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Finite Model Theory and Descriptive

Complexity

Erich Grädel

This chapter deals with the relationship between logical definability and com-
putational complexity on finite structures. Particular emphasis is given to
game-based evaluation algorithms for various logical formalisms and to logics
capturing complexity classes.

In addition to the most common logical systems such as first-order and
second-order logic (and their fragments), this survey focuses on algorithmic
questions and complexity results related to fixed-point logics (including fixed-
point extensions of first-order logic, the modal µ-calculus, the database query
language Datalog, and fixed-point logics with counting).

Finally, it is discussed how the general approach and the methodology of
finite model theory can be extended to suitable domains of infinite structures.
As an example, some results relating metafinite model theory to complexity
theory are presented.

3.1 Definability and Complexity

One of the central issues in finite model theory is the relationship between
logical definability and computational complexity. We want to understand
how the expressive power of a logical system – such as first-order or second-
order logic, least fixed-point logic, or a logic-based database query language
such as Datalog – is related to its algorithmic properties. Conversely, we want
to relate natural levels of computational complexity to the defining power of
logical languages, i.e., we want logics that capture complexity classes.1

The aspects of finite model theory that are related to computational com-
plexity are also referred to as descriptive complexity theory. While computa-
tional complexity theory is concerned with the computational resources such
as time, space, or the amount of hardware that are necessary to decide a
property, descriptive complexity theory asks for the logical resources that

1 For a potential application of such results, see Exercise 3.5.32.
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are necessary to define it. In this chapter we shall give a survey of descriptive
complexity theory. We shall assume that the reader is familiar with fundamen-
tal notions of logic and complexity theory. Specifically we assume familiarity
with first-order logic and with deterministic and non-deterministic complex-
ity classes. See the appendix to this chapter for a brief survey on alternating
complexity classes.

In Sect. 3.1, we discuss some basic issues concerning the relationship be-
tween logic and complexity, we introduce model-checking games, and we de-
termine in a detailed way the complexity of first-order model checking.

In Sect. 3.2, we make precise the notion of a logic capturing a complexity
class. As our first capturing result, we prove Fagin’s Theorem, which says
that existential second-order logic captures NP. In a limited scenario, namely
for the domain of ordered structures, we then derive capturing results for a
number of other complexity classes, including PTIME and LOGSPACE, by
use of fragments of second-order logic (such as second-order Horn logic) and
by extensions of first-order logic (such as transitive closure logics).

Section 3.3 is devoted to fixed-point logics. These are probably the most
important logics for finite model theory and also play an important role in
many other fields of logic in computer science. We shall discuss many variants
of fixed point logics, including least, inflationary and partial fixed point logic,
the modal µ-calculus, and the database query language Datalog. We shall
explain model checking issues, capturing results for PTIME and PSPACE,
and also discuss structural issues for these logics.

In Sect. 3.4 we introduce logics with counting. One of the limitations of
common logics on finite structures is an inability to count. By adding to
first-order logic and, in particular, to fixed-point logic an explicit counting
mechanism, one obtains powerful logics that come quite close to capturing
PTIME.

Section 3.5 is devoted to capturing results on certain specific domains of
unordered structures, via a technique called canonization. While the general
problem of whether there exists a logic capturing PTIME on all finite struc-
tures is still open (and it is widely conjectured that no such logic exists),
canonization permits us to find interesting domains of structures where fixed-
point logic or fixed-point logic with counting can express all of PTIME.

Finally, in Sect. 3.6 we discuss the extension of the general approach and
methods of finite model theory to suitable domains of infinite structures, i.e.,
the generalization of finite model theory to an algorithmic model theory. We
discuss several domains of infinite structures for which this approach makes
sense, and then treat, as an example, the domain of metafinite structures, for
which capturing results have been studied in some detail.

3.1.1 Complexity Issues in Logic

One of the central issues in the relationship between complexity theory and
logic is the algorithmic complexity of the common reasoning tasks for a logic.
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There are numerous such tasks, but most of them can be easily reduced to
two (at least for logics with reasonable closure properties), namely satisfiabil-
ity testing and model checking. The satisfiability problem for a logic L on
a domain D of structures takes formulae ψ ∈ L as inputs, and the question
to be answered is whether there exists in D a model for ψ. Although satisfia-
bility problems are of fundamental importance in many areas of logic and its
applications, they do not really play a crucial role in finite model theory. Nev-
ertheless, they are considered occasionally and, moreover, some of the central
results of finite model theory have interesting connections with satisfiability
problems. We shall point out some such relations later.

On the other hand, model-checking problems occupy a central place in
finite model theory. For a logic L and a domain D of (finite) structures, the
model-checking problem asks, given a structure A ∈ D and a formula
ψ ∈ L, whether it is the case that A |= ψ. A closely related problem is
formula evaluation (or query evaluation): given a structure A and a formula
ψ(x) (with free variables x), the problem is to compute the relation defined by
ψ on A, i.e. the set ψA := {a : A |= ψ(a)}. Obviously, the evaluation problem
for a formula with k free variables on a structure with n elements reduces to
nk model-checking problems.

Note that a model-checking problem has two inputs: a structure and a
formula. We can measure the complexity in terms of both inputs, and this
is what is commonly refered to as the combined complexity of the model-
checking problem (for L and D). However, in many cases, one of the two
inputs is fixed, and we measure the complexity only in terms of the other.
If we fix the structure A, then the model-checking problem for L on this
structure amounts to deciding ThL(A) := {ψ ∈ L : A |= ψ}, the L-theory
of A. The complexity of this problem is called the expression complexity
of the model-checking problem (for L on A). For first-order logic (FO) and
for monadic second-order logic (MSO) in particular, such problems have a
long tradition in logic and numerous applications in many fields. Of even
greater importance for finite model theory are model-checking problems for a
fixed formula ψ, which amounts to deciding the model class of ψ inside D,
ModD(ψ) := {A ∈ D : A |= ψ}. Its complexity is the structure complexity
or data complexity of the model-checking problem (for ψ on D).

Besides the algorithmic analysis of logic problems, there is another aspect
of logic and complexity that has become even more important for finite model
theory, and which is really the central programme of descriptive complexity
theory. The goal here is to characterize complexity from the point of view
of logic (or, more precisely, model theory)2 by providing, for each important
complexity level, logical systems whose expressive power (on finite structures,
or on a particular domain of finite structures) coincides precisely with that

2 There also exist other logical approaches to complexity, based for instance on
proof theory. Connections to the finite model theory approach exist, but the
flavour is quite different.
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complexity level. For a detailed definition, see Sect. 3.2. We shall see that
there have been important successes in this programme, but that there also
remain difficult problems that are still open.

3.1.2 Model Checking for First-Order Logic

We shall now discuss the problem of evaluating first-order formulae on finite
structures using a game-based approach. Model-checking problems, for almost
any logic, can be cast as strategy problems for appropriate model-checking
games (also called Hintikka games).3 With any formula ψ(x), any structure A

(of the same vocabulary as ψ), and any tuple a of elements of A, we associate
a model-checking game G(A, ψ(a)). It is played by two players, Verifier
and Falsifier. Verifier (sometimes also called Player 0, or ∃, or Eloise) tries to
prove that A |= ψ(a), whereas Falsifier (also called Player 1, or ∀, or Abelard)
tries to establish that the formula is false. For first-order logic, the evaluation
games are very simple, in the sense that winning conditions are positional, and
that the games are well-founded, i.e. all possible plays are finite (regardless
of whether the input structure is finite or infinite). For more powerful logics,
notably fixed-point logics, model checking-games may have infinite plays and
more complicated winning conditions (see Sect. 3.3.4).

The Game G(A, ψ(a))

Let A be a finite structure and let ψ(x) be a relational first-order formula,
which we assume to be in negation normal form, i.e. built up from atoms
and negated atoms by means of the propositional connectives ∧,∨ and the
quantifiers ∃, ∀. Obviously, any first-order formula can be converted in linear
time into an equivalent one in negation normal form. The model-checking
game G(A, ψ(a)) has positions (ϕ, ρ) such that ϕ is a subformula of ψ, and
ρ : free(ϕ) → A is an assignment from the free variables of ϕ to elements of
A. To simplify the notation we usually write ϕ(b) for a position (ϕ, ρ) where ρ
assigns the tuple b to the free variables of ϕ. The initial position of the game
is the formula ψ(a).

Verifier (Player 0) moves from positions associated with disjunctions and
with formulae starting with an existential quantifier. From a position ϕ ∨ ϑ,
she moves to either ϕ or ϑ. From a position ∃yϕ(b, y), Verifier can move to any
position ϕ(b, c), where c ∈ A. Dually, Falsifier (Player 1) makes corresponding
moves from conjunctions and universal quantifications. At atoms or negated
atoms, i.e. positions ϕ(b) of the form b = b′, b 6= b′, Rb, or ¬Rb, the game is
over. Verifier has won the play if A |= ϕ(b); otherwise, Falsifier has won.

Model-checking games are a way of defining the semantics of a logic. The
equivalence to the standard definition can be proved by a simple induction.

3 These games should not be confounded with the games used for model comparison
(Ehrenfeucht–Fräıssé games) that describe the power of a logic for distinguishing
between two structures.
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Proposition 3.1.1. Verifier has a winning strategy for the game G(A, ψ(a))
if, and only if, A |= ψ(a).

This suggests a game-based approach to model checking: given A and ψ,
construct the game G(A, ψ) and decide whether Verifier has a winning strat-
egy from the initial position. Let us therefore look a little closer at strategy
problems for games.

3.1.3 The Strategy Problem for Finite Games

Abstractly, we can describe a two-player game with positional winning con-
ditions by a directed game graph G = (V, V0, V1, E), with a partioning
V = V0 ∪ V1 of the nodes into positions where Player 0 moves and positions
where Player 1 moves. The possible moves are described by the edge relation
E ⊆ V × V . We call w a successor of v if (v, w) ∈ E, and we denote the
set of all successors of v by vE. To decribe the winning conditions, we adopt
the convention that Player σ loses at positions v ∈ Vσ where no moves are
possible. (Alternatively, one could explicitly include in the game description
the sets S0, S1 of winning terminal positions for each player.)

A play of G is a path v0, v1, . . . formed by the two players starting from a
given position v0. Whenever the current position vn belongs to Vσ, Player σ
chooses a move to a successor vn+1 ∈ vnE; if no move is available, then
Player σ has lost the play. If this never occurs, the play goes on infinitely and
the winner has to be established by a winning condition on infinite plays. For
the moment, let us say that infinite plays are won by neither of the players.4

A strategy for a player is a function defining a move for each situation in
a play where she has to move. Of particular interest are positional strategies,
which do not depend on the history of the play, but only on the current
position. Hence, a positional strategy for Player σ in G is a (partial) function
f : Vσ → V which indicates a choice (v, f(v)) ∈ E for positions v ∈ Vσ .
A play v0, v1, . . . is consistent with a positional strategy f for Player σ if
vn+1 = f(vn) for all vn ∈ Vσ. A strategy for a player is winning from position
v0 if she wins every play starting from v0 that is consistent with that strategy.
We say that a strategy is winning on a set W if it is winning from each position
in W . The winning regionWσ for Player σ is the set of positions from which
she has a winning strategy.

A game is well-founded if all its plays are finite. Note that a model-
checking game G(A, ψ(a)) for a first-order formula ψ has a finite game graph
if, and only if, A is finite, but it is well-founded in all cases. In general, however,
games with finite game graphs need not be well-founded.

A game is determined if, from each position, one of the players has
a winning strategy, i.e. if W0 ∪ W1 = V . Well-founded games are always

4 We shall later introduce games with more interesting winning conditions for infi-
nite plays.
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determined, and so are large classes of more general games (such as games in
the Borel hierarchy; see [82, 96]).

We denote by Game the strategy problem for games with finite game
graphs and positional winning conditions, i.e.

Game = {(G, v) : Player 0 has a winning strategy in G from position v}.

It is obvious that the Game problem can be solved in polynomial time. Denote
by Wn

σ the set of positions from which Player σ has a strategy to win the game
in at most n moves. Then W 0

σ = {v ∈ V1−σ : vE = ∅} is the set of winning
terminal positions for Player σ, and we can compute the sets Wn

σ inductively
by using

Wn+1
σ := {v ∈ V0 : vE ∩Wn

σ 6= ∅} ∪ {v ∈ V1 : vE ⊆Wn
σ }

until Wn+1
σ = Wn

σ .

To see that Game can actually be solved in linear time, a little more work
is necessary. The following algorithm is a variant of depth-first search, and
computes the entire winning sets for both players in time O(|V |+ |E|).

Theorem 3.1.2. Winning regions of finite games can be computed in linear
time.

Proof. We present an algorithm that computes, for each position, which
player, if any, has a winning strategy for the game starting at that position.
During the computation three arrays are used:

• win[v] contains either 0 or 1, indicating which player wins, or ⊥ if we do
not know yet, or if none of the players has a winning strategy from v;

• P [v] contains the predecessors of v; and
• n[v] is the number of those successors for which win[v] = ⊥.

A linear-time algorithm for the Game problem

Input: A game G = (V, V0, V1, E)

forall v ∈ V do (∗ 1: initialization ∗)
win[v] := ⊥
P [v] := ∅
n[v] := 0

enddo

forall (u, v) ∈ E do (∗ 2: calculate P and n ∗)
P [v] := P [v] ∪ {u}
n[u] := n[u] + 1

enddo
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forall v ∈ V0 (∗ 3: calculate win ∗)
if n[v] = 0 then Propagate(v, 1)

forall v ∈ V1

if n[v] = 0 then Propagate(v, 0)
return win end

procedure Propagate(v, σ)
if win[v] 6= ⊥ then return
win[v] := σ (∗ 4: mark v as winning for Player σ ∗)
forall u ∈ P [v] do (∗ 5: propagate change to predecessors ∗)

n[u] := n[u]− 1
if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

enddo
end

The heart of this algorithm is the procedure Propagate(v, σ) which is called
any time we have found that Player σ has a winning strategy from position v.
Propagate(v, σ) records this fact and investigates whether we are now able to
determine the winning player for any of the predecessors of v. This is done by
applying the following rules:

• If the predecessor u belongs to Player σ, then this player has a winning
strategy from u by moving to position v.

• If the predecessor u belongs to the opponent of Player σ, if win[u] is un-
defined, and if the winning player has already been determined for all
successors w of u, then win[w] = σ for all of those successors, and hence
Player σ wins from u regardless of the choice of her opponent.

Since parts 4 and 5 of the algorithm are reached only once for each posi-
tion v, the inner part of the loop in part 5 is executed at most

∑

v |P [v]| = |E|
times. Therefore the running time of the algorithm is O(|V |+ |E|).

The correctness of the value assigned to win[v] is proved by a straightfor-
ward induction on the number of moves in which the corresponding player can
ensure that she wins. Note that the positions satisfying n[v] = 0 in part 3 are
exactly those without outgoing edges even if n[v] is modified by Propagate. �

Game is known to be a PTIME-complete problem (see [57]). This remains
the case for strictly alternating games, where E ⊆ V0×V1∪V1×V0. Indeed,
any game can be transformed into an equivalent strictly alternating one by
introducing for each move (u, v) ∈ Vσ × Vσ a new node e ∈ V1−σ and by
replacing the move (u, v) by two moves (u, e) and (e, u).

The Game problem (sometimes also called the problem of alternating
reachability) is a general combinatorial problem that reappears in different
guises in many areas. To illustrate this by an example, we shall now show
that the satisfiability problem for propositional Horn formulae is essentially
the same problem as Game.
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Satisfiability for Horn Formulae

It is well known that Sat-Horn, the satisfiability problem for propositional
Horn formulae, is

• PTIME-complete [57], and
• solvable in linear time [36, 68].

Using the Game problem, we can obtain very simple proofs for both re-
sults. Indeed, Game and Sat-Horn are equivalent under log–lin reductions,
i.e. reductions that are computable in linear time and logarithmic space. The
reductions are so simple that we can say that Game and Sat-Horn are really
the same problem.

Theorem 3.1.3. Sat-Horn is log–lin equivalent to Game.

Proof. Game ≤log−lin Sat-Horn. Given a finite game graph G =
(V, V0, V1, E), we can construct in time O(|V | + |E|) a propositional Horn
formula ψG consisting of the clauses u ← v for all edges (u, v) ∈ E with
u ∈ V0, and the clauses u ← v1 ∧ · · · ∧ vm for all nodes u ∈ V1, where
uE = {v1, . . . , vm}. The minimal model of ψG is precisely the winning set W0

for Player 0. Hence v ∈W0 if the Horn formula ψG ∧ (0← v) is unsatisfiable.
Sat-Horn ≤log−lin Game: Given a Horn formula ψ(X1, . . . , Xn) =

∧

i∈I Ci with propositional variables X1, . . . , Xn and Horn clauses Ci of the
form Hi ← Xi1 ∧ · · ·Xim (where the head of the clause, Hi, is either a propo-
sitional variable or the constant 0), we define a game Gψ as follows. The
positions of Player 0 are the initial position 0 and the propositional variables
X1, . . . , Xn, and the positions of Player 1 are the clauses of ψ. Player 0 can
move from a position X to any clause Ci with head X , and Player 1 can
move from a clause Ci to any variable occurring in the body of Ci. Formally,
Gψ = (V,E), V = V0 ∪ V1 with V0 = {0} ∪ {X1, . . . , Xn}, V1 = {Ci : i ∈ I},
and

E = {(X,C) ∈ V0 × V1 : X = head(C)} ∪ {(C,X) ∈ V1 × V0 : X ∈ body(C)}.

Player 0 has a winning strategy for Gψ from position X if, and only if, ψ |= X .
In particular, ψ is unsatisfiable if, and only if, Player 0 wins from position 0.
�

3.1.4 Complexity of First-Order Model Checking

Roughly, the size of the model-checking game G(A, ψ) is the number of dif-
ferent instantiations of the subformulae of ψ with elements from A. It is in
many cases not efficient to construct the full model-checking game explicitly
and then solve the strategy problem, since many positions of the game will
not really be needed.
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To measure the size of games, and the resulting time and space bounds for
the complexity of model checking as precisely as possible, we use, besides the
formula length |ψ|, the following parameters. The closure cl(ψ) is the set of
all subformulae of ψ. Obviously, |cl(ψ)| ≤ |ψ|, and in some cases |cl(ψ)| can
be much smaller than |ψ|. The quantifier rank qr(ψ) is the maximal nesting
depth of quantifiers in ψ, and the width of ψ is the maximal number of free
variables in subformulae, i.e.

width(ψ) = max{|free(ϕ)| : ϕ ∈ cl(ψ)}.

Instead of considering the width, one can also rewrite formulae with as
few variables as possible.

Lemma 3.1.4. A first-order formula ψ has width k if, and only if, it is equiv-
alent, via a renaming of bound variables, to a first-order formula with at most
k distinct variable symbols.

Bounded-variable fragments of logics have received a lot of attention in fi-
nite model theory. However, here we state the results in terms of formula width
rather than number of variables to avoid the necessity to economize on the
number of variables. Given the close connection between games and alternat-
ing algorithms, it is not surprising that the good estimates for the complexity
of model-checking games are often in terms of alternating complexity classes.
We now describe an alternating model-checking algorithm for first-order logic
that can be viewed as an on-the-fly construction of the model-checking game
while playing it.

Theorem 3.1.5. There is an alternating model-checking algorithm that, given
a finite structure A and a first-order sentence ψ, decides whether A |= ψ in
time O(|ψ|+ qr(ψ) log |A|) and space O(log |ψ|+ width(ψ) log |A|) (assuming
that atomic statements are evaluated in constant time).

Proof. We present a recursive alternating procedure ModelCheck(A, ρ, ψ)
that, given a finite structure A, a first-order formula ψ that may contain free
variables, and an assignment ρ : free(ψ)→ A, decides whether A |= ψ[ρ].

ModelCheck(A, ρ, ψ)

Input: a first-order formula ψ in negation normal form
a finite structure A (with universe A),
an assignment ρ : free(ψ)→ A

if ψ is an atom or negated atom then
if A |= ψ[ρ] accept else reject

if ψ = η ∨ ϑ then do
guess ϕ ∈ {η, ϑ}, and let ρ′ := ρ |free(ϕ)

ModelCheck(A, ρ′, ϕ)
if ψ = η ∧ ϑ then do
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universally choose ϕ ∈ {η, ϑ}, and let ρ′ := ρ |free(ϕ)

ModelCheck(A, ρ′, ϕ)
if ψ = ∃xϕ then do

guess an element a of A

ModelCheck(A, ρ[x 7→ a], ϕ)
if ψ = ∀xϕ then do

universally choose an element a of A

ModelCheck(A, ρ[x 7→ a], ϕ)

A straightforward induction shows that the procedure is correct. The time
needed by the procedure is the depth of the syntax tree of ψ plus the time
needed to produce the variable assignments. On each computation path, at
most qr(ψ) elements of A have to be chosen, and each element needs log |A|
bits. Hence the time complexity is O(|ψ| + qr(ψ) log |A|). During the eval-
uation, the algorithm needs to maintain a pointer to the current position
in ψ and to store the current assignment, which needs free(ϕ) log |A| bits
for the current subformula ϕ. Hence the space needed by the algorithm is
O(log |ψ|+ width(ψ) log |A|). �

Theorem 3.1.6. The model-checking problem for first-order logic is
PSPACE-complete. For any fixed k ≥ 2, the model-checking problem for first-
order formulae of width at most k is PTIME-complete.

