turns out that model checking and query evaluation for quantifier-free and exis-
tential formulae are still—to some extent—tractable. As usual, let �0 and �1 denote,
respectively, the class of quantifier-free and the class of existential first-order formulae.
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Structure complexity Expression complexity

Model checking
�0 LOGSPACE-complete ALOGTIME-complete
�0 + fun NLOGSPACE PTIME-complete
�1 NPTIME-complete PSPACE-complete

Query Evaluation
�0 LOGSPACE PSPACE

�1 PSPACE EXPSPACE

Theorem 5.6.

(i) Given a presentation d of a relational structure A ∈ AutStr, a tuple ā in A, and
a quantifier-free formula ϕ(x̄) ∈ FO, the model-checking problem for (A, ā, ϕ)
is in

DTIME
[
O
(|ϕ|λ(ā)|d| log|d|)] and

DSPACE
[
O
(
log|ϕ| + log|d| + log λ(ā)

)]
.

(ii) The structure complexity of model checking for quantifier-free formulae is
LOGSPACE-complete with respect to first-order reductions.

(iii) The expression complexity is ALOGTIME-complete with regard to deterministic
log-time reductions.

Proof. (i) To decide whether A |= ϕ(ā) holds, we need to know the truth value of each
atom appearing in ϕ. Then all what remains is to evaluate a boolean formula which can be
done in DTIME

[
O
(|ϕ|)] and ATIME

[
O
(
log|ϕ|)] ⊆ DSPACE

[
O
(
log|ϕ|)] (see [11]). The

value of an atom Rx̄ can be calculated by simulating the corresponding automaton on
those components of ā which belong to the variables appearing in x̄ . The naı̈ve algorithm
to do so uses time O

(
λ(ā)|d| log|d|)) and space O

(
log|d| + log λ(ā)

)
.

For the time-complexity bound we perform this simulation for every atom, store the
outcome, and evaluate the formula. Since there are at most |ϕ| atoms the claim follows.

To obtain the space bound we cannot store the value of each atom. Therefore we use
the LOGSPACE-algorithm to evaluate ϕ and, every time the value of an atom is needed,
we simulate the run of the corresponding automaton on a separate set of tapes.

(ii) We present a reduction of the LOGSPACE-complete problem DETREACH, reach-
ability by deterministic paths (see, e.g., [34]), to the model-checking problem. Given a
graph G = (V, E, s, t) we construct the automaton M = (V, {0},�, s, {t}) with

� := {(u, 0, v)|u �= t, (u, v) ∈ E and there is no v′ �= v with (u, v′) ∈ E}
∪ {(t, 0, t)}.

That is, we remove all edges originating at vertices with out-degree greater than 1 and
add a loop at t . Then there is a deterministic path from s to t in G iff M accepts some
word 0n iff 0|V | ∈ L(M). Thus,

(V, E, s, t) ∈ DETREACH iff A |= P0|V |,
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where A = (B, P) is the structure with the presentation ({0}∗, L(M)). A closer inspec-
tion reveals that the above transformation can be defined in first-order logic.

(iii) Evaluation of boolean formulae is ALOGTIME-complete (see [11]).

For most questions we can restrict attention to relational vocabularies and replace
functions by their graphs at the expense of introducing additional quantifiers. When
studying quantifier-free formulae we will not want to do this and hence need to con-
sider the case of quantifier-free formulae with function symbols separately. This class is
denoted �0 + fun.

Lemma 5.7. Given a tuplew of words over�, and an automaton A = (Q, �, δ, q0, F)
recognising the graph of a function f , the calculation of f (w) is in

DTIME
[
O(|Q2| log|Q|(|Q| + |w|))] and DSPACE

[
O(|Q| log|Q| + log|w|)] .

Proof. The following algorithm simulates A on input w0 ⊗ . . .⊗wn−1 ⊗ x where x is
the result that we want to calculate. For every position i of the input, the set Qi of states
which can be reached for various values of x is determined. At the same time the sets
Qi and Qi+1 are connected by edges Ei labelled by the symbol of x by which the second
state could be reached. When a final state is found, x can be read off the graph.

We use the function Step(Q, a) depicted in Figure 1 to compute Qi+1 and Ei from Qi

and the input symbol a. If E is realised as an array containing, for every q ∈ Q, the values
q ′ and c such that (q ′, c, q) ∈ E , then this function needs spaceO

(|Q| log|Q|) and time

O
(|Q|(|Q| log|Q| + |Q| log|Q|)) = O(|Q2| log|Q|).