Proof. Membership of these complexity classes follows immediately from The-
orem 3.1.5 via the facts that alternating polynomial time coincides with poly-
nomial space and alternating logarithmic space coincides with polynomial
time.

Completeness follows by straightforward reductions from known complete
problems. QBF, the evaluation problem for quantified Boolean formulae, is
PSPACE-complete. It reduces to first-order model checking on the fixed struc-
ture (A,P ) with A = {0, 1} and P = {1}. Given a quantified Boolean formula
ψ without free propositional variables,we can translate it into a first-order
sentence ψ as follows: replace every quantification ∃Xi or ∀Xi over a proposi-
tional variable Xi by a corresponding first-order quantification ∃xi or ∀xi and
replace atomic propositions Xi by atoms Pxi. Obviously, ψ evaluates to true
if, and only if, (A,P ) |= ϕ′. This proves that the expression complexity and
the combined complexity of first-order model checking is PSPACE-complete.

To see that the model-checking problem for first-order formulae of width 2
is PTIME-complete, we reduce to it the Game problem for strictly alternating
games, with Player 0 moving first. Given a strictly alternating game graph
G = (V, V0, V1, E), we construct formulae ψi(x) of width 2, expressing the fact
that Player 0 has a winning strategy from x ∈ V0 in n rounds. Let

ψ1(x) := ∃y(Exy ∧ ∀z¬Eyz)

ψi+1(x) := ∃y(Exy ∧ ∀z(Eyz → ψi(z)).
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Obviously, ψn has width 2, and G |= ψn(v) if, and only if, Player 0 can win
from position v in at most n rounds. Now, if Player 0 has a winning strategy,
then she also has one for winning in at most n rounds, where n = |V |, since
otherwise the game will be caught in a loop. Hence any instance G, v of the
Game problem (for strictly alternating games), with v ∈ V0, can be reduced to
the instance G, ψn(v) of the model-checking problem for first-order formulae
of width 2. �

Remark. The argument for PTIME-completeness applies also in fact to
propositional modal logic (ML) [55]. Instead of the formulae ψn(x) constructed
above, we take the modal formulae

ϕ1 := 32false, ϕn+1 := 32ϕn.

Corollary 3.1.7. The model-checking problem for ML is PTIME-complete.

If we consider a fixed formula ψ, Theorem 3.1.5 tells us that the data
complexity of first-order logic is much lower than the expression or combined
complexity.

Corollary 3.1.8. Let ψ be a first-order sentence. Then

{A : A finite,A |= ψ} ∈ ALOGTIME.

In particular, the evaluation problem for any fixed first-order sentence can be
computed deterministically in logarithmic space.

3.1.5 Encoding Finite Structures by Words

Complexity theory, at least in its current form, is based on classical computa-
tional models, most notably Turing machines, that take as inputs words over
a fixed finite alphabet. If we want to measure the complexity of problems on
finite structures in terms of these notions, we have to represent structures by
words so that they can be used as inputs for, say, Turing machines. This may
seem a trivial issue, and for purely algorithmic questions (say for determining
the cost of a model-checking algorithm) it indeed often is. However, the pro-
gramme of finite model theory is to link complexity with logical definability
in a deeper way, and for this purpose the represention of structures by words
needs careful consideration. It is also at the source of some major unresolved
problems that we shall discuss later.

At least implicitly, an encoding of a finite structure by a word requires
that we select an ordered representation of the structure. To see this, consider
the common encoding of a graph G = (V,E) by its adjacency matrix. Once we
have fixed an enumeration of V , say V = {v0, . . . , vn−1}, we can represent the
graph by the word w0 · · ·wn2−1, where win+j = 1 if (vi, vj) ∈ E and win+j = 0
otherwise, i.e. row after row of the adjacency matrix. However, this encoding
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is not canonic. There are n! possibilities of enumerating V , so there may be up
to n! different encodings of the same graph by binary strings. But if the graphs
come along with a linear order, we do have a canonic way of enumerating the
elements and therefore a canonic encoding. Let us now discuss encodings of
arbitrary finite structures (of finite vocabulary) by words.

Definition 3.1.9. For any vocabulary τ , we write Fin(τ) for the class of finite
τ -structures and Ord(τ) for the class of all structures (A, <), where A ∈ Fin(τ)
and < is a linear order on A (the universe of A).

For any structure (A, <) ∈ Ord(τ) of cardinality n and for any k, we can
identify Ak with the set {0, . . . , nk − 1}, by associating each k-tuple with its
rank in the lexicographical ordering induced by < on Ak. Ordered structures
can be encoded as binary strings in many natural ways. The particular choice
of an encoding is not important. We only need the following conditions to be
satisfied.

Definition 3.1.10. An encoding code : Ord(τ)→ Σ∗ (over any finite alpha-
bet Σ) is good if it identifies isomorphic structures, if its values are poly-
nomially bounded, if it is first-order definable, and if it allows to compute
efficiently the values of atomic statements. Formally, this means that the fol-
lowing conditions are satisfied:

(i) code(A, <) = code(B, <) if and only if (A, <) ∼= (B, <).
(ii) |code(A, <)| ≤ p(|A|) for some polynomial p.
(iii) For all k ∈ N and all symbols σ ∈ Σ, there exists a first-order formula

βσ(x1, . . . , xk) of vocabulary τ ∪ {<} such that, for all structures (A, <
) ∈ Ord(τ) and all a ∈ Ak, the following equivalence holds:

(A, <) |= βσ(a) iff the a-th symbol of code(A, <) is σ.

(iv) Given code(A, <), a relation symbol R of τ , and (a representation of) a
tuple a, one can efficiently decide whether A |= Ra.

The precise meaning of ‘efficiently’ in clause (iv) depends on the context
(e.g. the problem that is studied, the machine model considered, and the level
of abstraction at which one is studying a given problem). For the analysis
of algorithms, one often assumes that atomic statements are evaluated in
constant (or even unit) time on a Random Access Machine (RAM). A minimal
requirement is that atoms can be evaluated in linear time and logarithmic
space.

A convenient encoding is given as follows. Let < be a linear order on
A and let A = (A,R1, . . . , Rt) be a τ -structure of cardinality n. Let ℓ be
the maximal arity of R1, . . . , Rt. With each relation R of arity j, we as-

sociate a string χ(R) = w0 · · ·wnj−10n
ℓ−nj ∈ {0, 1}nℓ, where wi = 1 if

the ith tuple of Aj belongs to R, and wi = 0 otherwise. Now, we set

code(A, <) = 1n0n
ℓ−nχ(R1) · · ·χ(Rt).



3.1 Definability and Complexity 137

Exercise 3.1.11. Prove that this encoding is good. In fact, this encoding lends
itself to a very simple logical description in the following sense: if, besides (or
instead of) the linear ordering <, the corresponding successor relation S and
the constants 0, e for the first and last elements with respect to < are available,
then the encoding is definable by quantifier-free formulae βσ(x).

We can fix any good encoding function and understand ordered structures
to be represented by their encodings. With an unordered structure A, we
associate the set of all encodings code(A, <), where < is a linear order on A.
So, when we say that an algorithm M decides a class K of τ -structures, we
actually mean that M decides the set of encodings of structures in K, i.e. the
language

code(K) := {code(A, <) : A ∈ K and < is a linear order on A}.

It thus makes sense to ask whether such a K belongs to a complexity class,
such as P or NP. In particular, we can ask how complicated it is to decide the
class of models of a logical sentence.

Word Structures

We have seen how classes of structures are encoded by languages. On the other
hand, any language L ⊆ Γ ∗ can also be considered as a class of structures over
the vocabulary {<} ∪ {Pa : a ∈ Γ}. Indeed, a word w = w0 . . . wm−1 ∈ Γ ∗ is
described by the structure B(w) with universe {0, . . . ,m− 1}, with the usual
interpretation of < and where Pa = {i : wi = a}.

Isomorphism Invariance

We have seen that encoding an unordered structure involves selecting an or-
dering on the universe. In general, different orderings produce different en-
codings. However, we want to consider properties of structures, not of their
encodings, An algorithm that decides whether a structure has a certain prop-
erty gets encodings code(A, <) as inputs and should produce the same answer
(yes or no) for all encodings of the same structure. That is, the outcome of
the algorithm should not depend on the particular ordered representation of
the structure, but only on its isomorphism type. In other words the algorithm
should be isomorphism-invariant. For most of the algorithms considered here
isomorphism invariance is obvious, but in general it is an undecidable prop-
erty.

Exercise 3.1.12. A first-order sentence ψ of vocabulary τ ∪ {<} is order-
invariant on a class K of τ -structures if its truth on any structure in K does
not depend on the choice of the linear ordering <. That is, for any A ∈ K
and any pair <, <′ of linear orderings on A we have that (A, <) |= ψ ⇐⇒
(A, <′) |= ψ. Prove that it is undecidable whether a given first-order formula
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is order-invariant on finite structures. Hint: use Trakhtenbrot’s Theorem. A
first-order sentence ψ, in which < and Q do not occur, has a finite model
with at least two elements if, and only if, ψ → ∀x∃y(x < y ∨ Qx) is not
order-invariant.

3.2 Capturing Complexity Classes

We have already mentioned that the research programme of descriptive com-
plexity theory links complexity with logic in a deeper way than a complexity
analysis of model-checking algorithms can do. We are looking for results say-
ing that, on a certain domain D of structures, a logic L (such as first-order
logic, least fixed-point logic, or a fragment of second-order logic) captures a
complexity class Comp. This means that (1) for every fixed sentence ψ ∈ L,
the data complexity of evaluating ψ on structures from D is a problem in the
complexity class Comp, and (2) every property of structures in D that can be
decided with complexity Comp is definable in the logic L.

Two important examples of such results are Fagin’s Theorem, which says
that existential second-order logic captures NP on the class of all finite struc-
tures, and the Immerman–Vardi Theorem, which says that least fixed-point
logic captures PTIME on the class of all ordered finite structures. On ordered
finite structures, logical characterizations of this kind are known for all major
complexity classes. On the other hand, it is not known, and it is one of the
major open problems in the area, whether PTIME can be captured by any
logic if no ordering is present.

In Sect. 3.2.1, we prove Fagin’s Theorem and relate it it to the spectrum
problem, which is a classical problem in mathematical logic. In Sect. 3.2.2, we
make precise the notion of a logic capturing a complexity class on a domain
of finite structures. We then show in Sect. 3.2.3 that on ordered structures,
second-order Horn logic captures polynomial time. In Sects. 3.2.4 and 3.2.5,
we discuss logics that capture logarithmic space complexity classes.

3.2.1 Capturing NP: Fagin’s Theorem

The spectrum of a first-order sentence ψ is the set of cardinalities of its finite
models, i.e.

spectrum(ψ) := {k ∈ N : ψ has a model with k elements}.

As early as 1952, Scholz [93] posed the problem of characterizing the class
of spectra, i.e. the subsets S ⊆ N for which there exists a first-order sentence
ψ such that spectrum(ψ) = S. A more specific problem is the complemen-
tation problem for spectra, posed by Asser [7], who asked whether the
complement of each spectrum is also a spectrum.
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Note that the spectrum of a first-order sentence ψ of relational vocabulary
τ = {R1, . . . , Rm} can be viewed as the set of finite models of the existential
second-order sentence ∃R1 · · · ∃Rmψ. Since all relation symbols are quantified,
this is a sentence over the empty vocabulary, i.e. its models are just sets.
Thus there is a one-to-one correspondence between the spectra of first-order
sentences and the classes of finite models of existential second-order sentences
over the empty vocabulary. If we allow different vocabularies for existential
second-order sentences, this naturally leads to the notion of a generalized
spectrum [43].

Definition 3.2.1. Existential second-order logic, sometimes denoted by Σ1
1 ,

is the set of formulae of the form ∃R1 · · · ∃Rmϕ, where m ∈ N, R1, . . . , Rm
are relation symbols of any finite arity, and ϕ is a first-order formula. A
generalized spectrum is the class of finite models of a sentence in existential
second-order logic.

Example 3.2.2. The class of bipartite graphs is a generalized spectrum. It is
defined by the sentence

∃R∀x∀y(Exy → (Rx↔ ¬Ry)).

Exercise 3.2.3. Prove that the class of Hamiltonian graphs, the class of k-
colourable graphs (for any fixed k), and the class of graphs that admit a perfect
matching are generalized spectra. (A perfect matching in an undirected graph
G = (V,E) is a set M ⊆ E of edges such that every node belongs to precisely
one edge of M .)

Theorem 3.2.4 (Fagin). Let K be an isomorphism-closed class of finite
structures of some fixed non-empty finite vocabulary. Then K is in NP if
and only if K is definable by an existential second-order sentence, i.e. if and
only if K is a generalized spectrum.

Proof. First, we show how to decide a generalized spectrum. Let ψ :=
∃R1 · · · ∃Rmϕ be an existential second-order sentence. We shall describe
a non-deterministic polynomial-time algorithm M which, given an encod-
ing code(A, <) of a structure A, decides whether A |= ψ. First, M non-
deterministically guesses relations R1, . . . , Rm on A. A relation Ri is deter-
mined by a binary string of length nri , where ri is the arity of Ri and n = |A|.
Then M decides whether (A, R1, . . . , Rm) |= ϕ. Since ϕ is first-order, this can
be done in logarithmic space and therefore in polynomial time.

Hence the computation of M consists of guessing a polynomial number of
bits, followed by a deterministic polynomial-time computation. Obviously, M
decides the class of finite models of ψ.

Conversely, let K be an isomorphism-closed class of τ -structures and let
M be a non-deterministic one-tape Turing machine which, given an input
code(A, <), decides in polynomial time whether A belongs to K. We shall
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construct an existential second-order sentence ϕ whose finite models are pre-
cisely the structures in K. The construction given here is not quite the stan-
dard one. It is optimized so that it can be easily adapted to other situations,
in particular for giving a capturing result for PTIME (see Section 3.2.3).

Let M = (Q,Σ, q0, F
+, F−, δ), where Q is the set of states, Σ is the

alphabet of M , q0 is the initial state, F+ and F− are the set of accepting and
rejecting states, and δ : (Q × Σ) → P(Q × Σ × {−1, 0, 1}) is the transition
function. Without loss of generality, we can assume that all computations of
M for an input code(A, <) reach an accepting or rejecting state after at most
nk − 1 steps (where n is the cardinality of A).

We represent a computation of M for an input code(A, <) by a tuple X of
relations on A, and we shall construct a first-order sentence ψM of vocabulary
τ ∪ {<} ∪ {X} such that

(A, < X) |= ψM ⇐⇒ the relations X represent an accepting

computation of M on code(A, <).

To represent the nk time and space parameters of the computation we
identify numbers up to nk − 1 with tuples in Ak. Given a linear order, the
associated successor relation and the least and greatest element are of course
definable. Note, further, that if a successor relation S and constants 0, e for
the first and last elements are available, then the induced successor relation
y = x+ 1 on k-tuples is definable by a quantifier-free formula

∨

i<k

(

∧

j<i

(xj = e ∧ yj = 0) ∧ Sxiyi ∧
∧

j>i

xj = yj

)

.

Hence, for any fixed integer m, the relation y = x+m is also expressible.
The description X of a computation of M on code(A, <) consists of the

following relations.

(1) For each state q ∈ Q, the predicate

Xq := {t ∈ Ak : at time t, M is in state q}.

(2) For each symbol σ ∈ Σ, the predicate

Yσ := {(t, a) ∈ Ak ×Ak : at time t, cell a contains the symbol σ}.

(3) The head predicate

Z := {(t, a) ∈ Ak ×Ak : at time t, the head of M is on position a}.

The sentence ψM is the universal closure of the conjunction

START ∧ COMPUTE ∧ END.

The subformula START enforces the condition that the configuration of
M at time t = 0 is C0(A, <), the input configuration on code(A, <). Recall
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that a good encoding is represented by first-order formulae βσ(x) (condition
(iii) of the definition of good encodings). We set

START := Xq0(0) ∧ Z(0, 0) ∧
∧

σ∈Σ

(

βσ(x)→ Yσ(0, x)
)

.

The subformula COMPUTE describes the transitions from one configura-
tion to the next. It is the conjunction of the formulae

NOCHANGE :=
∧

σ∈Σ

(

Yσ(t, x) ∧ (y 6= x) ∧ (t
′

= t+ 1) ∧ Z(t, y)→ Yσ(t
′
, x)
)

and

CHANGE :=
∧

q∈Q
σ∈Σ

(

PRE[q, σ]→
∨

(q′,σ′,m)∈δ(q,σ)

POST[q′, σ′,m]
)

where

PRE[q, σ] := Xq(t) ∧ Z(t, x) ∧ Yσ(t, x) ∧ t′ = t+ 1

POST[q′, σ′,m] := Xq′(t
′
) ∧ Yσ′(t′, x ∧ ∃y(x+ m = y ∧ Z(t

′
, y)).

NOCHANGE expresses the fact that the contents of tape cells that are not
currently being scanned do not change from one configuration to the next,
whereas CHANGE enforces the changes in the relations Xq, Yσ, and Z im-
posed by the transition function.

Finally, we have the formula

END :=
∧

q∈F−

¬Xq(t),

which enforces acceptance by forbidding rejection.

Claim 1. If M accepts code(A, <), then (A, <) |= (∃X)ψM .

This follows immediately from the construction of ψM , since for any ac-
cepting computation of M on code(A, <) the intended meaning of X satisfies
ψM .

Claim 2. If (A, < X) |= ψM , then M accepts code(A, <).

Suppose that (A, < X) |= ψM . For any M -configuration C with state q,
head position p, and tape content w0 · · ·wnk−1 ∈ Σ∗, and for any time j < nk,
let CONF[C, j] be the conjunction of the atomic statements that hold for C
at time j, i.e.

CONF[C, j] := Xq(j) ∧ Z(j, p) ∧
nk−1
∧

i=0

Ywi(j, i)

where j, p and i are the tuples in Ak representing the numbers j, p, and i.
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(a) Let C0 be the input configuration of M for input code(A, <). Since (A, <
,X) |= START, it follows that

(A, <,X) |= CONF[C0, 0].

(b) Owing to the subformula COMPUTE of ψM , we have, for all non-final
configurations C and all j < nk − 1, that

ψM ∧ CONF[C, j] |=
∨

C′∈Next(C)

CONF[C′, j + 1],

where Next(C) = {C′ : C ⊢M C′} is the set of successor configurations
of C. It follows that there exists a computation

C0(A, <) = C0 ⊢M C1 ⊢M · · · ⊢M Cnk−1 = Cend

of M on code(A, <) such that, for all j < nk,

(A, <,X) |= CONF[Cj , j].

(c) Since (A, <,X) |= END, the configuration Cend is not rejecting. Thus, M
accepts code(A, <).

This proves Claim 2. Clearly, one can axiomatize linear orders in first-order
logic. Hence

A ∈ K iff A |= (∃ <)(∃X)(“< is a linear order” ∧ ψM ).

This proves that K is a generalized spectrum. �

Exercise 3.2.5. Prove that every set in NP can be defined by a Σ1
1-sentence

whose first-order part has an ∀∗∃∗-prefix. Furthermore, prove that this cannot
be reduced to ∀∗. Finally, prove that it can be reduced to ∀∗ if

(a) existential second-order quantification over function symbols is allowed,
or

(b) if we consider only ordered structures with an explicitly given successor
relation and constants 0, e for the first and last elements.

There are several interesting consequences of Fagin’s Theorem. First of
all, the NP-completeness of SAT (the satisfiability problem for propositional
logic) is an easy corollary of Fagin’s Theorem.

Theorem 3.2.6 (Cook and Levin). SAT is NP-complete.

Proof. It is obvious that SAT is an NP-problem. It remains to show that any
problem K in NP can be reduced to SAT. Since, as explained above, words can
be viewed as special kinds of finite structures, we can assume that K ⊆ Fin(τ)
for some finite vocabulary τ . By Fagin’s Theorem, there exists a first-order
sentence ψ such that
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K = {A ∈ Fin(τ) : A |= ∃R1 · · · ∃Rmψ}.

We now present a logspace reduction that associates with every input
structure A ∈ Fin(τ) a propositional formula ψA. Given A, replace in ψ

• all subformulae ∃xiϕ by
∨

ai∈A
ϕ[xi/ai],

• all subformulae ∀xiϕ by
∧

ai∈A
ϕ[xi/ai], and

• all τ -atoms Pa by their truth values in A.

Since the τ -atoms can be evaluated efficiently, this translation is com-
putable efficiently. Viewing the atoms Ria as propositional variables, we have
obtained a propositional formula ψA such that

A ∈ K ⇐⇒ A |= ∃R1 · · · ∃Rmψ ⇐⇒ ψA ∈ SAT.

�

Fagin’s Theorem is readily extended to the higher levels of the polynomial-
time hierarchy , and thus to a correspondance between second-order logic and
the polynomial-time hierarchy.

Corollary 3.2.7. Let K be an isomorphism-closed class of finite structures of
some fixed non-empty vocabulary τ . Then code(K) is in the polynomial-time
hierarchy PH if and only if there exists a second-order sentence ψ such that
K is the class of finite models of ψ.