Two slightly different algorithms are used to obtain the time- and space-complexity
bounds (see Figure 2). The first one simply computes all sets Qi and Ei and determines x .
The second one reuses space and keeps only one set Qi and Ei in memory. Therefore

Step(Q, a)
Q′ := ∅
E := ∅
forall q ∈ Q

forall c ∈ �
q ′ := δ(q, ac)
if q ′ /∈ Q′ then

E := E ∪ {(q, c, q ′)}
Q′ := Q′ ∪ {q ′}

end
end

return (Q′, E)

Fig. 1. Computing Qi+1 and Ei from Qi .
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Input: A = (Q, �, δ, q0, F), w Input: A = (Q, �, δ, q0, F), w
Q0 := {q0} Q := {q0}
i := 0 i := 0
whileQi ∩ F = ∅ whileQ ∩ F = ∅

if i < |w| then if i < |w| then
a := w[i] a := w[i]

else else
a := ✷ a := ✷

(Qi+1, Ei ) := Step(Qi , a) (Q, E) := Step(Q, a)
i := i + 1 i := i + 1

end end
let q ∈ Qi ∩ F let q ∈ Q ∩ F
whilei > 0 whilei > 0

i := i − 1 i := i − 1
Q := {q0}
fork = 0, . . . , i − 1
if k < |w| then

a := w[k]
else

a := ✷

(Q, E) := Step(Q, a)
end

let (q ′, c, q) ∈ Ei let (q ′, c, q) ∈ E
x[i] := c x[i] := c
q := q ′ q := q ′

end end
return x return x

Fig. 2. Two algorithms to compute f (w).

it has to start the computation from the beginning in order to access old values of Ei in
the second part.

In the first version the function Step is invoked |x | times, and the second part is
executed in time O

(|x ||Q| log|Q|).
The space needed by the second version consists of storage for Q, E , and the counters

i and k. Hence, O(|Q| + |Q| log|Q| + log|x |) bits are used.
Since A recognises a function, the length of x can be at most |Q| + |w| (see Propo-

sition 6.1 for a detailed proof). This yields the given bounds.

Theorem 5.8.

(i) Let τ be a vocabulary which may contain functions. Given the presentation d

of a structure A in AutStr[τ ], a tuple ā in A, and a quantifier-free formula
ϕ(x̄) ∈ FO[τ ], the model-checking problem for (A, ā, ϕ) is in

DTIME
[
O
(|ϕ||d2| log|d|(|ϕ||d| + λ(ā)))] and

DSPACE
[
O
(|ϕ|(|ϕ||d| + λ(ā))+ |d| log|d|)].
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(ii) The structure complexity of the model-checking problem for quantifier-free
formulae with functions is in NLOGSPACE.

(iii) The expression complexity is PTIME-complete with regard to ≤log
m -reductions.

Proof. (i) Our algorithm proceeds in two steps. First the values of all functions ap-
pearing in ϕ are calculated starting with the innermost one. Then all functions can be
replaced by their values and a formula containing only relations remains which can be
evaluated as above. We need to evaluate at most |ϕ| functions. If they are nested the
result can be of length |ϕ||d| + λ(ā). This yields the bounds given above.

(ii) It is sufficient to present a non-deterministic log-space algorithm for evaluating
a single fixed atom containing functions. The algorithm simultaneously simulates the
automata of the relation and of all functions on the given input. Components of the
input corresponding to values of functions are guessed non-deterministically. Each sim-
ulation only needs counters for the current state and the input position which both use
logarithmic space.

(iii) Let M be a p(n) time-bounded deterministic Turing machine for some polyno-
mial p. A configuration (q, w, p) of M can be coded as word w0qw1 with w = w0w1

and |w0| = p. Using this encoding both the function f mapping one configuration to
its successor and the predicate P for configurations containing accepting states can be
recognised by automata. We assume that f (c) = c for accepting configurations c. Let
q0 be the starting state of M . Then M accepts some word w if and only if the configura-
tion f p(|w|)(q0w) is accepting if and only if A |= P f p(|w|)(q0w) where A = (A, P, f )
is automatic. Hence, the mapping taking w to the pair q0w and P f p(|w|)x is the desired
reduction which can clearly be computed in logarithmic space.

Theorem 5.8 says that, on any fixed automatic structure, quantifier-free formulae
can be evaluated in quadratic time. This extends a well-known result on automatic
groups [22].