In the statement of Fagin’s Theorem, we required the vocabulary to be non-
empty. The case of the empty vocabulary, i.e. spectra, is different, because the
natural way of specifying a finite set is to write down its size n in binary, and so
the length of the encoding is logarithmic in n, whereas encodings of structures
of non-empty vocabularies have polynomial length. The formula constructed
in the proof of Fagin’s Theorem talks about computations that are polynomial
in n, and hence, in the case of spectra, exponential in the length of the input.
As a consequence, Fagin’s characterization of generalized spectra in terms of
NP implies a characterization of spectra in terms of NEXPTIME. This has
also been established in a different way in [71].

Corollary 3.2.8 (Jones and Selman). A set S ⊆ N is a spectrum if and
only if S ∈ NEXPTIME.

Hence the complementation problem for spectra is really a complexity-
theoretic problem: spectra are closed under complementation if, and only if,
NEXPTIME = Co-NEXPTIME.

Exercise 3.2.9. Prove that a set S ⊆ N is in EXPTIME if and only if it is a
categorical spectrum, i.e. the spectrum of a first-order sentence that has, up
to isomorphism, at most one model in any finite cardinality.
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3.2.2 Logics That Capture Complexity Classes

Fagin’s Theorem gives a precise correspondence between a logic and a com-
plexity class: a property of finite structures is decidable in non-deterministic
polynomial time exactly when it is definable in existential second-order logic.
The same is true for the correspondence between the polynomial-time hierar-
chy and SO, as given by Corollary 3.2.7.

Note that the results on the model-checking complexity of first-order logic
do not give such precise correspondences. We know by Theorem 3.1.5 and
Corollary 3.1.8 that whenever a property of finite structures is first-order
definable, it is decidable in LOGSPACE and in fact even in ALOGTIME.
But we do not have a result giving the converse, and in fact the converse is
false. There are computationally very simple properties of finite structures
that are not first-order definable; one of them is the property of having an
even number of elements.

Hence the natural question arises of whether complexity classes other than
NP and the polynomial-time hierarchy can also be precisely captured by log-
ics. For most of the popular complexity classes, notably PTIME, we do not
know whether this is possible on the domain of all finite structures. But we
have a lot of interesting capturing results if we do not consider arbitrary
finite structures, but certain specific domains. In particular we have close cor-
respondences between logic and complexity for the domain of ordered finite
structures.

By a model class we always mean a class K of structures of a fixed
vocabulary τ that is closed under isomorphism, i.e. if A ∈ K and A ∼= B, then
also B ∈ K. We speak of a domain of structures instead, if the vocabulary
is not fixed. For a domain D and vocabulary τ , we write D(τ) for the class of
τ -structures in D.

Intuitively, a logic L captures a complexity class Comp on D if the L-
definable properties of structures in D are precisely those that are decidable
in Comp. Here is a more detailed definition.

Definition 3.2.10. Let L be a logic, Comp a complexity class, and D a do-
main of finite structures. We say that L captures Comp on D if

(1) For every vocabulary τ and every sentence ψ ∈ L(τ), the model-checking
problem for ψ on D(τ) is in the complexity class Comp.

(2) For every model class K ⊆ D(τ) whose membership problem is in Comp,
there exists a sentence ψ ∈ L(τ) such that

K = {A ∈ D(τ) : A |= ψ}.

By Fagin’s Theorem, the logic Σ1
1 captures NP on the domain of all finite

structures, and by Corollary 3.2.7, second-order logic captures the polynomial-
time hierarchy.

We sometimes simply write L ⊆ Comp to say that condition (1) of Defini-
tion 3.2.10 is satisfied for L and Comp on the domain of all finite structures.
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A classical result, from the ‘prehistory’ of finite model theory, says that
a language is regular (i.e. recognizable by a finite automaton) if, and only if,
it is definable in monadic second-order logic (MSO). As words can be viewed
as a special domain of structures, this is a capturing result in the sense of
Definition 3.2.10.

Theorem 3.2.11 (Büchi, Elgot, and Trakhtenbrot). On the domain of
word structures, monadic second-order logic captures the regular languages.

There are numerous extensions and ramifications of this theorem, most of
them established in the context of automata theory. We refer to [95, 97] for a
proof and further results. However, the emphasis of most of the work in finite
model theory is on structures more complicated structures than words, and
concerns complexity levels higher than the regular languages.

3.2.3 Capturing Polynomial Time on Ordered Structures

In this section, we present a logical characterization of polynomial time on
ordered structures, in terms of second-order Horn logic. Other such charac-
terizations will follow in subsequent sections.

Definition 3.2.12. Second-order Horn logic, denoted by SO-HORN, is
the set of second-order sentences of the form

Q1R1 · · ·QmRm∀y1 · · · ∀ys
t
∧

i=1

Ci

where Qi ∈ {∃, ∀}, the Ri are relation symbols, and the Ci are Horn clauses
with respect to R1, . . . , Rm. More precisely, each Ci is an implication of the
form

H ← β1 ∧ · · · ∧ βm
where each βj is either a positive atom Rkz, or a first-order formula that does
not contain R1, . . . , Rm. The conjunction β1 ∧ · · · ∧ βm is called the body of
the clause. H , the head of the clause, is either an atom Rjz or the Boolean
constant 0 (for false).

Thus the first-order parts of the sentences in SO-HORN are universal Horn
sentences with respect to the quantified predicates R1, . . . , Rm, but may use
arbitrary first-order information about the ‘input predicates’ from the under-
lying vocabulary. Σ1

1 -HORN denotes the existential fragment of SO-HORN,
i.e. the set of SO-HORN sentences where all second-order quantifiers are ex-
istential.

Example 3.2.13. The problem GEN is a well-known P-complete problem [57,
70]. It may be presented as the set of structures (A,S, f, a) in the vocabulary
of one unary predicate S, one binary function f , and a constant a, such that
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a is contained in the closure of S under f . Clearly, the complement of GEN
is also P-complete. It is defined by the following sentence of Σ1

1 -HORN:

∃R∀y∀z
(

(Ry ← Sy) ∧ (Rfyz ← Ry ∧Rz) ∧ (0← Ra)
)

.

Example 3.2.14. The circuit value problem (CVP) is also P-complete [57],
even when restricted to circuits with a fan-in of 2 over NAND gates. Such a
circuit can be considered as a structure (V,E, I+, I−, out), where (V,E) is a
directed acyclic graph, I+ and I− are monadic predicates, and a is a constant.
Here Exy means that node x is one of the two input nodes for y; I+ and I−

contain the input nodes with values 1 and 0, respectively; and out stands for
the output node.

We shall take for granted that E is a connected, acyclic graph with a fan-in
of 2, sources I+ ∪ I−, and sink out. The formula ∃T∃F∀x∀y∀zϕ, where ϕ is
the conjunction of the clauses

Tx← I+x

Fx← I−x

Ty ← Fx ∧ Exy
Fz ← Tx ∧ Exz ∧ Ty ∧ Eyz ∧ y 6= z

0← Tx ∧ Fx
Tx← x = out

then states that the circuit (V,E, I+, I−, out) evaluates to 1.

Exercise 3.2.15. To justify the definition of SO-HORN, show that the admis-
sion of quantifiers over functions, or of first-order prefixes of a more general
form, would make the restriction to Horn clauses pointless. Any such extension
of SO-HORN has the full power of second-order logic.

Theorem 3.2.16. Every sentence ψ ∈ SO-HORN is equivalent to some sen-
tence ψ′ ∈ Σ1

1 -HORN.

Proof. It suffices to prove the theorem for formulae of the form

ψ := ∀P∃R1 · · · ∃Rm∀zϕ,

where ϕ is a conjunction of Horn clauses. An arbitrary formula in SO-HORN
may then be brought to existential form by successively removing the inner-
most universal second-order quantifier. We first prove the following claim.

Claim. A formula ∃R∀zϕ(P,R) ∈ Σ1
1-HORN is true for all predicates P (on

a given structure A) if it holds for those predicates P that are false at at most
one point.

Let k be the arity of P . For every k-tuple a, let P a = Ak − {a}, i.e. the
predicate that is false at a and true at all other points. By assumption, there

exist predicates R
a

such that



3.2 Capturing Complexity Classes 147

(A, P a, R
a
) |= ∀zϕ.

Now, take any predicate P 6= Ak, and let Ri :=
⋂

a6∈P R
a
i . We claim that

(A, P,R) |= ∀zϕ.
Suppose that this is false; there then exists a relation P 6= Ak, a clause C

of ϕ, and an assignment ρ : {z1 . . . , zs} → A such that (A, P,R) |= ¬C[ρ]. We

now show that there then exists a tuple a such that also (A, P a, R
a
) |= ¬C[ρ].

If the head of C[ρ] is Pu, then take a = u 6∈ P . If the head of C[ρ] is
Riu, then choose some a 6∈ P such that u 6∈ Rai ; such an a must exist because
u 6∈ Ri. Finally, if the head is 0, take an arbitrary a 6∈ P . The head of C[ρ]

is clearly false in (A, P a, R
a
). The atom Pa does not occur in the body of

C[ρ], because a 6∈ P and all atoms in the body of C[ρ] are true in (A, P,R);
all other atoms of the form Pv that might occur in the body of the clause
remain true for P a also. Moreover, every atom Riv in the body remains true
if Ri is replaced by Rai (because Ri ⊆ Rai ). This implies that the clause

(A, P a, R
a
) |= ¬C[ρ], and thus

(A, P a, R
a
) |= ¬∀zϕ,

which contradicts our assumption.

Thus the claim has been established. This implies that the original formula
ψ is equivalent to the conjunction

∃R∀zϕ0 ∧ ∀y(∃R)∀zϕ1,

where ϕ1 and ϕ0 are obtained from ϕ by replacing every atom Pu by u 6= y
(which is true iff u ∈ P y), or by (u = u) (which is always true), respectively. It
is easy to transform this conjunction into an equivalent formula in Σ1

1 -HORN.
�

Theorem 3.2.17. If ψ ∈ SO-HORN, then the set of finite models of ψ is in
PTIME.

Proof. We can restrict our attention to sentences ψ = ∃R1 · · · ∃Rm∀z
∧

iCi in
Σ1

1 -HORN. Given any finite structure A of appropriate vocabulary, we reduce
the problem of whether A |= ψ to the satisfiability problem for a propositional
Horn formula by the same technique as in the proof of Theorem 3.2.6.

Replace the universal quantifiers ∀zi by conjunctions over the elements
ai ∈ A and omit the quantifier prefix. Then substitute in the body of each
clause the first-order formulae that do not involve R1, . . . , Rm by their truth
values in A. If there is any clause that is already made false by this partial
interpretation (i.e. the head is false and all atoms in the body are true),
then reject ψ. Otherwise, omit all clauses that are already made true (i.e.
the head is true or a conjunct of the body is false) and delete the conjuncts
already interpreted from the remaining clauses. Consider the atoms Riu as
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propositional variables. The resulting formula is a propositional Horn formula
whose length is polynomially bounded in the cardinality of A and which is
satisfiable if and only if A |= ψ. The satisfiability problem for propositional
Horn formulae can be solved in linear time. �

Theorem 3.2.18 (Grädel). On ordered structures, SO-HORN and
Σ1

1 -HORN capture PTIME.

Proof. This follows from an analysis of our proof of Fagin’s Theorem. If the
Turing machine M happens to be deterministic, then the sentence ∃XψM
constructed in that proof can easily be transformed to an equivalent sentence
in Σ1

1 -HORN.
To see this, recall that ψM is the universal closure of START ∧

NOCHANGE ∧ CHANGE ∧ END. The formulae START, NOCHANGE, and
END are already in Horn form. The formula CHANGE has the form

∧

q∈Q
σ∈Σ

(

PRE[q, σ]→
∨

(q′,σ′,m)∈δ(q,σ)

POST[q′, σ′,m]
)

,

where

PRE[q, σ] := Xq(t) ∧ Z(t, x) ∧ Yσ(t, x) ∧ t′ = t+ 1

POST[q′, σ′,m] := Xq′(t
′
) ∧ Yσ′(t′, x) ∧ ∃y(x +m = y ∧ Z(t

′
, y)).

For a deterministic M , we have for each pair (q, σ) a unique value δ(q, σ) =
(q′, σ′,m). In this case, the implication PRE[q, σ] → POST[q′, σ′,m] can be
replaced by the conjunction of the Horn clauses

PRE[q, σ]→ Xq′(t
′
)

PRE[q, σ]→ Yσ′ (t
′
, x)

PRE[q, σ] ∧ y = x+m→ Z(t
′
, y).

�

Exercise 3.2.19. Prove that, contrary to the case of Fagin’s Theorem, the
assumption that a linear order is explicitly available cannot be eliminated,
since linear orderings are not axiomatizable by Horn formulae.

Exercise 3.2.20. In [47], where the results of this section were proved, a weaker
variant of SO-HORN was used, in which the body may not contain arbitrary
first-order formulae of the input vocabulary, but only atoms and negated input
atoms. Prove that the two variants of SO-HORN are equivalent on ordered
structures with a successor relation and with constants for the first and last
elements, but not on ordered structures without a successor relation. Hint:
sentences in the weak variant of SO-HORN are preserved under substructures,
i.e. if A |= ψ and B ⊆ A, then also B |= ψ.
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3.2.4 Capturing Logarithmic Space Complexity

In this section and the next, we describe two approaches to defining logics
that capture logarithmic space complexity classes on ordered structures. The
first approach is based on restrictions of second-order logic, similarly to the
definition of SO-HORN, whereas the second technique adds transitive closure
operators to first-order logic.

Definition 3.2.21. Second-order Krom logic, denoted by SO-KROM, is
the set of second-order formulae

Q1R1 · · ·QmRm∀y1 · · · ∀ys
t
∧

i=1

Ci

where every clause Ci is a disjunction of at most two literals of the form (¬)Riy
and of a first-order formula that does not contain R1, . . . , Rm. Such formulae
are Krom (i.e. in 2-CNF) with respect to the quantified predicates. Σ1

1 -KROM
is the existential fragment of SO-KROM. The intersection of Σ1

1 -HORN and
Σ1

1 -KROM is denoted by Σ1
1-KROM-HORN.

Example 3.2.22. The reachability problem (‘Is there a path in the graph (V,E)
from a to b?’) is complete for NLOGSPACE via first-order translations. Its
complement is expressible by a formula from Σ1

1 -KROM-HORN,

∃T∀x∀y∀z
(

Txx ∧ (Txz ← Txy ∧Eyz) ∧ (0← Tab)
)

.

As in the case of SO-HORN, it is also known that every sentence of
SO-KROM is equivalent to a sentence of Σ1

1 -KROM (see [47]).

Proposition 3.2.23. For every sentence ψ ∈ SO-KROM, the set of finite
models of ψ is in NLOGSPACE.

The proof is analogous to the proof of Theorem 3.2.17. It uses the fact
that 2-SAT, the satisfiability problem for propositional Krom formulae, is in
NLOGSPACE. On ordered structures, SO-KROM captures NLOGSPACE.
We shall indicate the general idea of the proof here. Suppose that M is an
O(log n)-space-bounded non-deterministic Turing machine with an input tape
carrying a representation code(A, <) of an input structure, and one or more
separate work tapes. A reduced configuration of M reflects the control state
of M , the content of the work tapes, and the positions of the heads on the
input tape and the work tapes. Thus a configuration is specified by a reduced
configuration together with the input. Given that reduced configurations of M
for the input code(A, <) have a logarithmic length with respect to |A|, we can
represent them by tuples c = c1, . . . , cr ∈ Ar for fixed r. The initial reduced
configuration on any input code(A, <) is represented by the tuple 0. Assume
that M has a single accepting state, say state 1, and let the first component of
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the reduced configuration describe the state. The condition that y represents
an accepting configuration is then expressed by ACCEPT(y) := (y1 = 1).
Further, it is not difficult (although it is somewhat lengthy) to write down
a quantifier-free formula NEXT(x, y) such that, for every successor structure
(A, S, 0, e) and every tuple c representing a reduced configuration,

(A, S, 0, e) |= NEXT(c, d)

if, and only if, d represents a reduced successor configuration of c for the input
(A, <). Taking the disjunctive normal form NEXT(x, y) =

∨

i NEXTi(x, y),
we can express the staement that M does not accept the input code(A, <) by
the sentence

ψM :=∃R∀x∀y
(

R0 ∧
∧

i

(Ry ← Rx ∧NEXTi(x, y))

∧ (2← Ry ∧ACCEPT(y)
)

.

This proves that, on ordered structures, the complement of every problem
in NLOGSPACE is definable in SO-KROM. Since NLOGSPACE is closed
under complements, and since the formula ψM is in fact in Σ1

1 -KROM-HORN,
we have proved the following result.

Theorem 3.2.24 (Grädel). On ordered structures, the logics SO-KROM,
Σ1

1 -KROM, and Σ1
1 -KROM-HORN capture NLOGSPACE.

Remark. The characterizations of P and NLOGSPACE by second-order Horn
and Krom logics can also be reformulated in terms of generalized spectra.
The notion of a generalized spectrum can be appropriately modified to the
notions of a generalized Horn spectrum and a generalized Krom spectrum.
Let a model class be any isomorphism-closed class of structures of some fixed
finite signature. Fagin’s Theorem and Theorems 3.2.18 and 3.2.24 can then
be summarized as follows:

• A model class of finite structures is NP iff it is a generalized spectrum.
• A model class of ordered structures is in P iff it is a generalized Horn

spectrum.
• A model class of ordered structures is in NLOGSPACE iff it is a generalized

Krom spectrum.

3.2.5 Transitive Closure Logics

One of the limitations of first-order logic is the lack of a mechanism for un-
bounded iteration or recursion. This has motivated the study of more power-
ful languages that add recursion in one way or another to first-order logic. A
simple but important example of a query that is not first-order expressible is
reachability. By adding transitive closure operators to FO, we obtain a natural
family of logics with a recursion mechanism.
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Definition 3.2.25. Transitive closure logic, denoted by TC, is obtained
by augmenting the syntax of first order logic by the following rule for building
formulae:

Let ϕ(x, y) be a formula with variables x = x1, . . . , xk and y = y1, . . . , yk,
and let u and v be two k-tuples of terms. Then

[tcx,y ϕ(x, y)](u, v)

is a formula which says that the pair (u, v) is contained in the transitive
closure of the binary relation on k-tuples that is defined by ϕ. In other words,
A |= [tcx,y ϕ(x, y)](a, b) if, and only if, there exist an n ≥ 1 and tuples
c0, . . . , cn in Ak such that c0 = a, cn = b, and A |= ϕ(ci, ci+1), for all i < n.

Of course, it is understood that ϕ can contain free variables other than
x and y; these will also be free in the new formula. Moreover, transitive clo-
sure logic is closed under the usual first-order operations. We can thus build
Boolean combinations of TC-formulae, we can nest TC-operators, etc.

Example 3.2.26. A directed graph G = (V,E) is acyclic if, and only if, G |=
∀z[tcx,yExy](z, z). It is well known that a graph is bipartite (2-colourable) if,
and only if, it does not contain a cycle of odd length. This is expressed by the
TC-formula ∀x∀y([tcx,yx 6= y ∧ ∃zExz ∧Ezy](x, y)→ ¬Eyx).

Exercise 3.2.27. Show that, for every ψ ∈ TC, the set of finite models of ψ
is decidable in NLOGSPACE.

The same idea as in the proof of Theorem 3.2.24 shows that, on ordered
structures, TC captures NLOGSPACE. The condition that an O(log n)-space-
bounded Turing machine M accepts code(A, <) is expressed by the formula

∃z
(

ACCEPT(z) ∧ [tcx,y NEXT(x, y)](0, z)
)

.

Theorem 3.2.28 (Immerman). On ordered structures, TC captures
NLOGSPACE.

An interesting variant of TC is deterministic transitive closure logic,
denoted DTC, which makes definable the transitive closure of any determin-
istic definable relation. The syntax of DTC is analogous to TC, allowing us
to build formulae of the form [dtcx,y ϕ(x, y)](u, v), for any formula ϕ(x, y).
The semantics can be defined by the equivalence

[dtcx,y ϕ(x, y)](u, v) ≡ [tcx,y ϕ(x, y) ∧ ∀z(ϕ(x, z)→ y = z)](u, v).

It is clear that transitive closures of deterministic relations can be checked
by deterministic Turing machines using only logarithmic space. Conversely,
acceptance by such machines amounts to deciding a reachability problem (‘is
there an accepting configuration that is reachable from the input configura-
tion?’) with respect to the successor relation ⊢M on configurations. Of course,
for deterministic Turing machines, ⊢M is deterministic. We already know that
on ordered structures, ⊢M is first-order definable, and hence acceptance can
be defined in DTC.
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Theorem 3.2.29 (Immerman). On ordered finite structures DTC captures
LOGSPACE.

In particular, separating DTC from TC on ordered finite structures would
amount to separating the complexity classes LOGSPACE and NLOGSPACE.
However, on the domain of arbitrary finite structures, we can actually separate
these logics [51].

Given a graph G = (V,E), let 2G be the graph with vertex set V × {0, 1}
and edges 〈(u, i), (v, j)〉 for (u, v) ∈ E, i, j ∈ {0, 1}. It is easy to see that on
the class of all ‘double graphs’ 2G, DTC collapses to FO. Take any tuple
ū = (u1, i1), . . . , (uk, ik) of vertices in a double graph 2G, and let the closure
of ū be the set {u1, . . . , uk} × {0, 1}. Switching the second component of any
node is an automorphism of 2G, and hence no definable deterministic path
from u can leave the closure of u. That is, if 2G |= [dtcx,yϕ(x, y)](u, v), then
each node of v belongs to the closure of u. Therefore DTC-definable paths
are of bounded length, and can thus be defined by first-order formulae. On
the other hand the usual argument (based on Ehrenfeucht–Fräıssé games)
showing that transitive closures are not first-order definable applies also to
the class of double graphs. Hence DTC is strictly less powerful than TC on
double graphs. In [51] other graph classes are identified on which TC is more
expressive than DTC. An interesting example is the class of all hypercubes.

Theorem 3.2.30. On finite graphs, DTC ( TC.

TC is a much richer and more complicated logic than DTC also in
other respects. For instance, DTC has a positive normal form: formulae
¬[dtcxyϕ(x, y)](u, v) can be rewritten using the dtc operator only positively.
On the other hand, the alternation hierarchy in TC is strict [52].

3.3 Fixed-Point Logics

One of the distinguishing features of finite model theory compared with other
branches of logic is the eminent role of various kinds of fixed-point logics.
Fixed-point logics extend a basic logical formalism (such as first-order logic,
conjunctive queries, or propositional modal logic) by a constructor for forming
fixed points of relational operators .

What do we mean by a relational operator? Note that any formula
ψ(R, x) of vocabulary τ ∪{R} can be viewed as defining, for every τ -structure
A, an update operator Fψ : P(Ak)→ P(Ak) on the class of k-ary relations on
A, namely

Fψ : R 7→ {a : (A, R) |= ψ(R, a)}.
A fixed point of Fψ is a relation R for which Fψ(R) = R. In general, a fixed

point of Fψ need not exist, or there may exist many of them. However, if R
happens to occur only positively in ψ, then the operator Fψ is monotone, and
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in that case there exists a least relation R ⊆ Ak such that Fψ(R) = R. The
most influential fixed-point formalisms in logic are concerned with least (and
greatest) fixed points, so we shall discuss these first. In finite model theory,
a number of other fixed-point logics are important as well, and the structure,
expressive power, and algorithmic properties of these logics have been studied
intensively. We shall discuss them later.

3.3.1 Some Fixed-Point Theory

There is a well-developed mathematical theory of fixed points of monotone
operators on complete lattices. A complete lattice is a partial order (A,≤)
such that each set X ⊆ A has a supremum (a least upper bound) and an
infimum (a greatest lower bound). Here we are interested mainly in power
set lattices (P(Ak),⊆) (where A is the universe of a structure), and later in
product lattices (P(B1)×· · ·×P(Bm),⊆). For simplicity, we shall describe the
basic facts of fixed-point theory for lattices (P(B),⊆), where B is an arbitrary
(finite or infinite) set.

Definition 3.3.1. Let F : P(B)→ P(B) be a function.

(1) X ⊆ B is a fixed point of F if F (X) = X .
(2) A least fixed point or a greatest fixed point of F is a fixed point X

of F such that X ⊆ Y or Y ⊆ X , respectively, for each fixed point Y of
F .

(3) F is monotone, if X ⊆ Y =⇒ F (X) ⊆ F (Y ) for all X,Y ⊆ B.

Theorem 3.3.2 (Knaster and Tarski). Every monotone operator F :
P(B)→ P(B) has a least fixed point lfp(F ) and a greatest fixed point gfp(F ).
Further, these fixed points may be written in the form

lfp(F ) =
⋂

{X : F (X) = X} =
⋂

{X : F (X) ⊆ X}

gfp(F ) =
⋃

{X : F (X) = X} =
⋃

{X : F (X) ⊇ X}.

Proof. Let S = {X ⊆ B : F (X) ⊆ X} and Y =
⋂

S. We first show that Y is
a fixed point of F .

F (Y ) ⊆ Y . Clearly, Y ⊆ X for all X ∈ S. As F is monotone, it follows that
F (Y ) ⊆ F (X) ⊆ X . Hence F (Y ) ⊆ ⋂S = Y .

Y ⊆ F (Y ). As F (Y ) ⊆ Y , we have F (F (Y )) ⊆ F (Y ), and hence F (Y ) ∈ S.
Thus Y =

⋂

S ⊆ F (Y ).

By definition, Y is contained in all X such that F (X) ⊆ X . In particular
Y is contained in all fixed points of F . Hence Y is the least fixed point of F .

The argument for the greatest fixed point is analogous. �
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Least fixed points can also be constructed inductively. We call an operator
F : P(B)→ P(B) inductive if the sequence of its stages Xα (where α is an
ordinal), defined by

X0 := ∅,
Xα+1 := F (Xα), and

Xλ :=
⋃

α<λ

Xα for limit ordinals λ,

is increasing, i.e. if Xβ ⊆ Xα for all β < α. Obviously, monotone operators are
inductive. The sequence of stages of an inductive operator eventually reaches
a fixed point, which we denote by X∞. The least ordinal β for which Xβ =
Xβ+1 = X∞ is called cl(F ), the closure ordinal of F .

Lemma 3.3.3. For every inductive operator F : P(B) → P(B), |cl(F )| ≤
|B|.
Proof. Let |B|+ denote the smallest cardinal greater than |B|. Suppose that
the claim is false for F . Then for each α < |B|+ there exists an element
xα ∈ Xα+1 − Xα. The set {xα : α < |B|+} is a subset of B of cardinality
|B|+ > |B|, which is impossible. �

Proposition 3.3.4. For monotone operators, the inductively constructed
fixed point coincides with the least fixed point, i.e. X∞ = lfp(F ).

Proof. As X∞ is a fixed point, lfp(X) ⊆ X∞. For the converse, we show by
induction that Xα ⊆ lfp(F ) for all α. As lfp(F ) =

⋂{Z : F (Z) ⊆ Z}, it
suffices to show that Xα is contained in all Z for which F (Z) ⊆ Z.

For α = 0, this is trivial. By monotonicity and the induction hypothesis,
we have Xα+1 = F (Xα) ⊆ F (Z) ⊆ Z. For limit ordinals λ with Xα ⊆ Z for
all α < λ we also have Xλ =

⋃

α<λ ⊆ Z. �

The greatest fixed point can be constructed by a dual induction, starting
with Y 0 = B, by setting Y α+1 := F (Y α) and Y λ =

⋂

α<λ Y
α for limit

ordinals. The decreasing sequence of these stages then eventually converges
to the greatest fixed point Y∞ = gfp(F ).

The least and greatest fixed points are dual to each other. For every mono-

tone operator F , the dual operator F d : X 7→ F (X) (where X denotes the
complement of X) is also monotone, and we have that

lfp(F ) = gfp(F d) and gfp(F ) = lfp(F d).

Exercise 3.3.5. Prove this.

Everything said so far holds for operators on arbitrary (finite or infinite)
power set lattices. In finite model theory, we consider operators F : P(Ak)→
P(Ak) for finite A only. In this case the inductive constructions will reach the
least or greatest fixed point in a polynomial number of steps. As a consequence,
these fixed points can be constructed efficiently.
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Lemma 3.3.6. Let F : P(Ak) → P(Ak) be a monotone operator on a finite
set A. If F is computable in polynomial time (with respect to |A|), then so are
the fixed points lfp(F ) and gfp(F ).

3.3.2 Least Fixed-Point Logic

LFP is the logic obtained by adding least and greatest fixed points to first-
order logic.

Definition 3.3.7. Least fixed-point logic (LFP) is defined by adding to the
syntax of first-order logic the following least fixed-point formation rule: If
ψ(R, x) is a formula of vocabulary τ ∪ {R} with only positive occurrences of
R, if x is a tuple of variables, and if t is a tuple of terms (such that the lengths
of x and t match the arity of R), then

[lfpRx . ψ](t) and [gfpRx . ψ](t)

are formulae of vocabulary τ . The free first-order variables of these formulae
are those in (free(ψ)− {x : x in x}) ∪ free(t).

Semantics. For any τ -structure A providing interpetations for all free variables

in the formula, we have that A |= [lfpRx . ψ](t) if t
A

(the tuple of elements
of A interpreting t) is contained in lfp(Fψ), where Fψ is the update operator
defined by ψ on A. Similarly for greatest fixed points.

Example 3.3.8. Here is a fixed-point formula that defines the transitive closure
of the binary predicate E:

TC(u, v) := [lfpTxy . Exy ∨ ∃z(Exz ∧ Tzy)](u, v).

Note that in a formula [lfpRx . ϕ](t), there may be free variables in ϕ addi-
tional to those in x, and these remain free in the fixed-point formula. They
are often called parameters of the fixed-point formula. For instance, the
transitive closure can also be defined by the formula

ϕ(u, v) := [lfpTy . Euy ∨ ∃x(Tx ∧ Exy)](v)

which has u as a parameter.

Exercise 3.3.9. Show that every LFP-formula is equivalent to one without
parameters (at the cost of increasing the arity of the fixed-point variables).

Example 3.3.10. Let ϕ := ∀y(y < x→ Ry) and let (A,<) be a partial order.
The formula [lfpRx . ϕ](x) then defines the well-founded part of <. The
closure ordinal of Fϕ on (A,<) is the length of the longest well-founded initial
segment of <, and (A,<) |= ∀x[lfpRx . ϕ](x) if, and only if, (A,<) is well-
founded.
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Exercise 3.3.11. Prove that the LFP-sentence

ψ := ∀y∃zFyz ∧ ∀y[lfpRy . ∀x(Fxy → Rx)](y)

is an infinity axiom, i.e. it is satisfiable but does not have a finite model.

Example 3.3.12. The Game query asks, given a finite game G = (V, V0, V1, E),
to compute the set of winning positions for Player 0 (see Section 3.1.3). The
Game query is LFP-definable, by use of [lfpWx . ϕ](x) with

ϕ(W,x) := (V0x ∧ ∃y(Exy ∧Wy)) ∨ (V1 ∧ ∀y(Exy →Wy)).

The Game query plays an important role for LFP. It can be shown that
every LFP-definable property of finite structures can be reduced to Game by
a quantifier-free translation [31]. Hence Game is complete for LFP via this
notion of reduction, and thus a natural candidate if one is trying to separate
a weaker logic from LFP.

Exercise 3.3.13. Prove that the problem GEN and the circuit value problem
(see Examples 3.2.13 and 3.2.14) are expressible in LFP.

The duality between the least and greatest fixed points implies that for
any formula ψ,

[gfpRx . ψ](t) ≡ ¬[lfpRx . ¬ψ[R/¬R]](t),

where ψ[R/¬R] is the formula obtained from ψ by replacing all occurrences of
R-atoms by their negations. (As R occurs only positively in ψ, the same is true
for ¬ψ[R/¬R].) Because of this duality, greatest fixed points are often omitted
in the definition of LFP. On the other hand, it is sometimes convenient to keep
the greatest fixed points, and to use the duality (and de Morgan’s laws) to
translate LFP-formulae to negation normal form, i.e. to push negations all
the way to the atoms.

Capturing Polynomial Time

From the fact that first-order operations are polynomial-time computable and
from Lemma 3.3.6, we can immediately conclude that every LFP-definable
property of finite strucures is computable in polynomial time.

Proposition 3.3.14. Let ψ be a sentence in LFP. It is decidable in poly-
nomial time whether a given finite structure A is a model of ψ. In short,
LFP ⊆ PTIME.

Obviously LFP, is a fragment of second-order logic. Indeed, by the Tarski–
Knaster Theorem,

[lfpRx . ψ(R, x)](y) ≡ ∀R((∀x(ψ(R, x)→ Rx))→ Ry).

We next relate LFP to SO-HORN.
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Theorem 3.3.15. Every formula ψ ∈ SO-HORN is equivalent to some for-
mula ψ∗ ∈ LFP.

Proof. By Theorem 3.2.16, we can assume that ψ = (∃R1) · · · (∃Rm)ϕ ∈
Σ1

1 -HORN. By combining the predicates R1, . . . , Rm into a single predicate
R of larger arity and by renaming variables, it is easy to transform ψ into an
equivalent formula

ψ′ := ∃R∀x∀y
∧

i

Ci ∧
∧

j

Dj,

where the Ci are clauses of the form Rx← αi(R, x, y) (with exactly the same
head Rx for every i) and the Dj are clauses of the form 0← βj(R, x, y). The
clauses Ci define, on every structure A, a monotone operator F : R 7→ {x :
∨

i ∃yαi(x, y)}. Let Rω be the least fixed point of this operator. Obviously
A |= ¬ψ if and only if A |= βi(R

ω, a, b) for some i and some tuple a, b. But
Rω is defined by the fixed-point formula

αω(x) := [lfpRx .
∨

i

∃yαi(x, y)](x).

Hence, for β := ∃x∃y∨j βj(x, y), ψ is equivalent to the formula ψ∗ :=
¬β[Rz/αω(z)] obtained from ¬β by substituting all occurrences of atoms Rz
by αω(z). Clearly, this formula is in LFP. �

Hence SO-HORN ≤ LFP ≤ SO. As an immediate consequence of Theo-
rems 3.2.18 and 3.3.15 we obain the Immerman–Vardi Theorem.

Theorem 3.3.16 (Immerman and Vardi). On ordered structures, least
fixed-point logic captures polynomial time.

However, on unordered structures, SO-HORN is strictly weaker than LFP.

3.3.3 The Modal µ-Calculus

A fragment of LFP that is of fundamental importance in many areas of com-
puter science (e.g. controller synthesis, hardware verification, and knowledge
representation) is the modal µ-calculus (Lµ). It is obtained by adding least
and greatest fixed points to propositional modal logic (ML). In other words
Lµ relates to ML in the same way as LFP relates to FO.

Modal logics such as ML and the µ-calculus are evaluated on transition
systems (alias Kripke structures, alias coloured graphs) at a particular node.
Given a formula ψ and a transition system G, we write G, v |= ψ to de-
note that G holds at node v of G. Recall that formulae of ML, for reasoning
about transition systems G = (V, (Ea)a∈A, (Pb)b∈B), are built from atomic
propositions Pb by means of the usual propositional connectives and the modal
operators 〈a〉 and [a]. That is, if ψ is a formula and a ∈ A is an action, then
we can build the formulae 〈a〉ψ and [a]ψ, with the following semantics:
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G, v |= 〈a〉ψ iff G,w |= ψ for some w such that (v, w) ∈ Ea,

G, v |= [a]ψ iff G,w |= ψ for all w such that (v, w) ∈ Ea.

If there is only one transition relation, i.e. A = {a}, then we simply write 2

and 3 for [a] and 〈a〉, respectively.
ML can be viewed as an extension of propositional logic. However, in our

context it is more convenient to view it as a simple fragment of first-order logic.
A modal formula ψ defines a query on transition systems, associating with G
a set of nodes ψG := {v : G, v |= ψ}, and this set can be defined equivalently
by a first-order formula ψ∗(x). This translation maps atomic propositions Pb
to atoms Pbx, it commutes with the Boolean connectives, and it translates
the modal operators by use of quantifiers as follows:

(〈a〉ψ)∗(x) := ∃y(Eaxy ∧ ψ∗(y))

([a]ψ)∗(x) := ∀y(Eaxy → ψ∗(y)).

Note that the resulting formula has width 2 and can thus be written with
only two variables. We have proved the following proposition.

Proposition 3.3.17. For every formula ψ ∈ ML, there exists a first-order
formula ψ∗(x) of width 2, which is equivalent to ψ in the sense that G, v |= ψ
iff G |= ψ∗(v).

The modal fragment of first-order logic is the image of propositional modal
logic under this translation. It has turned out that the modal fragment has
interesting algorithmic and model-theoretic properties (see [3] and the refer-
ences given there).

Definition 3.3.18. The modal µ-calculus Lµ extends ML (including
propositional variables X,Y, . . . , which can be be viewed as monadic second-
order variables) by the following rule for building fixed point formulae: If ψ is
a formula in Lµ and X is a propositional variable that only occurs positively
in ψ, then µX.ψ and νX.ψ are also Lµ-formulae.

The semantics of these fixed-point formulae is completely analogous to
that for LFP. The formula ψ defines on G (with universe V , and with inter-
pretations for other free second-order variables that ψ may have besides X)
the monotone operator Fψ : P(V )→ P(V ) assigning to every set X ⊆ V the
set ψG(X) := {v ∈ V : (G,X), v |= ψ}. Now,

G, v |= µX.ψ iff v ∈ lfp(Fψ)

G, v |= νX.ψ iff v ∈ gfp(Fψ).

Example 3.3.19. The formula µX.ϕ ∨ 〈a〉X asserts that there exists a path
along a-transitions to a node where ϕ holds.

The formula ψ := νX.
(

∨

a∈A〈a〉true ∧∧a∈A[a]X
)

expresses the assertion

that the given transition system is deadlock-free. In other words, G, v |= ψ
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if no path from v in G reaches a dead end (i.e. a node without outgoing
transitions).

Finally, the formula νX.µY.〈a〉((ϕ ∧X)∨ Y ) says that there exists a path
from the current node on which ϕ holds infinitely often.

Exercise 3.3.20. Prove that the formulae in Example 3.3.19 do indeed express
the stated properties.

The translation from ML into FO is readily extended to a translation from
Lµ into LFP.

Proposition 3.3.21. Every formula ψ ∈ Lµ is equivalent to a formula
ψ∗(x) ∈ LFP.

Proof. By induction. A formula of form µX.ϕ is translated to [lfpXx . ϕ∗](x),
and similarly for greatest fixed points. �

Further the argument proving that LFP can be embedded into SO also
shows that Lµ is a fragment of MSO.

Let us turn to algorithmic issues. The complexity of the model-checking
problem for Lµ is a major open problem, as far as combined complexity and
expression complexity are concerned (see Section 3.3.5). However, the data
complexity can be settled easily.

Proposition 3.3.22 (data complexity of Lµ). Fix any formula ψ ∈ Lµ.
Given a finite transition system G and a node v, it can be decided in polyno-
mial time whether G, v |= ψ. Further, there exist ψ ∈ Lµ for which the model
checking problem is PTIME-complete.

Proof. As Lµ is a fragment of LFP, the first claim is obvious. For the second
claim, recall that the Game problem for strictly alternating games is PTIME-
complete (see Section 3.1.2). Player 0 has a winning strategy from position
v ∈ V0 in the game G = (V, V0, V1, E) if, and only if, G, v |= µX.32X . �

Despite this result, it is not difficult to see that the µ-calculus does not
suffice to capture PTIME, even in very restricted scenarios such as word
structures. Indeed, as Lµ is a fragment of MSO, it can only define regular
languages, and of course, not all PTIME-languages are regular. However, we
shall see in Section 3.5.3 that there is a multidimensional variant of Lµ that
captures the bisimulation-invariant fragment of PTIME.

For more information on the µ-calculus, we refer to [5, 21, 56] and the
references therein.

3.3.4 Parity Games

For least fixed-point logics, the appropriate evaluation games are parity games.
These are games of possibly infinite duration where each position is assigned
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a natural number, called its priority, and the winner of an infinite play is
determined according to whether the least priority seen infinitely often during
the play is even or odd. It is open whether winning sets and winning strategies
for parity games can be computed in polynomial time. The best algorithms
known today are polynomial in the size of the game, but exponential with
respect to the number of priorities. Practically competitive model-checking
algorithms for the modal µ-calculus work by solving the strategy problem for
the associated parity game (see e.g. [73]).

Definition 3.3.23. We describe a parity game by a labelled graph G =
(V, V0, V1, E,Ω), where (V, V0, V1, E) is a game graph as in Section 3.1.2, and
Ω : V → N assigns to each position a priority. The set V of positions may
be finite or infinite, but the number of different priorities must be finite; it is
called the index of G. Recall that a finite play of a game is lost by the player
who gets stuck, i.e. cannot move. The difference to the games of Section 3.1.2
is that we have different winning conditions for infinite plays v0v1v2 . . . . If the
smallest number appearing infinitely often in the sequence Ω(v0)Ω(v1) . . . of
priorities is even, then Player 0 wins the play; otherwise, Player 1 wins.

Recall that a positional strategy of Player σ is a partial function f :
Vσ → V with (v, f(v)) ∈ E. A strategy f is said to be winning on a set of
positions W ⊆ V if any play that starts at a position in W and is consistent
with f is winning for Player σ. Further, Wσ , the winning region of Player σ,
is the set of positions from which Player σ has a winning strategy (which, a
priori, need not be positional).

Exercise 3.3.24. (Combination of positional strategies). Let f and f ′

be positional strategies for Player σ that are winning on the sets W and W ′,
respectively. Let f ⊳ f ′ be the positional strategy defined by

(f ⊳ f ′)(x) :=

{

f(x) if x ∈W
f ′(x) otherwise.

Prove that f ⊳ f ′ is winning on W ∪W ′.

The Positional Determinacy Theorem for parity games states that parity
games are always determined (i.e., from each position, one of the players has
a winning strategy) and in fact, positional strategies always suffice. This was
proved independently by Emerson and Jutla [40] and by Mostowski [86]. Ear-
lier, Gurevich and Harrington [62] had proved that Muller games (which are
more general than parity games) are determined via finite-memory strategies.

Theorem 3.3.25 (Positional Determinacy). In any parity game, the set
of positions can be partitioned into two sets W0 and W1 such that Player 0
has a positional strategy that is winning on W0 and Player 1 has a positional
strategy that is winning on W1.