Corollary 5.9. The word problem for every automatic group is solvable in quadratic
time.

Proof. Let G be an automatic group with semigroup generators s1, . . . , sm . We present
the Cayley graph of G in a functional way, by the structure (G, e, g �→ gs1, . . . , g �→
gsm) which is therefore automatic. Each instance of the word problem is described by
a quantifier-free sentence (a term equation) on this structure, which can be checked in
quadratic time by Theorem 5.8.

Theorem 5.10.

(i) Given a presentation d of a structure A in AutStr, a tuple ā in A, and a formula
ϕ(x̄) ∈ �1, the model-checking problem for (A, ā, ϕ) is in

NTIME
[
O
(|ϕ||d|λ(ā)+ |dO|(|ϕ|))] and

NSPACE
[
O
(|ϕ|(|d| + log|ϕ|)+ log λ(ā)

)]
.
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(ii) The structure complexity of model checking for�1-formulae is NPTIME-complete
with respect to ≤p

tt-reductions.
(iii) The expression complexity is PSPACE-complete with regard to ≤log

m -reductions.

Proof. (i) As above we can run the corresponding automaton for every atom appearing
in ϕ on the encoding of ā. However, now there are some elements of the input missing
which we have to guess. Since we have to ensure that the guessed inputs are the same
for all automata, the simulation is performed simultaneously.

The algorithm determines which atoms appear in ϕ and simulates the product au-
tomaton constructed from the automata for those relations. At each step the symbol
for the quantified variables is guessed non-deterministically. Note that the values of
those variables may be longer than the input so we have to continue the simulation
after reaching its end for at most the cardinality of the state-space number of steps.
Since this cardinality is O

(|d||ϕ|) a closer inspection of the algorithm yields the given
bounds.

(ii) We reduce the NPTIME-complete non-universality problem for non-deterministic
automata over a unary alphabet (see [40] and [33]), given such an automaton, check
whether it does not recognise the language 0∗, to the given problem. This reduction is
performed in two steps. First the automaton must be simplified and transformed into a
deterministic one, then we construct an automatic structure and a formula ϕ(x) such that
ϕ(a) holds for several values of a if and only if the original automaton recognises 0∗.
As model checking has to be performed for more than one parameter this yields not a
many-to-one but a truth-table reduction.

Let M = (Q, {0},�, q0, F) be a non-deterministic finite automaton over the al-
phabet {0}. We construct an automaton M ′ such that there are at most two transitions
outgoing at every state. This is done be replacing all transitions from some given state
by a binary tree of transitions with new states as internal nodes. Of course, this changes
the language of the automaton. Since in M every state has at most |Q| successors, we
can take trees of fixed height k := 'log|Q|(. Thus, L(M ′) = h(L(M)) where h is the
homomorphism taking 0 to 0k . Note that the size of M ′ is polynomial in that of M .

M ′ still is non-deterministic. To make it deterministic we add a second component
to the labels of each transition which is either 0 or 1. This yields an automaton M ′′ such
that M accepts the word 0n iff there is some y ∈ {0, 1}kn such that M ′′ accepts 0kn ⊗ y.

M ′′ can be used in a presentation d := ({0, 1}∗, L(M ′′)) of some {R}-structure B.
Then

B |= ∃y R0kn y iff 0kn ⊗ y ∈ L(M ′′) iff 0n ∈ L(M).

It follows that

L(M) = 0∗ iff B |= ∃y R0kn y for all n < 2|Q|.

The part (⇒) is trivial. To show (⇐) let n be the least number such that 0n /∈ L(M). By
assumption n ≥ 2|Q|. However, then we can apply the Pumping Lemma and find some
number n′ < n with 0n′ /∈ L(M). Contradiction.
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(iii) Let M be a p(n) space-bounded Turing machine for some polynomial p. We
encode configurations as words appending enough spaces to increase their length to
p(n)+ 1. Let L) := { c0⊗ c1|c0 ) c1 } be the transition relation of M . The run of M on
input w is encoded as sequence of configurations separated by some marker #. L) can
be used to check whether some word x represents a run of M . Let y be the suffix of x
obtained by removing the first configuration. The word x ⊗ y has the form

c0 # c1 #
c1 # c2 #

· · · # cs−1 # cs

# cs #
.

Thus x encodes a valid run iff x ⊗ y ∈ LT where

LT :=
(

L)
#
#

)∗
(�∗ ⊗ ε).