3.3 Fixed-Point Logics 161

Here, we only prove this theorem for the case of finite game graphs. The
presentation is inspired by a similar proof due to Ehrenfeucht and Mycielski
[39] for mean payoff games; see also [12]. For the general case, we refer the
reader to [102] or [97].

Proof. Let G = (V, V0, V1, E,Ω) be a parity game with a finite set V of po-
sitions. We call a position v ∈ V live if it is non-terminal (i.e. if there is at
least one possible move from v). The theorem trivially holds for games with
at most one live position. We now proceed by induction over the number of
live positions.

For every live position v in G and for σ = 0, 1, we define the game G[v, σ],
which is the same as G except that we change v to a terminal position where
Player σ wins. (Technically this means that we put v into V1−σ and delete
all outgoing edges from v.) By the induction hypothesis, the Forgetful Deter-
minacy Theorem holds for G[v, σ], and we write W0[v, σ] and W1[v, σ] for the
winning regions of G[v, σ].

It suffices to show that for every live position u in G, one of the players has
a positional strategy to win G from u. By Exercise 3.3.24, these strategies can
then be combined into positional strategies that win on the entire winning
regions.

Clearly,
W0[v, 1] ⊆W0 and W1[v, 0] ⊆W1.

Moreover, any positional strategy f for Player σ that is winning from position
u in the game G[v, 1 − σ] is also winning from u in the game G and avoids v
(i.e. no play that starts at u and is consistent with f ever hits position v).
Now let

Aσ :=
⋃

v live

Wσ[v, 1− σ].

We call positions u ∈ Aσ strong winning positions for Player σ because,
informally speaking, Player σ can win G from u even if she gives away some
live positions to her opponent. Similarly, positions outside A0 ∪A1 are called
weak positions. It remains to show that from weak positions also, one of the
players has a positional winning strategy. In fact, one of the players wins, with
a positional winning strategy, from all weak positions.

By the induction hypothesis, if u is not in A1−σ, then, for all live positions
v of G, we have that u ∈ Wσ [v, σ] and, moreover, Player σ has a positional
strategy fv by which, starting at any position u 6∈ A1−σ, she either wins or
eventually reaches v.

We distinguish two cases, depending on whether or not there exist strong
winning positions that are live (terminal positions are, of course, always
strong).

Case (i). Suppose that there exists a live position v ∈ Aσ. In this case,
Player σ also wins from every weak position u.
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We already know that Player σ has a positional strategy f to win G from
v, and a positional strategy fv by which she either wins G or reaches v from
u. We can easily combine f and fv into a positional winning strategy f∗ to
win G from u: we set f∗(x) := f(x) if f is winning from x, and f∗(x) := fv(x)
otherwise.

Case (ii). Suppose now that all live positions are weak. We claim that in
this case, Player 0 wins from all live (i.e. all weak) positions if the minimal
priority on G is even, and Player 1 wins from all live positions if the minimal
priority is odd.

Since all live positions are weak, we already know that Player σ has, for
every live position y, a positional strategy fy by which she either wins or
reaches y from any live position in G.

Take now a live position v of minimal priority, and put σ = 0 if Ω(v) is
even, and σ = 1 if Ω(v) is odd. In addition, pick any live position w 6= v.
We combine the positional winning strategies fv and fw into a new positional
strategy f with

f(x) :=

{

fw(x) if x = v

fv(x) otherwise.

We claim that f is a winning strategy for Player σ from all live positions
of G. If a play in G in which Player 0 moves according to f hits v only finitely
often, then this play eventually coincides with a play consistent with fv, and is
therefore won by Player σ. But if the play hits v infinitely often, the minimal
priority seen infinitely often is Ω(v), and hence Player σ wins also in this case.
�

Exercise 3.3.26. Let G be a parity game with winning sets W0 and W1.
Obviously every positional winning strategy for Player 0 has to remain inside
W0, i.e. f(V0 ∩ W0) ⊆ W0. However, remaining inside the winning region
does not suffice for winning a game! Construct a parity game and a positional
strategy f for Player 0 such that all plays consistent with f remain insiside
W0, yet are won by Player 1. Hint: a trivial game with two positions suffices.

Exercise 3.3.27. A future game is any game on a game graph G =
(V, V0, V1, E) where the winning condition does not depend on finite prefixes
of plays. This means that whenever π = v0v1 · · · and π′ = v′0v

′
1 · · · are two

infinite plays of G such that for some n and m vmvm+1 · · · = v′nv
′
n+1 · · · , then

π and π′ are won by the same player. Obviously parity games are a special
case of future games.

Prove that for every future game G, the winning region of Player 0 is a
fixed point (not necessarily the least one) of the operator Fψ, defined by the
formula ψ(X) := (V0 ∧3X)∨ (V1 ∧2X). Since Fψ is monotone, the least and
greatest fixed points exist, and lfp(Fψ) ⊆W0 ⊆ gfp(Fψ). Find conditions (on
parity games) implying that W0 = lfp(Fψ) or that W0 = gfp(Fψ).
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Theorem 3.3.28. It can be decided in NP∩Co-NP whether a given position
in a parity game is a winning position for Player 0.

Proof. A node v in a parity game G = (V, V0, V1, E,Ω) is a winning position
for Player σ if there exists a positional strategy f : Vσ → V which is winning
from position v. It therefore suffices to show that the question of whether a
given f : Vσ → V is a winning strategy for Player σ from position v can
be decided in polynomial time. We prove this for Player 0; the argument for
Player 1 is analogous.

Given G and f : V0 → V we obtain a reduced game graph Gf = (V,Ef )
by keeping only the moves that are consistent with f , i.e.

Ef = {(v, w) : (v ∈ Vσ ∧ w = f(v)) ∨ (v ∈ V1−σ ∧ (v, w) ∈ E}.

In this reduced game, only the opponent, Player 1, makes non-trivial moves.
We call a cycle in (V,Ef ) odd if the smalest priority of its nodes is odd.
Clearly, Player 0 wins G from position v via strategy f if, and only if, in Gf ,
no odd cycle and no terminal position w ∈ V0 are reachable from v. Since the
reachability problem is solvable in polynomial time, the claim follows. �

In fact, Jurdziński [72] proved that the problem is in UP ∩ Co-UP, where
UP denotes the class of NP-problems with unique witnesses. The best known
deterministic algorithms to compute winning partitions of parity games have
running times that are polynomial with respect to the size of the game graph,
but exponential with respect to the index of the game [73].

Theorem 3.3.29. The winning partition of a parity game G =
(V, V0, V1, E,Ω) of index d can be computed in space O(d · |E|) and
time

O

(

d · |E| ·
( |V |
⌊d/2⌋

)⌊d/2⌋)

.

The Unfolding of a Parity Game

Let G = (V, V0, V1, E,Ω) be a parity game. We assume that the minimal
priority in the range of Ω is even, and that every node v with minimal priority
has a unique successor s(v) (i.e. vE = {s(v)}). This is no loss of generality.
We can always tranform a parity game in such a way that all nodes with non-
maximal priority have unique successors (i.e. choices are made only at the
least relevant nodes). If the smallest priority in the game is odd, we consider
instead the dual game (with the roles of the players switched and priorities
decreased by one).

Let T be the set of nodes with minimal priority and let G− be the game
obtained by deleting from G all edges (v, s(v)) ∈ T × V so that the nodes in
T become terminal positions. We define the unfolding of G as a sequence of
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games Gα (where α ranges over the ordinals) which all coincide with G− up
to the winning conditions for the terminal positions v ∈ T . For every α, we
define a decomposition T = Tα0 ∪ Tα1 , where Tασ is the set of v ∈ T in which
we declare, for the game Gα, Player σ to be the winner. Further, for every
α, we write Wα

σ for the winning set of Player σ in the game Gα. Note that
Wα
σ depends of course on the decomposition T = Tα0 ∪ Tα1 (this also applies

concerning positions outside T ). In turn, the decomposition of T for α + 1
depends on the winning sets Wα

σ in Gα. We set

T 0
0 := T

Tα+1
0 := {v ∈ T : s(v) ∈ Wα

0 }
T λ0 :=

⋂

α<λ

Tα0 for limit ordinals λ.

By determinacy, V = Wα
0 ∪ Wα

1 for all α, and with increasing α, the
winning sets of Player 0 are decreasing and the winning sets of Player 1 are
increasing:

W 0
0 ⊇W 1

0 ⊇ · · ·Wα
0 ⊇Wα+1

0 ⊇ · · ·
W 0

1 ⊆W 1
1 ⊆ · · ·Wα

1 ⊆Wα+1
1 ⊆ · · · .

Hence there exists an ordinal α (whose cardinality is bounded by the car-
dinality of V ) for which Wα

0 = Wα+1
0 =: W∞

0 and Wα
1 = Wα+1

1 =: W∞
1 . We

claim that these fixed points coincide with the winning sets W0 and W1 for
the original game G.

Lemma 3.3.30 (Unfolding Lemma). W0 = W∞
0 and W1 = W∞

1 .

Proof. It suffices to define a strategy f for Player 0 and a strategy g for Player
1 for the game G, by means of which Player σ wins from all positions v ∈W∞

σ .
First, we fix a winning strategy fα for Player 0 in Gα, with winning set

Wα
0 = W∞

0 . Note that fα can be trivially extended to a strategy f for the
game G, since the nodes in T have unique successors in G. We claim that f is
in fact a winning strategy in G from all positions v ∈Wα

0 .
To see this, consider any play v0v1v2 . . . in G from position v0 ∈ Wα

0

against f . Such a play can never leave Wα
0 . If vi ∈ Wα

0 \ T , then vi+1 ∈ Wα
0

because f is a winning strategy for Gα; and if vi ∈ Wα
0 ∩T = Wα+1

0 ∩T , then
vi ∈ Tα+1

0 , which implies, by the definition of Tα+1
0 , that vi+1 = s(vi) ∈Wα

0 .
But a play that never leaves Wα

0 is necessarily won by Player 0: either it goes
only finitely often through positions in T , and then coincides from a certain
point onwards with a winning play in Gα, or it goes infinitely often through
positions in T , in which case Player 0 wins because the minimal priority that
is hit infinitely often is even.
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To construct a winning strategy for Player 1 in the game G, we define, for
every node v ∈ W∞

1 , the ordinal

ρ(v) := min{β : v ∈W β
1 }.

We fix, for every ordinal α, a winning strategy gα for Player 1 with winning
set Wα

1 in the game Gα, and set

g(v) := gσ(v)(v) for all v ∈ V1 \ T

and g(v) := s(v) for v ∈ V1 ∩ T .
Consider any play v0v1v2 . . . in G from position v0 ∈ W∞

1 against g. We
claim that whenever vi ∈W∞

1 , then

(1) vi+1 ∈ W∞
1 ,

(2) ρ(vi+1) ≤ ρ(vi), and
(3) if vi ∈ T , then ρ(vi+1) < ρ(vi).

If vi ∈ W∞
1 \ T and ρ(vi) = α, then vi ∈ Wα

1 , and therefore (since Player 1
moves locally according to his winning strategy gα and Player 0 cannot leave
winning sets of her opponent) vi+1 ∈ Wα

1 . But if vi ∈W∞
1 ∩T and ρ(vi) = α,

then vi ∈ Tα1 , α = β + 1 is a successor ordinal, and vi+1 = s(vi) ∈ W β
1 (by

the definition of Tα1 ). Hence ρ(vi+1) ≤ β < ρ(vi).
Properties (1), (2), and (3) imply that the play stays inside W∞

1 and that
the values ρ(v) are decreasing. Since there are no infinite strictly descending
chains of ordinals, the play eventually remains inside Wα

1 , for a fixed α, and
outside T (since moves from T would reduce the value of σ(v)). Hence the
play eventually coincides with a play in Gα in which Player 1 plays according
to his winning strategy gα. Thus, Player 1 wins. �

3.3.5 Model-Checking Games for Least Fixed-Point Logic

For the purpose of defining evaluation games for LFP-formulae and analysing
the complexity of model checking, it is convenient to make the following as-
sumptions. First, the fixed-point formulae should not contain parameters (the
reason for this will be discussed below). Second, the formula should be in nega-
tion normal form, i.e. negations apply to atoms only, and third, it should be
well-named, i.e. every fixed-point variable is bound only once and the free
second-order variables are distinct from the fixed-point variables. We write
Dψ(T ) for the unique subformula in ψ of the form [fpTx . ϕ(T, x)] (where fp
means either lfp or gfp). For technical reasons, we assume, finally, that each
fixed-point variable T occurs in Dψ(T ) only inside the scope of a quantifier.
This is a common assumption that does not affect the expressive power. We
say that T ′ depends on T if T occurs free in Dψ(T ′). The transitive closure
of this dependency relation is called the dependency order, denoted by <ψ.
The alternation level alψ(T ) of T in ψ is the maximal number of alterna-
tions between least and greatest fixed-point variables on the <ψ-paths from
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T . The alternation depth ad(ψ) of a fixed-point formula ψ is the maximal
alternation level of its fixed point variables.

Consider now a finite structure A and an LFP-formula ψ(x), which we
assume to be well-named, in negation normal form, and without parameters.
The model-checking game G(A, ψ(a)) is a parity game. As in the case of first-
order logic, the positions of the game are expressions ϕ(b), i.e. subformulae
of ψ that are instantiated by elements of A. The initial position is ψ(a). The
moves are as in the first-order game, except for the positions associated with
fixed-point formulae and with fixed-point atoms. At such positions there is a
unique move (by Falsifier, say) to the formula defining the fixed point. For a
more formal definition, recall that as ψ is well-named, there is, for any fixed-
point variable T in ψ, a unique subformula [fp Tx . ϕ(T, x)](y). From position
[fpTx . ϕ(T, x)](b), Falsifier moves to ϕ(T, b), and from any fixed point atom
Tc, she moves to the position ϕ(T, c).

Hence the case where we do not have fixed points the game is the usual
model-checking game for first-order logic. Next, we consider the case of a
formula with only one fixed-point operator, which is an lfp. The intuition
is that from position [lfp Tx . ϕ(T, x)](b), Verifier tries to establish that b
enters T at some stage α of the fixed-point induction that is defined by ϕ
on A. The game goes to ϕ(T, b) and from there, as ϕ is a first-order formula,
Verifier can either win the ϕ-game in a finite number of steps, or force it to
a position Tc, where c enters the fixed point at some stage β < α. The game
then resumes at position ϕ(c), associated again with ϕ. As any descending
sequence of ordinals is finite, Verifier will win the game in a finite number
of steps. If the formula is not true, then Falsifier can either win in a finite
number of steps or force the play to go through infinitely many positions of
the form Tc. Hence, these positions should be assigned priority 1 (and all
other positions higher priorities) so that such a play will be won by Falsifier.
For gfp-formulae, the situation is reversed. Verifier wants to force an infinite
play, going infinitely often through positions Tc, so gfp-atoms are assigned
priority 0.

In the general case, we have a formula ψ with nested least and greatest
fixed points, and in an infinite play of G(A, ψ(a)) one may see different fixed
point variables infinitely often. But one of these variables is then the smallest
with respect to the dependency order <ψ. It can be shown that A |= ψ iff this
smallest variable is a gfp-variable (provided the players play optimally).

Hence, the priority labelling should assign even priorities to gfp-atoms
and odd priorities to lfp-atoms. Further, if T <ψ T

′ and T, T ′ are fixed-point
variables of different kinds, then T -atoms should get a lower priority than
T ′-atoms.

As the index of a parity game is the main source of difficulty in computing
winning sets, the number of different priorities should be kept as small as
possible. We can avoid the factor of 2 appearing in common constructions of
this kind by adjusting the definitions of the alternation level and alternation
depth, setting al∗ψ(T ) := alψ(T ) + 1 if alψ(T ) is even or odd and T is an lfp-
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variable or a gfp-variable, respectively. In all other cases, al∗ψ(T ) = alψ(T ).
Finally, let ad∗(ψ) be the maximal value of ad∗ψ(T ) for the fixed-point variables
in ψ. The priority labelling Ω on positions of G(A, ψ) is then defined by
Ω(Tb) = al∗ψ(T ) for fixed-point atoms, and Ω(ϕ(b)) = ad∗(ψ) for all other
formulae.

This completes the definition of the game G(A, ψ(a)). Note that the pri-
ority labelling has the properties described above, and that the index of
G(A, ψ(a)) is at most ad(ψ) + 1.

Theorem 3.3.31. Let ψ(x) be a well-named and parameter-free LFP-formula
in negation normal form, and let A be a relational structure. A |= ψ(a) if and
only if Player 0 has a winning strategy for the parity game G(A, ψ(a)).

Proof. This is proved by induction on ψ. The interesting case concerns fixed-
point formulae ψ(x) := [gfpTx . ϕ(x)](x).

In the game G(A, ψ(a)), the positions of minimal priority are the fixed-
point atoms Tb, which have unique successors ϕ(b). By the induction hypoth-
esis we know that, for every interpretation T0 of T , (A, T0) |= ϕ(a) iff Player 0
has a winning strategy for G((A, T0), ϕ(a)). By the unfolding of greatest fixed
points, we also know that A |= [gfpTx . ϕ(x)](a) if (A, Tα) |= ϕ(a) for all
approximations Tα.

By ordinal induction, one can immediately see that the games
G((A, Tα), ϕ(a)) coincide with the unfolding of the game G = G(A, ψ(a)) to
the games Gα. By the Unfolding Lemma, we conclude that Player 0 wins the
game G(A, ψ(a)) if, and only if, she wins all games Gα which is the case if,
and only if, (A, Tα) |= ϕ(a) for all α, which is equivalent to A |= ψ(a).

For least fixed-point formulae we proceed by dualization. �

Clearly, the size of the game G(A, ψ(a)) (and the time complexity of its
construction) is bounded by |cl(ψ)| · |A|width(ψ). Hence, for LFP-formulae of
bounded width, the size of the game is polynomially bounded.

Corollary 3.3.32. The model-checking problem for LFP-formulae of bounded
width (and without parameters) is in NP ∩ Co-NP, in fact in UP ∩ Co-UP.

As formulae of the µ-calculus can be viewed as LFP-formulae of width 2,
the same bound applies to Lµ. (For a different approach to this problem, which
does not mention games explicitly, see [100].) It is a well-known open problem
whether the model-checking problem for Lµ can be solved in polynomial time.

Exercise 3.3.33. Prove that if the model-checking problem for Lµ can be
solved in polynomial time, then the same is true for (parameter-free) LFP-
formulae of width k, for any fixed k ∈ N. Hint: given a finite structure
A = (A,R1, . . . , Rm), with relations of Ri of arities ri ≤ k, let Gk(A) be
the transition system with universe Ak, unary relations R∗i = {(a1, . . . , ak) :
(a1, . . . , ari) ∈ Ri} and Iij = {(a1, . . . , ak) : ai = aj}, and binary relations
Ej = {(a, b) : ai = bi for i 6= j} (for j = 1, . . . , k) and Eσ = {(a, b) : bi =
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aσ(i) for i = 1, . . . , k} for each substitution σ : {1, . . . , k} → {1, . . . , k}. Trans-
late formulae ψ ∈ LFP of width k into formulae ψ∗ ∈ Lµ such that A |= ψ(a)
iff Gk(A), a |= ψ∗. (See [55, pp. 110–111] for details.)

By Theorem 3.3.29, we obtain the following deterministic complexity
bounds for LFP model checking.

Theorem 3.3.34. Given a finite structure A and a formula ψ(a) of width k
and alternation depth d, it can be decided whether A |= ψ(a) in space O(d ·
|cl(ψ)| · |A|k) and time

O

(

d2 ·
( |cl(ψ)| · |A|k
⌊(d+ 1)/2⌋

)⌊(d+3)/2⌋)

.

Corollary 3.3.35. The model-checking problem for LFP-formulae of bounded
width and bounded alternation depth is solvable in polynomial time.

Fixed-Point Formulae with Parameters

We have imposed the condition that the fixed-point formulae do not contain
parameters. If parameters are allowed, then, at least with a naive definition of
width, Corollary 3.3.32 is no longer true (unless UP = PSPACE). The intuitive
reason is that parameters allow us to ‘hide’ first-order variables in fixed-point
variables. Indeed, Dziembowski [37] proved that QBF, the evaluation problem
for quantified Boolean formulae, can be reduced to evaluating LFP-formulae
with two first-order variables (but an unbounded number of monadic fixed-
point variables) on a fixed structure with three elements. Hence the expression
complexity of evaluating such formulae is PSPACE-complete. A similar argu-
ment works for the case where also the number of fixed-point variables is
bounded, but the structure is not fixed (combined complexity rather than
expression complexity). We remark that the collection of all unwindings in
infinitary logic of LFP-formulae with k variables, including parameters, is not
contained in any bounded width fragment of infinitary logic.

LFP-Formulae of Unbounded Width

For LFP-formulae of unbounded width, Theorem 3.3.34 gives only an expo-
nential time bound. In fact, this cannot be improved, even for very simple
LFP-formulae [99].

Theorem 3.3.36 (Vardi). The model-checking problem for LFP-formulae
(of unbounded width) is EXPTIME-complete, even for formulae with only one
fixed-point operator, and on a fixed structure with only two elements.

We defer the hardness proof to Section 3.3.10, where we shall show that
the expression complexity is EXPTIME-hard even for Datalog, which is a
more restricted formalism than LFP.



3.3 Fixed-Point Logics 169

3.3.6 Definability of Winning Regions in Parity Games

We have seen that the model-checking problem for the µ-calculus or LFP can
be reduced to the problem of computing winning regions in parity games.
In fact, there is also a reduction in the reverse direction. We can represent
any parity game G = (V, V0, V1, E,Ω) with a priority function Ω : V →
{0, . . . d − 1} by a transition system (V,E, V0, V1, P0, . . . , Pd−1), where Pi =
{V : Ω(v) = i}. We can then construct, for every fixed d ∈ N, a formula Wind
of the µ-calculus that defines the winning region of Player 0 in any parity
game with priorities 0, . . . , d− 1. We set

Wind = νX0µX1νX2 . . . λXd−1

d−1
∨

j=0

(

(V0 ∧ Pj ∧3Xj) ∨ (V1 ∧ Pj ∧ 2Xj)
)

.

In this formula, the fixed-point operators alternate between ν and µ, and
hence λ = ν if d is odd, and λ = µ if d is even.

Theorem 3.3.37. For every d ∈ N, the formula Wind defines the winning
region of Player 0 in parity games with priorities 0, . . . , d− 1.

Proof. We have to show that, for any parity game G = (V, V0, V1, P0, . . . , Pd−1)
and every position v ∈ V ,

G, v |= Wind ⇐⇒ Player 0 has a winning strategy for G from v.

To see this, let G∗ be the model-checking game for the formula Wind on
G, v and identify Verifier with Player 0 and Falsifier with Player 1. Hence,
Player 0 has a winning strategy for G∗ if, and only if, G, v |= Wind.

By the construction of model-checking games, G∗ has positions of the form
(ϕ, u), where u ∈ V and ϕ is a subformula of Wind. The priority of a position
(Xi, u) is i, and when ϕ is not a fixed point variable, the priority of (ϕ, u) is
d.

We claim that the game G∗ is essentially, i.e. up to elimination of stupid
moves and contraction of several moves into one, the same as the the original
game G. To see this, we compare playing G from a current position u ∈ V0∪Pi
with playing G∗ from any position (ϕk, u), where ϕk is the subformula of Wind
that starts with νXk or µXk.

In G, Player 0 selects at position u a successor w ∈ uE, and the
play proceeds from w. In G∗, the play goes from (ϕk, u) through positions
(ϕk+1, u) . . . , (ϕd−1, u) to (ϑ, u), where

ϑ =

d−1
∨

j=0

(

(V0 ∧ Pj ∧3Xj) ∨ (V1 ∧ Pj ∧ 2Xj)
)

.

The only reasonable choice for Verifier (Player 0) at this point is to move to
the position (V0 ∧ Pi ∧ 3Xi, u), since with any other move she would lose
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immediately. But from there, the only reasonable move of Falsifier (Player 1)
is to go to position (3Xi, u), and it is now the turn of Player 0 to select a
successor w ∈ vE and move to position (Xi, w) from which the play proceeds
to (ϕi, w).

Thus one move from u to w in G corresponds to a sequence of moves in G∗
from (ϕk, u) to (ϕi, w), but the only genuine choice is the move from (3Xi, u)
to (Xi, w), i.e. the choice of a successor w ∈ uE. In G, the position u has
priority i, and in G∗ the minimal, and hence relevant, priority that is seen in
the sequence of moves from (ϕk, u) to (ϕi, w) is that of (Xi, u) which is also i.
The situation for positions u ∈ V1 ∩Pi is the same, except that the play in G∗
now goes through (2Xi, u) and it is Player 1 who selects a successor w ∈ uE
and moves to (Xi, w).

Hence the (reasonable) choices that have to be made by the players in G∗
and the relevant priorities that are seen are the same as in a corresponding
play of G. Thus, Player 0 has a winning strategy for G from v if, and only if,
Player 0 has a winning strategy for G∗ from position (ϕ0, v). But since G∗ is
the model-checking game for Wind on G, with initial position (ϕ0, v), this is
the case if, and only if, G, v |= Wind. �

Corollary 3.3.38. The following three problems are algorithmically equiva-
lent, in the sense that if one of them admits a polynomial-time algorithm,
then all of them do.

(1) Computing winning regions in parity games.
(2) The model-checking problem for LFP-formulae of width at most k, for

any k ≥ 2.
(3) The model-checking problem for the modal µ-calculus.

The formulae Wind also play an important role in the study of the alter-
nation hierarchy of the modal µ-calculus. Clearly, Wind has alternation depth
d and it has been shown that there is no formula in the µ-calculus with alter-
nation depth < d can be equivalent to Wind. Hence the alternation hierarchy
of the µ-calculus is strict [4, 20].

3.3.7 Simultaneous Fixed-Point Inductions

A more general variant of LFP permits simultaneous inductions over several
formulae. A simultaneous induction is based on on a system of operators of
the form

F1 : P(B1)× · · · × P(Bm) −→ P(B1)

...

Fm : P(B1)× · · · × P(Bm) −→ P(Bm),

forming together an operator
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F = (F1, . . . , Fm) : P(B1)× · · · × P(Bm) −→ P(B1)× · · · × P(Bm).

Inclusion on the product lattice P(B1)× · · · × P(Bm) is componentwise. Ac-
cordingly, F is monotone if, whenever Xi ⊆ Yi for all i, then also Fi(X) ⊆
Fi(Y ) for all i.

Everything said above about least and greatest fixed points carries over
to simultaneous induction. In particular, a monotone operator F has a least

fixed point lfp(F ) which can be constructed inductively, starting with X
0

=
(∅, . . . , ∅) and iterating F until a fixed point X

∞
is reached.

One can extend the logic LFP by a simultaneous fixed point formation
rule.

Definition 3.3.39. Simultaneous least fixed-point logic, denoted by S-
LFP, is the extension of first-order logic by the following rule.

Syntax. Let ψ1(R, x1), . . . , ψm(R, xm) be formulae of vocabulary τ ∪
{R1, . . . , Rm}, with only positive occurrences of R1, . . . , Rm, and, for each
i ≤ m, let xi be a sequence of variables matching the arity of Ri. Then

S :=











R1x1 := ψ1

...
Rmxm := ψm

is a system of update rules, which is used to build formulae [lfp Ri : S](t) and
[gfp Ri : S](t) (for any tuple t of terms whose length matches the arity of Ri).

Semantics. On each structure A, S defines a monotone operator SA =
(S1, . . . , Sm) mapping tuples R = (R1, . . . , Rm) of relations on A to SA(R) =
(S1(R), . . . , Sm(R)) where Si(R) := {a : (A, R) |= ψi(R, a)}. As the oper-
ator is monotone, it has a least fixed point lfp(SA) = (R∞1 , . . . , R

∞
m ). Now

A |= [lfpRi : S](a) if a ∈ R∞i . Similarly for greatest fixed points.

Example 3.3.40. We return to the circuit value problem for circuits with fan-
in 2 and NAND gates (see Example 3.2.14). Simultaneous LFP-definitions of
the nodes evaluating to true and false in the given circuit (V,E, I+, I−) are
given by the formulae [lfpT : S](z) and [lfpF : S](z), respectively, where S is
the system

Tz := I+z ∨ ∃x(Exz ∧ Fx)

Fz := I−z ∨ ∃x∃y(Exz ∧ Eyx ∧ x 6= y ∧ Tx ∧ Ty).

Elimination of Simultaneous Fixed-Points

The question arises of whether simultaneous fixed points provide more ex-
pressive power than simple ones. We shall prove that this is not the case.
Simultaneous least fixed points can be simulated by nested simple ones, via a
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technique that is sometimes called the Bekic principle [5]. We shall consider
only the case of two monotone operators

F : P(A)× P(B)→ P(A)

G : P(A)× P(B)→ P(B).

We write (F∞, G∞) for the least fixed point of the combined operator (F,G).
For any fixed X ⊆ A, the operator GX : P(B) → P(B) with GX(Y ) :=
G(X,Y ) is also monotone, and therefore has a least fixed point lfp(GX) ⊆ B.

Lemma 3.3.41. The operator E on P(A), defined by E(X) :=
F (X, lfp(GX)), is monotone and has the least fixed point lfp(E) = F∞.

Proof. If X ⊆ X ′, then a trivial induction shows that GαX ⊆ GαX′ for all
stages GαX and GαX′ of the induced operators GX and GX′ . As a consequence,
lfp(GX) ⊆ lfp(GX′) and E(X) = F (X, lfp(GX)) ⊆ F (X ′, lfp(GX′)) =
E(X ′). This shows that E is monotone.

Note that lfp(GF∞) ⊆ G∞, because GF∞(G∞) = G(F∞, G∞) = G∞.
Hence G∞ is a fixed point of GF∞ and therefore contains the least fixed point
lfp(GF∞). Further,

E(F∞) = F (F∞, lfp(GF∞)) ⊆ F (F∞, G∞) = F∞.

As lfp(E) =
⋂{X : E(X) ⊆ X} it follows that lfp(E) ⊆ F∞.

It remains to show that F∞ ⊆ lfp(E). We proceed by induction, showing
that the stages (Fα, Gα) of the operator (F,G) and the stages Eα of E satisfy

(Fα, Gα) ⊆ (lfp(E), lfp(Glfp(E)).

For α = 0, this is clear. Further,

Fα+1 = F (Fα, Gα) ⊆ F (lfp(E), lfp(Glfp(E))) = E(lfp(E) = lfp(E)

Gα+1 = G(Fα, Gα) ⊆ G(lfp(E), lfp(Glfp(E))) = Glfp(E)(lfp(Glfp(E))

= lfp(Glfp(E)).

Finally, for limit ordinals the induction argument is trivial. �

We are now ready to show that for any system

S :=











R1x1 := ψ1

...
Rmxm := ψm

the formulae [lfp Ri : S](x) are equivalent to simple LFP formulae. Further,
the translation does not increase the number and arity of the fixed-point
variables R1, . . . , Rm, nor the alternation depth (i.e. the changes between least
and greatest fixed points). It therefore remains valid for interesting fragments
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of LFP, such as monadic LFP and alternation-free LFP, and also for the modal
µ-calculus (see [5]). It does, however, increase the nesting depth of fixed-point
operators. (We remark that there are alternative elimination techniques that
do not increase the nesting depth, but instead augment the arity of the fixed-
point operators.)

Theorem 3.3.42. S-LFP ≡ LFP.

Proof. Obviously LFP is contained in S-LFP. For the converse, we restrict
our attention to simultaneous inductions over two formulae. The general case
is treated by analogous arguments.

Given a system

S :=

{

Rx := ψ(R, T )
Ty := ϕ(R, T )

we claim that

[lfp R : S](u) ≡ [lfpRx . ψ(R, [lfpTy . ϕ])](u)

[lfp T : S](v) ≡ [lfpTy . ϕ([lfpRx . ψ], T )](v).

We shall prove the first equivalence. We fix a structure A and consider
the operator SA = (F,G) with F : (R, T ) 7→ {a : A |= ψ(R, T, a)} and
G : (R, T ) 7→ {a : A |= ϕ(R, T, a)}. Writing (F∞, G∞) for the least fixed
point of (F,G) we have that A |= [lfp R : S](a) iff a ∈ F∞.

The formula ψ(R, [lfpTy . ϕ]) defines on A the operator E : R 7→
F (R, lfp(GR)) with GR : T 7→ G(R, T ), and we have that A |= [lfpRx .
ψ(R, [lfpTy . ϕ])](a) iff a ∈ lfp(E). But, by the previous lemma, F∞ =
lfp(E). �

While we have shown that simultaneous fixed points do not provide more
expressive power, they permit us to write formulae in a more modular and
more readable form.

Positive LFP

While LFP and the modal µ-calculus allow arbitrary nesting of least and
greatest fixed points, and arbitrary interleaving of fixed points with Boolean
operations and quantifiers, classical studies of inductive definability over first-
order logic (such as [85]) focus on a more restricted logic. Let LFP1 (sometimes
also called positive LFP) be the extension of first-order logic that is obtained
by taking least fixed points of positive first-order formulae (without param-
eters) and closing them under disjunction, conjunction, and existential and
universal quantification, but not under negation (for a more formal definition,
see the Chap. 2. LFP1 can be conveniently characterized in terms of simul-
taneous least fixed points. We just state the result; for a proof see Chap. 2
again.
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Theorem 3.3.43. A query is definable in LFP1 if and only if it is defin-
able by a formula of the form [lfpR : S](x), where S is a system of update
rules Rix := ϕi(R, x) with first-order formulae ϕi. Moreover, we can require,
without diminishing the expressive power, that each of the formulae ϕi in the
system is either a purely existential formula or a purely universal formula.

3.3.8 Inflationary Fixed-Point Logic

LFP is only one instance of a logic with an explicit operator for forming
fixed points. A number of other fixed-point extensions of first-order logic (or
fragments of it) have been extensively studied in finite model theory. These
include inflationary, partial, non-deterministic, and alternating fixed point
logics. All of these have in common that they allow the construction of fixed
points of operators that are not necessarily monotone.

An operator G : P(B) → P(B) is called inflationary if G(X) ⊇ X for
all X ⊆ B. With any operator F one can associate an inflationary operator
G, defined by G(X) := X ∪ F (X). In particular, inflationary operators are
inductive, so iterating G yields a fixed point, called the inflationary fixed
point of F .

Exercise 3.3.44. Prove the following facts. (1) Monotone operators need not
be inflationary, and inflationary operators need not be monotone. (2) An
inflationary operator need not have a least fixed point. (3) The least fixed point
of an inflationary operator (if it exists) may be different from the inductive
fixed point. (4) However, if F is a monotone operator, then its inflationary
fixed point and its least fixed point coincide.

The logic IFP is defined with a syntax similar to that of LFP, but without
the requirement that the fixed-point variable occurs only positively in the
formula, and with a semantics given by the associated inflationary operator.

Definition 3.3.45. IFP is the extension of first-order logic by the following
fixed-point formation rule. For every formula ψ(R, x), every tuple x of vari-
ables, and every tuple t of terms (such that the lengths of x and t match the
arity of R), we can build a formula [ifpRx . ψ](t).

Semantics. On a given structure A, we have that A |= [ifpRx . ψ](t) if t
A

is contained in the union of the stages Rα of the inflationary operator Gψ
defined by Gψ(R) := R ∪ Fψ(R).

By the last item of Exercise 3.3.44, least and inflationary inductions are
equivalent for positive formulae, and hence IFP is at least as expressive as
LFP. On finite structures, inflationary inductions reach the fixed point after
a polynomial number of iterations, hence every IFP-definable class of finite
structures is decidable in polynomial time.

Proposition 3.3.46. IFP captures PTIME on ordered finite structures.



3.3 Fixed-Point Logics 175

Least Versus Inflationary Fixed-Points

As both logics capture PTIME, IFP and LFP are equivalent on ordered finite
structures. What about unordered structures? It was shown by Gurevich and
Shelah [63] that the equivalence of IFP and LFP holds on all finite structures.
Their proof does not work on infinite structures, and indeed there are some
important aspects in which least and inflationary inductions behave differ-
ently. For instance, there are first-order operators (on arithmetic, say) whose
inflationary fixed point is not definable as the least fixed point of a first-order
operator. Further, the alternation hierarchy in LFP is strict, whereas IFP has
a positive normal form (see Exercise 3.3.52 below). Hence it was conjectured
by many that IFP might be more powerful than LFP. However, Kreutzer [80]
showed recently that IFP is equivalent to LFP on arbitrary structures. Both
proofs, by Gurevich and Shelah and by Kreutzer, rely on constructions show-
ing that the stage comparison relations of inflationary inductions are definable
by lfp inductions.

Definition 3.3.47. For every inductive operator F : P(B) → P(B), with
stages Xα and an inductive fixed point X∞, the F -rank of an element b ∈ B
is |b|F := min{α : b ∈ Xα} if b ∈ X∞, and |b|F = ∞ otherwise. The stage
comparison relations of G are defined by

a ≤F b iff |a|F ≤ |b|F <∞
a ≺F b iff |a|F < |b|F .

Given a formula ϕ(R, x), we write ≤ϕ and ≺ϕ for the stage comparison rela-
tions defined by the operator Fϕ (assuming that it is indeed inductive), and
≤inf
ϕ and ≺inf

ϕ for the stage comparison relations of the associated inflationary
operator Gϕ : R 7→ R ∪ {a : A |= ϕ(R, a)}.
Example 3.3.48. For the formula ϕ(T, x, y) := Exy ∨ ∃z(Exz ∧ Tyz) the rela-
tion ≺ϕ on a graph (V,E) is distance comparison:

(a, b) ≺ϕ (c, d) iff dist(a, b) < dist(c, d).

Stage comparison theorems are results about the definability of stage com-
parison relations. For instance, Moschovakis [85] proved that the stage com-
parison relations ≤ϕ and ≺ϕ of any positive first-order formula ϕ are definable
by a simultaneous induction over positive first-order formulae. For results on
the equivalence of IFP and LFP one needs a stage comparison theorem for
IFP inductions.

We first observe that the stage comparison relations for IFP inductions
are easily definable in IFP. For any formula ϕ(T, x̄), the stage comparison
relation ≺inf

ϕ is defined by the formula

[ifpx ≺ y . ϕ[Tu/u ≺ x](x) ∧ ¬ϕ[Tu/u ≺ x](y)](x, y).

However, what we need to show is that the stage comparison relation for IFP
inductions is in fact LFP-definable.
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Theorem 3.3.49 (Inflationary Stage Comparison). For any formula
ϕ(R, x) in FO or LFP, the stage comparison relation ≺inf

ϕ is definable in
LFP. On finite structures, it is even definable in positive LFP.

See [38, 63] for proofs in the case of finite structures and [80] for the more
difficult construction in the general case. From this result, the equivalence of
LFP on IFP follows easily.

Theorem 3.3.50 (Kreutzer). For every IFP-formula, there is an equivalent
LFP-formula.

Proof. For any formula ϕ(R, x), [ifpRx . ϕ](x) ≡ ϕ({y : y ≺inf
ϕ x}, x). �

Stage comparison theorems also have other interesting consequences. For
instance, Moschovakis’s Theorem implies that on finite structures, greatest
fixed points (i.e. negations of least fixed points) can be expressed in positive
LFP. This gives a normal form for LFP and IFP (see [67]).

Theorem 3.3.51 (Immerman). On finite structures, every LFP-formula
(and hence also every IFP-formula) is equivalent to a formula in LFP1.

This result fails on infinite structures. On infinite structures, there exist
LFP formulae that are not equivalent to positive formulae, and in fact the
alternation hierarchy of least and greatest fixed points is strict (see [20, 85]).

Exercise 3.3.52. Prove that every IFP-formula is equivalent to one that uses
ifp-operators only positively. Hint: assuming that structures contain at least
two elements and that a constant 0 is available, a formula ¬[ifpRx . ψ(R, x)]
is equivalent to an inflationary induction on a predicate Txy which, for y 6= 0,
simulates the induction defined by ψ, checks whether the fixed point has been
reached, and then makes atoms Tx0 true if x is not contained in the fixed
point.

In finite model theory, owing to the Gurevich-Shelah Theorem, the two
logics LFP and IFP have often been used interchangeably. However, there are
significant differences that are sometimes overlooked. Despite the equivalence
of IFP and LFP, inflationary inductions are a more powerful concept than
monotone inductions. The translation from IFP-formulae to equivalent LFP-
formulae can make the formulae much more complicated, requires an increase
in the arity of fixed-point variables and, in the case of infinite structures, in-
troduces alternations between least and greatest fixed points. Therefore it is
often more convenient to use inflationary inductions in explicit constructions,
the advantage being that one is not restricted to inductions over positive for-
mulae. For an example, see the proof of Theorem 3.5.26 below. Furthermore,
IFP is more robust, in the sense that inflationary fixed points remain well de-
fined even when other non-monotone operators (e.g. generalized quantifiers)
are added to the language (see, for instance, [35]).
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The differences between least and inflationary fixed points are particu-
larly significant in the context of modal logic, i.e. when we compare the
modal µ-calculus Lµ with its inflationary counterpart. For instance, Lµ has
the finite-model property, the satisfiability problem is decidable (complete
for EXPTIME), the model-checking problem is in NP ∩ Co-NP (and conjec-
tured by many to be solvable in polynomial time), and there are practical,
automata-based techniques for solving the algorithmic problems associated
with Lµ. Finally, in terms of expressive power, Lµ can be characterized as the
bisimulation-invariant fragment of monadic second-order logic (MSO) [69].
On the other hand, the inflationary counterpart of Lµ, the model iteration
calculus (MIC) [33], behaves very differently. The finite-model property fails,
the satisfiability problem is undecidable (and not even in the arithmetic hier-
archy), the model-checking problem is PSPACE-complete, and the expressive
power goes beyond monadic second-order logic even on words. The appropri-
ate model-checking games for inflationary fixed-point logics such as IFP and
MIC are backtracking games [34]. These games are a generalization of par-
ity games with an additional rule allowing players, under certain conditions, to
return to an earlier position in the play and revise a choice or to force a count-
back on the number of moves. This new feature makes backtracking games
more powerful so that they can capture inflationary inductions. Accordingly,
winning strategies become more complex objects and computationally harder
than for parity games.