Clearly, the language L F of all runs whose last configuration is accepting is regular.
Finally, we need two additional relations. Both the prefix relation � and the shift s
are regular where s(ax) := x for a ∈ � and x ∈ �∗. Therefore, the structure
A := (A, T, F, s,�) is automatic, and it should be clear that

w ∈ L(M) iff A |= ϕw
(
q0w�k−|w|#

)
,

where k := p(|w|) and

ϕw(x) := ∃y0 · · · ∃yk+1

(∧
i≤k

syi = yi+1 ∧ x � y0 ∧ T y0 yk+1 ∧ Fy0

)
.

ϕw(x) states that there is an accepting run y0 of M starting with configuration x .
y1, . . . , yk+1 are used to remove the first configuration from y0, so we can use T to
check whether y0 is valid.

Clearly, the mapping of w to ϕw and q0w�k−|w|# can be computed in logarithmic
space.

We now turn to the query-evaluation problem for these formula classes.

Theorem 5.11. Given a presentation d of a structure A in AutStr and a formula ϕ(x̄),
an automaton representing ϕA can be computed

(i) in timeO
(|dO|(|ϕ|)) and spaceO

(|ϕ| log|d|) in the case of quantifier-free ϕ(x̄),
and

(ii) in time O
(
2|d
O|(|ϕ|))

and space O
(|dO|(|ϕ|)) in the case of existential formulae

ϕ(x̄).

In particular, the structure complexity of query evaluation is in LOGSPACE for quantifier-
free formulae and in PSPACE for existential formulae. The expression complexity is in
PSPACE for quantifier-free formulae and in EXPSPACE for existential formulae.
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Proof. Enumerate the state-space of the product automaton and output the transition
function.

Undecidability. In the remainder of this section we present some undecidability re-
sults for automatic structures. When we say that a property P of automatic structures is
undecidable, we mean that there is no algorithm that, given an automatic presentation
of a structure, decides whether the structure has property P .

Lemma 5.12. The configuration graph of any Turing machine is automatic.

Proof. We encode a configuration of a Turing machine M with state q, tape contentsw,
and head position p by the word w0qw1 where w = w0w1 and |w0| = p. At every tran-
sition w0qw1 )M w′0q ′w′1 only the symbols around the state are changed. This can be
checked by an automaton.

Corollary 5.13. REACHABILITY is undecidable for automatic structures.

This is an immediate consequence of Lemma 5.12 and the undecidability of the
halting problem. For further results, we make use of a normal form for Turing machines.

Lemma 5.14. For any deterministic 1-tape Turing machine M , one can effectively
construct a deterministic 2-tape Turing machine M ′ such that the configuration graph
of M ′ consists of a disjoint union of

(a) a countably infinite number of infinite acyclic paths with a first but without a
last element, and

(b) for each word x ∈ L(M), one path starting at an initial configuration and
ending in a loop.

Proof. It is well known that any Turing machine M can be translated into an equivalent
reversible Turing machine M ′ (see [4]). We slightly modify this construction. While
simulating M on its first tape the machine M ′ appends to the second tape the transitions
performed at each step. Hence, the storage content of M ′ at each step is a pair (y, z)where
y describes a configuration of M , and z is a sequence of transitions of M . Further, we
define M ′ such that if M terminates without accepting, then M ′ diverges, i.e., its compu-
tation is infinite and not periodic (for instance, it moves the head to the right at every step).
Thus, if x /∈ L(M), then the run of M ′ on input x consists of an infinite path of type (a).

The construction as presented so far does not suffice since there may exist configura-
tions that cannot be reached from any initial configuration. We have to ensure that every
path containing such a configuration is of type (a). Clearly, every such path must have a
first element since z never decreases. We modify M ′ such that whenever M reaches an
accepting configuration, M ′ reverses its computation, using the transitions stored on the
second tape, but without changing the content of the second tape. That is, from config-
urations with storage content (y, z) where y is accepting for M , M ′ will either reach a
configuration with storage content (y0, z) where y0 is an initial configuration of M and
z represents the computation of M from y0 to z, or M ′ will detect that no such y0 exists.
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In the second case, M ′ diverges as above. In the first case, M ′ enters a cycle as follows:
it restarts the simulation of M from y0 (leaving z unchanged and checking at every
step that the sequence of transitions on the second tape is correct). When the accepting
configuration (y, z) is reached again, the computation is again reversed completing the
cycle.

Note that with this modification the run of M ′ on inputs x with x ∈ L(M) is of
type (b). Further, the nodes of the configuration graphs with two incoming edges (the
starting points of cycles) are precisely the accepting configurations that are reachable
from an initial configuration.