3.3.9 Partial Fixed-Point Logic

Another fixed-point logic that is relevant to finite structures is the partial
fixed-point logic (PFP). Let ψ(R, x) be an arbitrary formula defining on a
finite structure A a (not necessarily monotone) operator Fψ : R 7→ {a : A |=
ψ(R, a)}, and consider the sequence of its finite stages R0 := ∅, Rm+1 =
Fψ(Rm).

This sequence is not necessarily increasing. Nevertheless, as A is finite, the
sequence either converges to a fixed point, or reaches a cycle with a period
greater than one. We define the partial fixed point of Fψ as the fixed point
that is reached in the former case, and as the empty relation otherwise. The
logic PFP is obtained by adding to first-order logic the partial-fixed-point
formation rule, which allows us to build from any formula ψ(R, x) a formula
[pfp Rx . ψ(R, x)](t), saying that t is contained in the partial fixed point of
the operator Fψ.

Note that if R occurs only positively in ψ, then

[lfp Rx . ψ(R, x)](t) ≡ [pfp Rx . ψ(R, x)](t),

so we have that LFP ≤ PFP. However, PFP seems to be much more powerful
than LFP. For instance, while a least-fixed-point induction on finite structures
always reaches the fixed point in a polynomial number of iterations, a partial-
fixed-point induction may need an exponential number of stages.
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Example 3.3.53. Consider the sequence of stages Rm defined by the formula

ψ(R, x) :=
(

Rx ∧ ∃y(y < x ∧ ¬Ry)
)

∨
(

¬Rx ∧ ∀y(y < x→ Ry)
)

∨ ∀yRy

on a finite linear order (A,<). It is easily seen than the fixed point reached
by this induction is the set R = A, but before this fixed point is reached, the
induction goes in lexicographic order through all possible subsets of A. Hence
the fixed point is reached at stage 2n − 1, where n = |A|.

Simultaneous Inductions.

As in the case of LFP, one can also extend IFP and PFP by simultaneous in-
ductions over several formulae, but again, the simultaneous fixed-point logics
S-IFP and S-PFP are not more expressive than their simple variants. However,
the proof is a little different than in the case of LFP. It requires that one en-
codes several relations into one and hence increases the arity of the fixed point
variables. As a consequence, it seems to be unknown whether simultaneous
monadic PFP collapses to simple monadic PFP.

Complexity

Although a PFP induction on a finite structure may go through exponentially
many stages (with respect to the cardinality of the structure), each stage can
be represented with polynomial storage space. As first-order formulae can be
evaluated efficiently, it follows by a simple induction that PFP-formulae can
be evaluated in polynomial space.

Proposition 3.3.54. For every formula ψ ∈ PFP, the set of finite models of
ψ is in PSPACE; in short: PFP ⊆ PSPACE.

On ordered structures, one can use techniques similar to those used in pre-
vious capturing results, to simulate polynomial-space-bounded computation
by PFP-formulae [2, 99].

Theorem 3.3.55 (Abiteboul, Vianu, and Vardi). On ordered finite struc-
tures, PFPcaptures PSPACE.

Proof. It remains to prove that every class K of finite ordered structures that
is recognizable in PSPACE, can be defined by a PFP-formula.

Let M be a polynomially space-bounded deterministic Turing machine
with state set Q and alphabet Σ, recognizing (an encoding of) an ordered
structure (A, <) if and only if (A, <) ∈ K. Without loss of generality, we
can make the following assumptions. For input structures of cardinality n, M
requires space less than nk−2, for some fixed k. For any configuration C of M ,
let Next(C) denote its successor configuration. The transition function of M is
adjusted so that Next(C) = C if, and only if, C is an accepting configuration.
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We represent any configuration of M with a current state
q, tape inscription w1 · · ·wm, and head position i, by the word
#w1 · · ·wi−1(qwi)wi+1 · · ·wm−1# over the alphabet Γ := Σ∪ (Q×Σ)∪{#},
where m = nk and # is merely used as an end marker to make the following
description more uniform. When moving from one configuration to the next,
Turing machines make only local changes. We can therefore associate with
M a function f : Γ 3 → Γ such that, for any configuration C = c0 · · · cm, the
successor configuration Next(C) = c′0 · · · c′m is determined by the rules

c′0 = c′m = # and c′i = f(ci−1, ci, ci+1) for 1 ≤ i ≤ m− 1.

Recall that we encode structures so that there exist first-order formulae
βσ(y) such that (A, <) |= βσ(a) if and only the ath symbol of the input con-
figuration of M for input code(A, <) is σ. We now represent any configuration
C in the computation of M by a tuple C = (Cσ)σ∈Γ of k-ary relations, where

Cσ := {a : the a-th symbol of C is σ}.

The configuration at time t is the stage t+ 1 of a simultaneous pfp induc-
tion on (A, <), defined by the rules

C#y :=∀z(y ≤ z) ∨ ∀z(z ≤ y)

and, for all σ ∈ Γ − {#},

Cσy :=
(

βσ(y) ∧
∧

γ∈Γ

∀x¬Cγx
)

∨

∃x∃z
(

x+ 1 = y ∧ y + 1 = z ∧
∨

f(α,β,γ)=σ

Cαx ∧ Cβy ∧Cγz)
)

The first rule just says that each stage represents a word starting and ending
with #. The other rules ensure that (1) if the given sequence C contains only
empty relations (i.e. if we are at stage 0), then the next stage represents the
input configuration, and (2) if the given sequence represents a configuration,
then the following stage represents its successor configuration.

By our convention, M accepts its input if and only the sequence of con-
figurations becomes stationary (i.e. reaches a fixed point). Hence M accepts
code(A, <) if and only if the relations defined by the simultaneous pfp in-
duction on A of the rules described above are non-empty. Hence K is PFP-
definable. �

An alternative characterization of PSPACE is possible in terms of the
database query language while consisting essentially of first-order relational
updates and while-loops. Vardi [99] proved that while captures PSPACE on
ordered finite structures and Abiteboul and Vianu proved that while and PFP
are equivalent on finite structures.
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Least Versus Partial Fixed-Point Logic

From the capturing results for PTIME and PSPACE we immediately obtain
the result that PTIME = PSPACE if, and only if, LFP = PFP on ordered
finite structures. The natural question arises of whether LFP and PFP can
be separated on the domain of all finite structures. For a number of logics,
separation results on arbitrary finite structures can be established by relatively
simple methods, even if the corresponding separation on ordered structures
would solve a major open problem in complexity theory. For instance, we
have proved by quite a simple argument that DTC ( TC, and it is also not
very difficult to show that TC ( LFP (indeed, TC is contained in stratified
Datalog, which is also strictly contained in LFP; see Sect. 3.3.10). Further, it
is trivial that LFP is less expressive than Σ1

1 on all finite structures. However
the situation is different for LFP vs. PFP.

Theorem 3.3.56 (Abiteboul and Vianu). LFP and PFP are equivalent
on finite structures if, and only if, PTIME = PSPACE.

3.3.10 Datalog and Stratified Datalog

Datalog and its extensions are a family of rule-based database query languages
that extend the conjunctive queries by a relational recursion mechanism sim-
ilar to the one used in fixed-point logics. Indeed, as we shall see, Datalog can
be seen as a fragment of least fixed point logic. For the purpose of this section
we simply identify a relational database with a finite relational structure. This
is not adequate for all aspects of database theory, but for the questions con-
sidered here it is appropriate. For further information on databases, see [1],
for example.

Definition 3.3.57. A Datalog rule is an expression of the form H ← B1 ∧
· · · ∧ Bm, where H , the head of the rule, is an atomic formula Ru, and
B1 ∧ · · · ∧Bm, the body of the rule, is a conjunction of literals (i.e. atoms or
negated atoms) of the form Sv or ¬Sv where u, v are tuples of variables or
constants. The relation symbol R is called the head predicate of the rule.
We also allow Boolean head predicates. A Datalog rule is positive if it does
not contain negative literals.

A Datalog program Π is a finite collection of rules such that none of its
head predicates occurs negated in the body of any rule. The predicates that
appear only in the bodies of the rules are called input predicates. The input
vocabulary of Π is the set of input predicates and constants appearing in
Π .

Example 3.3.58. The Datalog program Πreach consists of the three rules

Txy ← Exy, Txz ← Txy ∧ Tyz, Ry ← Tay.

The input vocabulary is {E, a}, and the head predicates are T and R.
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Given a structure A over the input vocabulary, the program computes an
interpretation of the head predicates, i.e. it defines an expansion Π(A) :=
(A, R1, . . . , Rk) of A, where the Ri are the values of the head predicates as
computed by Π . This interpretation can be defined in several equivalent ways,
for instance via minimal-model semantics or fixed-point semantics. We can
read a Datalog rule ϕr := Rx ← B1 ∧ · · · ∧ Bm, and associate with the
program Π the universal closure of the conjunction over these formulae:

ψ[Π ] := ∀z
∧

ϕr∈Π

ϕr .

We can compare expansions of A by componentwise inclusion of the addi-
tional predicates: (A, R1, . . . , Rk) ⊆ (A, R′1. . . . , R

′
k) if Ri ⊆ R′i for all i.

Acording to the minimal-model semantics, Π(A) is the minimal expansion
(A, Rµ1 , . . . , R

µ
k ) that satisfies ψ[Π ].

Example 3.3.59. The formula associated with the program Πreach of Exam-
ple 3.3.58 is

∀x∀y∀z((Txy ← Exy) ∧ (Txz ← Txy ∧ Tyz) ∧ (Ry ← Tay)).

The minimal expansion of a graph G = (V,E) with a distinguished node
a is Πreach(G, a) = (G, a, T,R) where T is the transitive closure of E and R
is the set of points reachable by a path from a.

Exercise 3.3.60. Prove that minimal-model semantics is well-defined: for ev-
ery Datalog programΠ and every input database A, there is a unique minimal
expansion of A that is a model of ψ[Π ].

For the case of fixed-point semantics, we read a rule Rx ← β(x, y)
as an update operator: whenever an instantiation β(a, b) of the body of the
rule is true for the current interpretation of the head predicates, make the
corresponding instantiation Ra of the head true. Initially, let all head pred-
icates be empty. At each stage, apply simultaneously the update operators
for all rules of the program to the current interpretation of (R1, . . . , Rk). It-
erate this operation until a fixed point (R∞1 , . . . , R

∞
k ) is reached. Now let

Π(A) := (A, R∞1 , . . . , R
∞
k ).

Exercise 3.3.61. Prove that minimal-model semantics and fixed-point seman-
tics coincide: for all Π and A, (Rµ1 , . . . , R

µ
k ) = (R∞1 , . . . , R

∞
k ).

Definition 3.3.62. A Datalog query is a pair (Π,R) consisting of a Datalog
program Π and a designated head predicate R of Π . With every structure
A, the query (Π,R) associates the result (Π,R)A, the interpretation of R as
computed by Π from the input A.

We now relate Datalog to LFP. We shall show that each Datalog query
(Π,R) is equivalent to a formula ψ(x) ∈ LFP, in fact one of very special form.
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Let Π be a Datalog program with input vocabulary τ and head predicates
R1, . . . , Rk. We first normalize the rules such that all rules with head pred-
icate Ri have the same head Rix1 · · ·xki . This can be done by appropriate
substitutions in the rule body and by adding equalities. For instance, a rule
Rxyyx ← β(x, y, z) can be rewritten as Rx1x2x3x4 ← β(x1, x2, y) ∧ x3 =
x2∧x4 = x1. We then have a program containing, for each head predicate Ri,
rules rij of the form Rix← βij(x, y), where βij is a conjunction of literals and
equalities. We then combine the update operators associated with the same
head predicate and describe the update of Ri by the existential first-order
formula γi(x) :=

∨

j ∃yβij(x, y). As a consequence, the fixed-point semantics
of Π is described by the system

S :=











R1x := γ1

...
Rkx := γk

of first-order update rules, and the query (Π,Ri) is equivalent to the formula
[lfpRi : S](x). Hence every Datalog query is equivalent to an LFP-formula, in
which fixed-point operators are applied only to existential formulae.

Definition 3.3.63. Existential fixed-point logic, denoted EFP, is the set
of (simultaneous) LFP-formulae without universal quantifiers and without
gfp-operators, and where negations are applied to atomic formulae only.

We have seen that Datalog ⊆ EFP. The converse is also true, which can
be established by a straightforward induction: with every formula ψ ∈ EFP
one associates a Datalog program Πψ with a distinguished head predicate Hψ

such that the query (Πψ , Hψ) is equivalent to ψ. We leave the details as an
exercise.

Proposition 3.3.64. Datalog is equivalent to EFP.

We know that LFP captures PTIME on ordered finite structures. The
question arises of whether Datalog is sufficiently powerful to do the same.
The answer depends on the precise variant of Datalog and on the notion of
ordered structures that is used. We distinguish three cases.

(1) A simple monotonicity argument shows that Datalog is weaker than
PTIME on structures where only a linear order, but not a successor relation, is
given. If A is a substructure of B, then (Π,R)A ⊆ (Π,R)B for every Datalog
query (Π,R). Of course, there even exist very simple first-order queries that
are not monotone in this sense. Note that this argument does break down on
databases where a successor relation S (rather than just a linear order), and
constants 0 and e for the first and last elements are given. Exercise: why?

(2) In the literature, Datalog programs are often required to contain only
positive rules, i.e. the input predicates also can be used only positively. This
restricted variant is too weak to capture PTIME, even on successor structures.
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If input predicates can be used only positively, then queries are monotone
under extensions of the input relations: if a database B is obtained from A

by augmenting some of the input relations, then again (Π,R)A ⊆ (Π,R)B.

Exercise 3.3.65. Prove this monotonocity property, and give examples of
first-order queries that cannot be defined by Datalog programs.

(3) In the case of programs with negations of input predicates and
databases with a successor relation and constants 0 and e for the first and last
elements, we can capture PTIME by Datalog. This was originally established
in [13, 91] and is implicit also in [67].

Theorem 3.3.66 (Blass, Gurevich, and Papadimitriou). On successor
structures, Datalog (with negations of input predicates) captures PTIME.

Proof. This result can be established in several ways, for instance by a re-
duction from Σ1

1 -HORN (making use of the fact that PTIME is closed under
complement). Instead, we give a direct proof.

It is clear that Datalog queries are computable in polynomial time. It
remains to prove that every class K of finite successor structures that is rec-
ognizable in PTIME can be defined by a Boolean Datalog query.

Let M be a polynomial-time Turing machine with state set Q and alphabet
Σ, recognizing (an encoding of) a successor structure A if and only if A ∈ K.
We denote the cardinality of the input structure A by n and assume that the
computation time of M on A is less than nk.

The construction is similar to the proof of Theorem 3.3.55. Configurations
of M are represented by words #w1 · · ·wi−1(qwi)wi+1 · · ·wm−1# over the
alphabet Γ := Σ ∪ (Q × Σ) ∪ {#}, where m = nk, and we describe the
behaviour of M by a function f : Γ 3 → Γ such that, for any configuration
C = c0 · · · cm, the successor configuration Next(C) = c′0 · · · c′m is determined
by the rules

c′0 = c′m = # and c′i = f(ci−1, ci, ci+1) for 1 ≤ i ≤ m− 1.

Let S be a 2k-ary relation symbol and let ΠS be a Datalog program with
head predicate S, computing the successor relation on k-tuples (associated
with the lexicographic order defined by the given successor relation). Recall
that we can encode successor structures so that there exist quantifier-free
formulae βσ(y) such that A |= βσ(a) if, and only if, the ath symbol of the
input configuration of M for code(A) is σ. Let (Πσ, Hσ) be a Datalog query
equivalent to βσ(y).

We represent the computation of M by a tuple C = (Cσ)σ∈Γ of 2k-ary
relations, where

Cσ := {(a, t) : the ath symbol of the configuration at time t is σ}.

The Datalog program associated with M consists of
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(1) the program ΠS defining the successor relation on k-tuples;
(2) the programs Πσ for describing the input;
(3) the rules

C#0 t

C#e t

Cσy 0← Hσy for all σ ∈ Γ − {#};

(4) for all α, β, γ, σ with f(α, β, γ) = σ, the rule

Cσy t
′ ← Sx y ∧ Sy z ∧ St t′ ∧ Cαxt ∧ Cβy t ∧ Cγz t;

(5) the rule

Acc← Cqwx t for any accepting state q and any symbol w.

The first two rules in (3) say that each configuration starts and ends with
#; the following set of rules ensures that the configuration at time 0 is the
input configuration. The rules in (4) imply that from time t to time t

′
=

t + 1 the computation proceeds as required by M , and the last rule makes
the Boolean predicate Acc true if and only if an accepting state has been
reached. Obviously, M accepts the input structure A if, and only if, the query
(ΠM ,Acc) evaluates to true on A. �

Almost the same proof shows that the expression complexity of Datalog
(and hence of LFP) is EXPTIME-complete (see also Theorem 3.3.36).

Theorem 3.3.67. The evaluation problem for Datalog programs (with head
predicates of unbounded arity) is complete for EXPTIME, even for programs
with only positive rules, and for a fixed database with only two elements.

Proof. By the results of Section 3.3.5, LFP-formulae, and hence also Datalog
programs, can be evaluated in polynomial time with respect to the size of
the input structure and in exponential time with respect to the length of the
formula (or program).

To prove completeness, we fix a database A with two elements and constant
symbols 0, 1 (or, alternatively, two unary relations P0 = {0} and P1 = {1}).
Let M be a deterministic Turing machine that accepts or rejects input words

w = w0 · · ·wm−1 ∈ {0, 1}∗ in time 2m
d

(for some fixed d). For every input x
for M , we construct a Datalog program ΠM,w which evaluates, on the fixed
database A, a Boolean head predicate Acc to true if, and only if, M accepts
w.

The construction is similar to that in the proof of Theorem 3.3.66, with
the following two differences. Whereas in the previous proof k was fixed and
n depended on the input, it is now the other way round, with n := 2 and
k := md. Further, the description of the input configuration is now simpler:
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we just explicitly list the atomic facts defining the input configuration for the
given input w. Note that this is the only part of the program that depends on
w; the remaining rules depend only on M and the length of the input. Finally
note that the program contains only positive rules. �

Stratified Datalog

Datalog defines in a natural way queries that require recursion (such as tran-
sitive closure), but is very weak in other respects, mainly because it does not
include negation.

There exist various possible ways to add negation to Datalog.

Definition 3.3.68. A stratified Datalog program is a sequence Π =
(Π0, . . . , Πr) of basic Datalog programs, which are called the strata of Π ,
such that each of the head predicates of Π is a head predicate in precisely one
stratum Πi and is used as an input predicate only in higher strata Πj , where
j > i. In particular, this means that

(1) if a head predicate of stratum Πj occurs positively in the body of a rule
of stratum Πi, then j ≤ i, and

(2) if a head predicate of stratum Πj occurs negatively in the body of a rule
of stratum Πi, then j < i.

The semantics of a stratified program is defined stratum by stratum. The
input predicates of a stratum Πi are either input predicates of the entire
program Π or are head predicates of a lower stratum. Hence, once the lower
strata are evaluated, we can compute the interpretation of the head predicates
of Πi as in the case of basic Datalog programs.

Clearly the power of stratified Datalog is between that of Datalog and LFP,
and hence stratified Datalog provides yet another formalism that captures
PTIME on ordered structures. On unordered structures stratified Datalog is
strictly more expressive than Datalog (as it includes all of first-order logic)
but strictly less powerful than LFP. The main example separating LFP from
Stratified Datalog is the Game query, which defines the winning positions
of Player 0 in a strictly alternating game. It is defined by the LFP formula
[lfpWx . ∃y(Exy ∧ ∀z(Eyz → Wz)](x). This involves a recursion through
a universal quantifier, which in general cannot be done in stratified Datalog
[31, 79].

Theorem 3.3.69 (Dahlhaus and Kolaitis). No stratified Datalog program
can express the Game query. Hence stratified Datalog ( LFP.

Example 3.3.70. Another interesting class of examples showing the limits of
stratified Datalog is that of well-foundedness properties, or statements saying
that on all infinite paths one will eventually hit a node with a certain property
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P . These are typical statements in the field of verification (expressed in CTL
by the formula AFP ).

In LFP, the well-foundedness of a partial order ≺ would be expressed as
∀y[lfpWy . ∀x(x ≺ y →Wx)](y). The CTL-formula AFP is expressed in Lµ
by µX.P ∨ 2X and in LFP by [lfpRx . Px ∨ ∀y(Exy → Ry)](x).

On finite structures, such properties are definable by stratified Datalog
programs, since they are essentially negations of reachability problems for
cycles. Indeed, AFP means that there is no path that eventually cycles and
on which P is globally false. This can be expressed by the following stratified
program:

Txy ← ¬Px ∧ Exy ∧ ¬Py Txz ← Txy ∧ Eyz ∧ ¬Pz
Sx← Txx Sx← ¬Px ∧ Exy ∧ Sy
Rx← ¬Sx

The first stratum computes the set T of all pairs of nodes (u, v) such that
there exists a path from u to v on which P is false, and the set S of all nodes
from which there exists such a path that eventually cycles. Here the finiteness
of the graph is used in an essential way, because only this guarantees that
every infinite path eventually reaches a cycle. The second stratum takes the
complement of S.

However, it can be shown that no stratified Datalog program can express
such statements on infinite structures (even countable ones).