Theorem 5.15. It is undecidable whether two automatic structures are isomorphic.

Proof. Let M be a deterministic 1-tape Turing machine, and let M ′ be the associ-
ated Turing machine as described in the preceding lemma. Given M , we can effectively
construct an automatic presentation of the configuration graph G of M ′. Further, we con-
struct an automatic presentation of the graph H consisting ofℵ0 copies of (ω, suc). Then
G ∼= H iff L(M) = ∅. Since the emptiness problem for Turing machines is undecidable,
so is the isomorphism problem for automatic structures.

We recall that a directed graph is called connected if its underlying undirected graph
is. Further, it is called strongly connected if every node is reachable from every other
node via a directed path.

Theorem 5.16. It is undecidable whether an automatic graph is (i) connected or (ii)
strongly connected.

Proof. Given a Turing machine M , we again construct an automatic presentation of
the configuration graph G of the associated machine M ′ from Lemma 5.14. Let I be
the set of initial configurations of M ′; obviously, I is automatic. Further, let X2 be the
set of nodes of G with two predecessors and let X0 be the set of nodes without pre-
decessors. Finally, let G ′ be the graph obtained from G by connecting all nodes from
X2 ∪ (X0 − I ) with each other. Since X2 and X0 are first-order definable it follows
that the resulting graph G ′ is still automatic. Further, G ′ is connected if all compo-
nents of G correspond to accepting computations of M or to computations from un-
reachable configurations. Hence, G ′ is connected iff M accepts all inputs, which is
undecidable.

Finally, note that the inverse of the graph G ′′ obtained from G ′ by adding to each
edge is also first-order definable from G ′ and is strongly connected if and only if G ′ is
connected. Hence, strong connectedness of automatic graphs is also undecidable.

6. Structures that Are Not Automatic

To prove that a structure is automatic, we just have to find a suitable presentation. How-
ever, how can we prove that a structure is not automatic? The main difficulty is that
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a priori nothing is known about how elements of an automatic structure are named by
words of the regular language.1

Besides the two obvious criteria, namely, that automatic structures are countable
and that their first-order theory is decidable, not much is known. The only non-trivial
criterion that is available at present for general structures uses growth rates for the length
of the encodings of elements of definable sets. For recent progress on the classification
of automatic linear orders see [18] and [37].

Proposition 6.1 [21]. LetAbe an automatic structure with injective presentation (ν, d),
and let f : An → A be a function of A. Then there is a constant m such that
λ( f (ā)) ≤ λ(ā)+ m for all ā ∈ An .

The same is true if we replace f by a relation R where for all ā there are only finitely
many values b such that Rāb holds.

This result deals with a single application of a function or relation. In the remaining
part of this section we study the effect of applying functions iteratively, i.e., we consider
some definable subset of the universe and calculate upper bounds on the length of the
encodings of elements in the substructure generated by it. First we need bounds for the
(encodings of) elements of some definable subsets. The following lemma follows easily
from classical results in automata theory (see, e.g., Proposition V.1.1 of [20]).

Lemma 6.2. Let A be a structure in AutStr with presentation d, and let B be an
FO(∃ω)-definable subset of A. Then λ(B) is a finite union of arithmetical progressions.

In the process of generating a substructure we have to count the number of applica-
tions of functions.

Definition 6.3. Let A ∈ AutStr with presentation d, let R1, . . . , Rs be finitely many
relations of A with arities r1 + 1, . . . , rs + 1, respectively, and let E = {e1, e2, . . .} be
some subset of A with λ(e1) ≤ λ(e2) ≤ · · ·. Then Gn(E), the nth generation of E , is
defined inductively by

G1(E) := {e1},
Gn(E) := {en} ∪ Gn−1(E) ∪ {b | (ā, b) ∈ Ri , ā ∈ Gri

n−1(E), 1 ≤ i ≤ s}.

Putting everything together we obtain the following result. The case of finitely
generated substructures already appeared in [36].

Proposition 6.4. Let d an injective presentation of an automatic structure
A, let f1, . . . , fr be finitely many definable operations on A, and let E be a defin-
able subset of A. Then there is a constant m such that λ(a) ≤ mn for all a ∈ Gn(E). In
particular, |Gn(E)| ≤ |�mn+1| where � is the alphabet of d.

1 In the case of automatic groups, where the naming function is fixed, more techniques are available such
as the k-fellow traveller property, see [22].
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The proof consists of a simple induction on n.

Theorem 6.5. None of the following structures has an automatic presentation.

(i) Any trace monoid M = (M, ·) with at least two non-commuting generators
a and b.

(ii) Any structure A in which a pairing function f can be defined.
(iii) The divisibility poset (N, |).
(iv) Skolem arithmetic (N, ·).

Proof. (i) We show that {a, b}≤2n ⊆ Gn+1(a, b) by induction on n. We have {a, b} ⊆
{a, aa, b} = G2(a, b) for n = 1, and, for n > 1,

Gn+1(a, b) = {uv | u, v ∈ Gn(a, b)}
⊇ {uv | u, v ∈ {a, b}≤2n−1}
= {a, b}≤2n

.

Therefore, |Gn(a, b)| ≥ 22n
and the claim follows.

(ii) is analogous to (i), and (iv) immediately follows from (iii) as the divisibility
relation is definable in (N, ·).

(iii) Suppose (N, |) ∈ AutStr. We define the set of primes

Px iff x �= 1 ∧ ∀y(y|x → y = 1 ∨ y = x),

the set of powers of some prime

Qx iff ∃y(Py ∧ ∀z(z|x ∧ z �= 1 → y|z)),

and a relation containing all pairs (n, pn), where p is a prime divisor of n,

Sxy iff x |y ∧ ∃=1z(Qz ∧ ¬Pz ∧ z|y ∧ ¬z|x).

The least common multiple of two numbers is

lcm(x, y) = z iff x |z ∧ y|z ∧ ¬∃u(u �= z ∧ x |u ∧ y|u ∧ u|z).

For every n ∈ N there are only finitely many m with Snm. Therefore S satisfies
the conditions of Proposition 6.1. Consider the set generated by P via S and lcm,
and let γ (n) := |Gn(P)| be the cardinality of Gn(P). If (N, |) is in AutStr then
(N, |, P, Q, S) ∈ AutStr, and γ (n) ∈ 2O(n) by Proposition 6.4. Let P = {p1, p2, . . .}.
For n = 1 we have G1(P) = {p1}. Generally, Gn(P) consists of

(1) numbers of the form pk1
1 ,

(2) numbers of the form pk2
2 · · · pkn

n , and
(3) numbers of a mixed form.
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In n steps we can create

(1) p1, . . . , pn
1 (via S),

(2) γ (n − 1) numbers with k1 = 0, and
(3) for every 0 < k1 < n, γ (n − 2)− 1 numbers of a mixed form (via lcm).

All in all we obtain

γ (n) ≥ n + γ (n − 1)+ (n − 1)(γ (n − 2)− 1)

= γ (n − 1)+ (n − 1)γ (n − 2)+ 1

≥ nγ (n − 2) (as γ (n − 1) > γ (n − 2))

≥ n(n − 2) · · · 3γ (1) (without loss of generality assume that n is odd)

= n(n − 2) · · · 3
≥ ((n + 1)/2)!

∈ 2�(n log n).

Contradiction.

Remark. (1) Since it is easy to construct a tree-automatic presentation of Skolem
arithmetic this result implies that the class of structures with tree-automatic presentation
strictly includes the class of automatic structures (see [6]).

(2) The structure (N,⊥), where ⊥ stands for having no common divisor, is au-
tomatic. To see this, we represent each number n ∈ N by a pair (w, k) where w =
w0w1 · · · ∈ {0, 1}∗ such that wi = 1 iff the i th prime divides n, and k is the number of
elements m < n with the same set of prime divisors as n. Then (w, k) ⊥ (w′, k ′) iff w
and w′ represent disjoint sets which can obviously be checked by an automaton.

7. Composition of Structures

The composition method developed by Feferman and Vaught [25] and by Shelah [45]
(see also [30] and [47]) considers compositions (products and sums) of structures ac-
cording to some index structure and allows one to compute—depending on the type of
composition—the first-order or MSO theory of the whole structure from the respective
theories of its components and the monadic theory of the index structure.

The characterisation given in Section 4 can be used to prove closure of automatic
structures under such compositions of finitely many structures. A generalised product—
as it is defined below—is a generalisation of a direct product, a disjoint union, and an
ordered sum. We will prove that given a finite sequence (Ai )i of structures first-order
interpretable in some structure C, all their generalised products are also first-order inter-
pretable in C.

The definition of such a product is a bit technical. Its relations are defined in terms
of the types of the components of its elements. The atomic n-type atpA(ā) of a tu-
ple (a0, . . . , an−1) in a structure A is the conjunction of all atomic and negated atomic
formulae ϕ(x̄) such that ϕ(ā) holds in A.
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We first look at how a direct product and an ordered sum can be defined using types.

Example. (1) Let A := A0×A1 where Ai = (Ai , Ri ), for i ∈ {0, 1}, and R is a binary
relation. The universe of A is A0 × A1. Some pair (ā, b̄) belongs to R iff (a0, b0) ∈ R0

and (a1, b1) ∈ R1. This is equivalent to the condition that the atomic types of a0b0 and
of a1b1 both include the formula Rx0x1.

(2) Let A := A0 + A1 where Ai = (Ai , <i ), for i ∈ {0, 1}, and <0, <1 are partial
orders. The universe of A is A0∪̇A1

∼= A0 × {✸} ∪ {✸} × A1, and we have

ā < b̄ iff ā = (a0,✸), b̄ = (b0,✸), and a0 <0 b0,

or ā = (✸, a1), b̄ = (✸, b1), and a1 <1 b1,

or ā = (a0,✸), b̄ = (✸, b1).

Again, the condition ai <i bi can be expressed using types.

Definition 7.1. Let τ = {R0, . . . , Rs} be a finite relational vocabulary, let rj be the
arity of Rj , and let r̂ := max{r0, . . . , rs}. Let (Ai )i∈I be a sequence of τ -structures, and
let I be an arbitrary relational σ -structure with universe I .

Fix for each k ≤ r̂ an enumeration {t k
0 , . . . , t k

n(k)} of the atomic k-types and set

σk := σ ∪̇ {D0, . . . , Dk−1} ∪̇ {T m
l |m ≤ k, l ≤ n(m)}.

The σk-expansion I(b̄) of I belonging to a sequence b̄ ∈ (∏i∈I (Ai ∪̇{✸})
)

k is given by

DI
l (b̄) := {i ∈ I |(bl)i �= ✸},

(T m
l )

I(b̄) := {i ∈ I |atpA((bj0)i · · · (bjm−1)i ) = tm
l and

{ j |(bj )i �= ✸} = { j0, . . . , jm−1} }.

For D ⊆ B
I and βj ∈ FO[σrj ], C := (I, D, β0, . . . , βs) defines the generalised

product C(Ai )i∈I := (A, R0, . . . , Rs) of (Ai )i∈I where

A :=
⋃
d̄∈D

∏
i∈I

χdi

({✸}, Ai
)
,

Ri := {b̄ ∈ Ari |I(b̄) |= βi },

and χb(a0, a1) := ab.

Example (continued).
(1) For the direct product of A0 × A1 we would set I := (I ) with I = {0, 1},

D := {(1, 1)}, and

β :=
∨
l∈L

T 2
l 0 ∧

∨
l∈L

T 2
l 1,

where L is the set of atomic types containing the formula Rx0x1.
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(2) In this case we would set I := (I ) with I = {0, 1}, D := {(1, 0), (0, 1)}, and

β :=
(

D00 ∧ D10 ∧
∨
l∈L

T 2
l 0

)
∨
(

D01 ∧ D11 ∧
∨
l∈L

T 2
l 1

)
∨ (D00 ∧ D11),

where L is the set of atomic types containing the formula x0 < x1.

Theorem 7.2. Let τ be a finite relational vocabulary, let K be a class of τ -structures
containing all finite τ -structures, and let there be a structure C such that K ⊆
{A|A ≤FO C}. Let I be a finite relational σ -structure, let (Ai )i∈I be a sequence of struc-
tures in K, and let C = (I, D, β̄) be a generalised product. Then C(Ai )i∈I ∈ K, and
an interpretation C(Ai )i∈I ≤FO C can be constructed effectively from the interpretations
Ai ≤FO C and I ≤FO C.

Proof. Let τ = {R0, . . . , Rs}. Without loss of generality assume that I = {0, . . . , |I |−
1} and that C contains constants 0 and 1. We have to construct an interpretation of
A := C(Ai )i∈I in C. Let rj be the arity of Rj . Consider ni -dimensional interpretations

I i := 〈hi , δi (x̄ i ), εi (x̄ i , ȳi ), ϕi
0(x̄

i
0, . . . , x̄ i

r0−1), . . . , ϕ
i
s(x̄

i
0, . . . , x̄ i

rs−1)
〉

of Ai in C. We represent an element a of A by a tuple of (|I |+n0+ . . .+n|I |−1) elements

x̄ := (d̄, x̄0, . . . , x̄ |I |−1
)
,

where d̄ ∈ D determines which components are empty and x̄ i encodes the i th component
of a. The desired interpretation is constructed as follows:

I := 〈h, δ(x̄), ε(x̄, ȳ), ϕ0(x̄0, . . . , x̄r0−1), . . . , ϕs(x̄0, . . . , x̄rs−1)
〉
,

where

h(d̄, x̄0, . . . , x̄ |I |−1) := (
χd0

(
✸, h0(x̄0)

)
, . . . , χd|I |−1

(
✸, h|I |−1(x̄ |I |−1)

))
,

δ(d̄, x̄0, . . . , x̄ |I |−1) :=
∨
c̄∈D

(
d̄ = c̄ ∧

∧
i :ci=1

δi (x̄ i )

)
,

and

ε(d̄, x̄0, . . . , x̄ |I |−1, ē, ȳ0, . . . , ȳ|I |−1) := d̄ = ē ∧
∧

i<|I |

(
di = 1 → εi (x̄ i , ȳi )

)
.

In order to define ϕj we consider an interpretation I I of I in C. Since I is finite such
an interpretation exists. Let αj := βI I

j be the formula defining Rj . Note that βj contains
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additional relations Dl and T m
l which are not in σ . Thus αj is a sentence over the vocab-

ulary τ extended by the symbols Dl and T m
l for appropriate l and m. We have to replace

them in order to obtain a definition of ϕj . Let x̄0, . . . , x̄rj−1 be the parameters of ϕj where

x̄k = (d̄k, x̄0
k , . . . , x̄ |I |−1

k )

for k < rj . Dl and T m
l can be defined by

Dli := (dl)i = 1 and T m
l i := (tm

l )
Ii
(x̄ i

0, . . . , x̄ i
rj−1).

Note that those definitions are only valid because i ranges over a finite set. ϕj can now
be defined as αj with Dl and T m

l replaced by the above definitions.
Obviously, all steps in the construction above are effective.

Corollary 7.3. Both AutStr and ω-AutStr are effectively closed under finitary gener-
alised products.

As promised we immediately obtain closure under several types of compositions.

Corollary 7.4. Let A0, . . . ,An−1 ∈ AutStr. Then there exists automatic presentations
of

(i) the direct product
∏

i<n Ai ,

(ii) the disjoint union
⋃̇

i<nAi , and
(iii) the ω-fold disjoint union ω · A0 of A0.

Corollary 7.5. Let A0, . . . ,An−1 ∈ AutStr be ordered structures. There exist auto-
matic presentations of

(i) the ordered sum
∑

i<n Ai and
(ii) the ω-fold ordered sum

∑
i<ω A0 of A0.

8. Conclusion

We have seen different methods of how to represent infinite structures in a finite way
effectively. Among the most interesting classes of finitely presentable structures are au-
tomatic and ω-automatic structures. Besides the original presentations based on finite
automata these classes also admit characterisations in terms of first-order interpretations
into expansions of Presburger arithmetic or the additive group of reals. We have shown
that these representations allow for effective model checking and algorithms for opera-
tions like unions, products, and the evaluation of queries. We have also given complexity
bounds for some of these problems. Finally, we have started to investigate algebraic
properties of automatic structures. In particular, we have developed methods to prove
that certain structures are not automatic.
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Most of the techniques that we have used can be generalised to other classes of
infinite structures. For instance, we can modify the automaton model to obtain tree-
automatic or rational structures. The approach based on interpretations is even more
general. Fixing any structure A with good algorithmic or model-theoretic properties,
we can consider the class of all structures interpretable in A (for any suitable notion of
interpretation). Since many relevant properties of structures are preserved by interpre-
tations, every structure in such a class inherits them from A. This is a very broad and
versatile approach that encompasses many of the classes of finitely presentable structures
appearing in the literature.

So far we have mostly studied rather powerful classes that contain as many inter-
esting structures as possible, while preserving decidability of first-order or MSO logic.
An obvious drawback of this generality is complexity. For instance, even rather sim-
ple formulae are quite difficult to evaluate on automatic structures or tree-interpretable
structures. For future studies it might be interesting to search for classes for which the
algorithmic problems are somewhat more manageable. For classes defined by interpre-
tations one might choose structures with relatively modest complexity and notions of
interpretations that do not blow up the complexity too much. We believe that this is a
promising line of future research that may also be relevant for practical applications.
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