Another variant of Datalog, called Datalog LITE, which can express all
CTL properties and moreover admits linear-time evaluation algorithms (and
which is incomparable with stratified Datalog), has been defined and studied
in [45].

A stratified Datalog program is linear if in the body of each rule there is
at most one occurrence of a head predicate of the same stratum (but there
may be arbitrary many occurrences of head predicates from lower strata).

Example 3.3.71. The program Πreach in Example 3.3.58 is not linear, but
by replacing the second, non-linear rule Txz ← Txy ∧ Tyz by the linear rule
Txz ← Txy∧Eyz we obtain an equivalent linear program. However, one pays
a price for the linearization. The original program reaches the fixed point after
O(logm) iterations, while the linear program needs m iterations, where m is
the length of the longest path in the graph.

Linear programs suffice to define transitive closures, so it follows by a
straightforward induction that TC ⊆ linear stratified Datalog. The converse
is also true (see [38, 46]).

Proposition 3.3.72. Linear stratified Datalog is equivalent to TC.

Corollary 3.3.73. On ordered structures, linear stratified Datalog captures
NLOGSPACE.
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3.4 Logics with Counting

From the point of view of expressiveness, first-order logic has two main de-
ficiencies: it lacks the power to express anything that requires recursion (the
simplest example is transitive closure) and it cannot count, as witnessed by
the impossibility to express that a structure has even cardinality, or, more
generally, by the 0-1 law. We have already discussed a number of logics that
add recursion in one way or another to FO (or part of it), notably the various
forms of fixed-point logic. On ordered finite structures, some of these logics
can express precisely the queries that are computable in PTIME or PSPACE.
However, on arbitrary finite structures they do not, and almost all known ex-
amples showing this involve counting. Whereas in the presence of an ordering,
the ability to count is inherent in fixed-point logic, hardly any of this ability is
retained in its absence. For instance, as LFP and PFP are fragments of Lω∞ω,
the 0-1 law also holds for them.

Therefore Immerman proposed that counting quantifiers should be added
to logics and asked whether a suitable variant of fixed-point logic with count-
ing would suffice to capture PTIME. Although Cai, Fürer and Immerman [23]
eventually answered this question negatively, fixed-point logic with counting
has turned out to be an important and robust logic, that defines a natural
level of expressiveness and allows one to capture PTIME on interesting classes
of structures.

3.4.1 Logics with Counting Terms

There are different ways of adding counting mechanisms to a logic, which
are not necessarily equivalent. The most straightforward possibility is the
addition of quantifiers of the form ∃≥2, ∃≥3, etc., with the obvious meaning.
While this is perfectly reasonable for bounded-variable fragments of first-
order logic or infinitary logic (see e.g. [58, 89]), it is not general enough for
fixed-point logic, because it does not allow for recursion over the counting
parameters i in quantifiers ∃≥ix. In fact, if the counting parameters are fixed
numbers, then adjoining the quantifiers ∃≥ix does not give additional power to
logics such as FO or LFP, since they are closed under the replacement of ∃≥i
by i existential quantifiers (where as their restrictions to bounded width are
not). These counting parameters should therefore be considered as variables
that range over natural numbers. To define in a precise way a logic with
counting and recursion, one extends the original objects of study, namely
finite (one-sorted) structures A, to two-sorted auxiliary structures A∗ with a
second numerical (but also finite) sort.

Definition 3.4.1. With any one-sorted finite structure A with universe A, we
associate the two-sorted structure A∗ := A ∪̇ 〈{0, . . . , |A|};≤, 0, e〉, where ≤
is the canonical ordering on {0, . . . , |A|}, and 0 and e stand for the first and
the last element. Thus, we have taken the disjoint union of A with a linear
order of length |A|+ 1.
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We start with first-order logic over two-sorted vocabularies σ ∪ {≤, 0, e},
with semantics over structures A∗ defined in the obvious way. We shall use
Latin letters x, y, z, . . . for the variables over the first sort, and Greek letters
λ, µ, ν, . . . for variables over the second sort. The two sorts are related by
counting terms, defined by the following rule. Let ϕ(x) be a formula with a
variable x (over the first sort) among its free variables. Then #x[ϕ] is a term
in the second sort, with the set of free variables free(#x[ϕ]) = free(ϕ) − {x}.
The value of #x[ϕ] is the number of elements a that satisfy ϕ(a).

Counting logics of this form were introduced by Grädel and Otto [54]
and have been studied in detail in [89]. We start with first-order logic with
counting, denoted by (FO + C), which is the closure of two-sorted first-order
logic under counting terms. Here are two simple examples that illustrate the
use of counting terms.

Example 3.4.2. On a undirected graph G = (V,E), the formula
∀x∀y(#z [Exz] = #z [Eyz]) expresses the assertion that every node has the
same degree, i.e., that G is regular.

Example 3.4.3. We present below a formula ψ(E1, E2) ∈ (FO + C) which ex-
presses the assertion that two equivalence relations E1 and E2 are isomorphic;
of course a necessary and sufficient condition for this is that for every i, they
have the same number of elements in equivalence classes of size i:

ψ(E1, E2) ≡ (∀µ)(#x[#y[E1xy] = µ] = #x[#y[E2xy] = µ]).

3.4.2 Fixed-Point Logic with Counting

We now define (inflationary) fixed point logic with counting (IFP + C)
and partial fixed point logic with counting (PFP + C) by adding to (FO
+ C) the usual rules for building inflationary or partial fixed points, ranging
over both sorts.

Definition 3.4.4. Inflationary fixed point logic with counting, (IFP + C), is
the closure of two-sorted first-order logic under the following rules:

(1) The rule for building counting terms.
(2) The usual rules of first-order logic for building terms and formulae.
(3) The fixed-point formation rule. Suppose that ψ(R, x, µ) is a formula of

vocabulary τ ∪ {R} where x = x1, . . . , xk, µ = µ1, . . . , µℓ, and R has
mixed arity (k, ℓ), and that (u, ν) is a k+ ℓ-tuple of first- and second-sort
terms, respectively. Then

[ifp Rxµ . ψ](u, ν)

is a formula of vocabulary τ .
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The semantics of [ifp Rxµ . ψ] on A∗ is defined in the same way as for the
logic IFP, namely as the inflationary fixed point of the operator

Fψ : R 7−→ R ∪ {(a, i) | (A∗, R) |= ψ(a, i)}.

The definition of (PFP + C) is analogous, where we replace inflationary
fixed points by partial ones. In the literature, one also finds different variants
of fixed-point logic with counting where the two sorts are related by counting
quantifiers rather than counting terms. Counting quantifiers have the form
(∃i x) for ‘there exist at least i x’, where i is a second-sort variable. It is
obvious that the two definitions are equivalent. In fact, (IFP + C) is a very
robust logic. For instance, its expressive power does not change if one permits
counting over tuples, even of mixed type, i.e. terms of the form #x,µϕ. One
can of course also define least fixed-point logic with counting, (LFP + C),
but one has to be careful with the positivity requirement (which is more
natural when one uses counting quantifiers rather than counting terms). The
equivalence of LFP and IFP readily translates to (LFP + C) ≡ (IFP + C).
Further, there are a number of other logical formalizations of the concept of
inductive definability with counting that turn out to have the same expressive
power as (IFP + C) (see [54] and Sect.3.4.3 below for details).

Example 3.4.5. An interesting example of an (IFP + C)-definable query is the
method of stable colourings for graph-canonization. Given a graph G with a
colouring f : V → 0, . . . , r of its vertices, we define a refinement f ′ of f , giving
to a vertex x the new colour f ′x = (fx, n1, . . . , nr) where ni = #y[Exy∧(fy =
i)]. The new colours can be sorted lexicographically so that they again form
an initial subset of N. Then the process can be iterated until a fixed point,
the stable colouring of G is reached. It is easy to see that the stable colouring
of a graph is polynomial-time computable and uniformly definable in (IFP +
C).

On many graphs, the stable colouring uniquely identifies each vertex, i.e.
no two distinct vertices get the same stable colour. This is the case, for in-
stance, for all trees. Further, Babai, Erdös, and Selkow [8] proved that the
probability that this happens on a random graph with n nodes approaches 1
as n goes to infinity. Thus stable colourings provide a polynomial-time graph
canonization algorithm for almost all finite graphs.

We now discuss the expressive power and evaluation complexity of fixed-
point logic with counting. We are mainly interested in (IFP + C)-formulae
and (PFP + C)-formulae without free variables over the second sort, so that
we can compare them with the usual logics without counting.

Exercise 3.4.6. Even without making use of counting terms, IFP over two-
sorted structures A∗ is more expressive than IFP over A. To prove this, con-
struct a two-sorted IFP-sentence ψ such that A∗ |= ψ if, and only if, |A| is
even.
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It is clear that counting terms can be computed in polynomial-time. Hence
the data complexity remains in PTIME for (IFP + C) and in PSPACE for
(PFP + C). We shall see below that these inclusions are strict.

Theorem 3.4.7. On finite structures,

(1) IFP ( (IFP + C) ( PTIME.
(2) PFP ( (PFP + C) ( PSPACE.

Infinitary Logic with Counting

Let Ck∞ω be the infinitary logic with k variables Lk∞ω, extended by the quanti-
fiers ∃≥m (‘there exist at least m’) for all m ∈ N. Further, let Cω∞ω :=

⋃

k C
k
∞ω .

Proposition 3.4.8. (IFP + C) ⊆ Cω∞ω.

Due to the two-sorted framework, the proof of this result is a bit more
involved than for the corresponding result without counting, but not really
difficult. We refer to [54, 89] for details.

The separation of (IFP + C) from PTIME has been established by Cai,
Fürer, and Immerman [23]. The proof also provides an analysis of the method
of stable colourings for graph canonization. We have deswcribed this method
in its simplest form in Example 3.4.5. More sophisticated variants compute
and refine colourings of k-tuples of vertices. This is called the k-dimensional
Weisfeiler–Lehman method and, in logical terms, it amounts to labelling
each k-tuple by its type in k + 1-variable logic with counting quantifiers.
It was conjectured that this method could provide a polynomial-time algo-
rithm for graph isomorphism, at least for graphs of bounded degree. However,
Cai, Fürer, and Immerman were able to construct two families (Gn)n∈N and
(Hn)n∈N of graphs such that on one hand, Gn and Hn have O(n) nodes
and degree three, and admit a linear-time canonization algorithm, but on the
other hand, in first-order (or infinitary) logic with counting, Ω(n) variables
are necessary to distinguish between Gn and Hn. In particular, this implies
Theorem 3.4.7.

Inflationary vs. Partial Fixed-Points

By Theorem 3.3.56, partial fixed-point logic collapses to inflationary fixed-
point logic if, and only if, PTIME = PSPACE. The analogous result in the
presence of counting is also true [54, 89]: PTIME = PSPACE⇐⇒ (IFP + C)
= (PFP + C).

3.4.3 Datalog with Counting

Fixed-point formulae have the reputation of being difficult to read, and many
people find formalisms such as Datalog easier to understand. In the presence of
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a successor relation, Datalog (with negation over input predicates) is sufficient
to capture PTIME and hence is equally expressive as LFP. In general, however,
Datalog and even its most natural extensions, notably stratified Datalog, are
weaker than LFP.

Counting terms can also be added to Datalog. We conclude this section
by discussing Datalog with counting. We show that (Datalog + C) is closed
under negation and equivalent to (IFP + C). In the presence of counting,
the common extensions of Datalog, notably stratified Datalog, are therefore
equivalent to Datalog.

Definition 3.4.9. Datalog with counting, denoted by (Datalog + C), ex-
tends Datalog by allowing two-sorted head predicates and counting terms.
The two-sorted head atoms have the form Rxµ, where x ranges over the first
sort, i.e. over elements of the input database A, and µ ranges over the second
sort. For any atom Rxyµ we have a counting term #x[Rxyµ]. A term over
the second sort is called an arithmetical term. The arithmetical terms are
either 0, e, counting terms, or t+1, where t is also an arithmetical term. Thus,
a program in (Datalog + C) is a finite set of clauses of the form

H ← B1 ∧ · · · ∧Bm

where the head H is an atomic formula R(x, µ), and B1, . . . , Bm are atomic
formulae Rxµ or equalities of terms (over the first or the second sort).

For every input database, the program computes intensional relations via
the inflationary fixed-point semantics. Note that for classical Datalog pro-
grams, it makes no difference whether the fixed-point semantics is defined
to be inflationary or not, since the underlying operator is monotone anyway.
However, for programs in (Datalog + C), the semantics has to be inflationary,
since otherwise, the equalities of arithmetical terms give rise to non-monotone
operators. For the same reason, the minimum-model semantics will no longer
be defined. Since inflationary fixed-point semantics is one of the various equiv-
alent ways to define the semantics of Datalog, both the syntax and the se-
mantics of (Datalog + C) generalize Datalog in a natural way.

One could also introduce counting in an (at first sight) more general form,
namely by allowing counting terms of the form #x,µ[Rxµyν]. While this may
be convenient for writing a program in shorter and more understandable form,
it does not affect the power of (Datalog + C).

Exercise 3.4.10. [54] Prove that counting over tuples, even of mixed type,
does not increase the expressive power of (Datalog + C).

Hence cardinalities of arbitrary predicates can be equated in a Datalog
program: we take the liberty of writing equalities such as |Q| = |R| in the
body of a rule, for simplicity. The following technical lemma is essential for
reducing (IFP + C) to (Datalog + C).
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Lemma 3.4.11. Let Π be a (Datalog + C) program with head predicates
Q1, . . . , Qr. There exists another (Datalog + C) program Π ′, whose head pred-
icates include Q1, . . . , Qr and a Boolean control predicate C∗ such that

• (Π ′, Qi) = (Π,Qi) for all i;
• (Π ′, C∗) is true on all databases and C∗ becomes true only at the last stage

of the evaluation of Π ′.

Proof. In addition to C∗, we add a unary head predicate C0 and, for every
head predicate Qi of Π a new head predicate Q′

i of the same arity. Then, Π ′

is obtained by adding the following clauses to Π :

C0x

Q′
ixµ← Qixµ for 1 ≤ i ≤ r
C∗ ← C0x ∧ (|Q1| = |Q′

1|) ∧ · · · ∧ (|Qr| = |Q′
r|)

Observe that Q′
i simply lags one step behind Qi. The atom C0x is necessary

to avoid the possibility that C∗ is set to true in the first stage. �

Lemma 3.4.11 essentially says that we can attach to any program a Boolean
control predicate which becomes true when the evaluation of the program is
terminated. We can then compose two Datalog programs while making sure
that the evaluation of the second program starts only after the first has been
terminated. As an initial application, we shall show that (Datalog + C) is
closed under negation.

Lemma 3.4.12. The complement of a (Datalog + C) query is also a (Datalog
+ C) query.

Proof. Let (Π,Q) be a (Datalog + C) query, and let Π ′ be the program
specified in Lemma 3.4.11. Take a new variable z, and new head predicates Q̃
and R with arity(R) = arity(Q) and arity(Q̃) = arity(Q) + 1. Construct Π ′′

by adding to Π ′ the rules

Q̃xµz ← Qxµ

Rxµ← C∗ ∧ (#z[Q̃xµz] = 0).

The query (Π ′′, R) is the complement of (Π,Q). �

Difficulties in expressing negation are the reason why, in the absence of
counting (or of an ordering), Datalog is weaker than fixed-point logic. Also,
the limited form of negation that is available in Stratified Datalog (which
does not allow for ‘recursion through negation’) does not suffice to express
all fixed-point queries. (Datalog + C) does not have these limitations, and is
equally expressive as (IFP + C).

Theorem 3.4.13 (Grädel and Otto). (Datalog + C) ≡ (IFP + C).
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It is obvious that (Datalog + C) ⊆ (IFP + C). For the converse, we can
construct by induction, for every formula ψ ∈ (IFP + C), a (Datalog + C)
program Πψ with goal predicate Qψ such that (Πψ , Qψ) is equivalent to ψ.

Exercise 3.4.14. For atomic formulae, disjunctions, and existential quan-
tification the construction is obvious, and closure under negation has al-
ready been proved. Complete the proof for applications of counting terms,
i.e formulae ψ(y, µ, ν) := #x[ϕ(x, y, µ)] = ν, and fixed point formulae
ψ := [ifpRxµ . ϕ(R, x, µ)](y, ν). The construction makes use of Lemma 3.4.11.

Example 3.4.15. To illustrate the expressive power of (Datalog + C) we show
below a program for the Game query (for strictly alternating games). The
Game query is the canonical example that separates LFP from Stratified
Datalog [31, 79]. Game is definable in fixed-point logic, by the formula
[lfpWx . ∃y(Exy∧∀z(Eyz →Wz))](x) that defines the winning positions for
Player 0.

Here is a (Datalog + C) program with goal predicate Z, defining Game:

Wxλ← Exy ∧ V yµ ∧ λ = µ+ 1

Fyzµ← Eyz ∧Wzµ

V yµ← #z[Eyz] = #z[Fyzµ]

Zx←Wxµ

The evaluation of this program on a game graph G assigns to W (or V ) a
set of pairs (x, µ) ∈ V × N, such that Player 0 has a winning strategy from
position x in at most µ moves when she (or Player 1, respectively) begins the
game.

3.5 Capturing PTIME via Canonization

We have seen that there are a number of logics that capture polynomial time
on ordered finite structures, but none of them suffices to express all of PTIME
in the absence of a linear order. Indeed, it has been conjectured that no logic
whatsoever can capture PTIME on the domain of all finite structures. We
shall discuss this problem further at the end of this section. But, of course,
even if this conjecture should turn out to be true, it remains an important
issue to capture PTIME on other relevant domains besides ordered structures.

3.5.1 Definable Linear Orders

An obvious approach is to try to define linear orders and then apply the
known results for capturing complexity classes on ordered structures.
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Definition 3.5.1. Let D be a domain of finite structures and let L a logic.
We say that D admits L-definable linear orders if, for every vocabulary
τ , there exists a formula ψ(x, y, z̄) ∈ L(τ) such that there exists in every
structure A ∈ D(τ) a tuple c̄ for which the relation {(a, b) : A |= ψ(a, b, c)} is
a linear order on A. The elements in c are called the parameters of the order
defined by ψ on A.

Example 3.5.2. Let D consist of all structures (A,E,R1, . . . , ) such that (A,E)
is an undirected cycle. D admits LFP-definable linear orders (with two pa-
rameters), via the formula

ψ(x, y, z1, z2) := Ez1z2 ∧ [lfpRxy . (x = z1 ∧ y = z2)∨∃u(Rxu ∧ Euy ∧ y 6= z1)

∨∃u(Ruy ∧ Eux ∧ x 6= y](x, y).

Furthermore, straightforward automorphism arguments show that we cannot
define linear orders with fewer than two parameters.

Exercise 3.5.3. Let D be the domain of structures (A,E,R1, . . . , ) such that
(A,E) is isomorphic to a finite rectangular grid. Show that D admits LFP-
definable linear orders.

Exercise 3.5.4. Let K be a class of τ -structures with the following property.
For every m ∈ N, there exists a structure A ∈ K such that for every m-tuple a
in A there exists a non-trivial automorphism of A, a. Then K does not admit
definable orders in any logic.

On any domain that admits LFP-definable linear orders, we can capture
PTIME by using LFP-formulae that express polynomial-time properties on
ordered structures, and modify them appropriately.

Proposition 3.5.5. If D admits LFP-definable linear orders, then LFP cap-
tures polynomial time on D.

Proof. It only remains to show that every polynomial-time model class K ⊆
D(τ) is L-definable. Let ϕ(x, y, z) be a formula defining a linear order on the
structures in D(τ). As LFP captures PTIME on ordered structures, there
exists a formula ψ ∈ LFP(τ ∪ {<}) such that, for every structure A ∈ D(τ)
and every linear order < on A, we have that (A, <) |= ψ iff A ∈ K. It follows
that

A ∈ K ⇐⇒ A |= ∃z
(

“{(x, y) : ϕ(x, y, z)} is a linear order”∧
ψ[u < v/ϕ(u, v, z)]

)

,

where ψ[u < v/ϕ(u, v, z)] is the formula obtained from ψ by replacing every
atom of the form u < v by ϕ(u, v, z). �
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3.5.2 Canonizations and Interpretations

Let S be any set and let ∼ be an equivalence relation on S. A canonization
function for (S,∼) is a function f : S → S associating with every element a
canonical member of its equivalence class. That means that f(s) ∼ s for all
s ∈ S, and f(s) = f(s′) whenever s ∼ s′.

In finite model theory, we are interested in canonization algorithms for
finite structures, either up to isomorphism or up to a coarser equivalence rela-
tion, such as indistinguishability in some logic or bisimulation. As algorithms
take encodings of structures as inputs, and as the encoding of a structure is
determined by an ordering of its universe, we can view canonization of struc-
tures as an operation that associates with every structure A an ordered one,
say (A′, <), such that A′ is equivalent to A, and such that equivalent structures
are mapped to the same ordered structure (and hence the same encoding).

For a class K of structures, we write K< for the class of expansions (A, <)
of structures A ∈ K by some linear order.

Definition 3.5.6. Let K be a class of finite τ -structures, and let ∼ be an
equivalence relation on K. A canonization function for ∼ on K is a function
f : K → K< that associates with every structure A ∈ K an ordered structure
f(A) = (A′, <) with A′ ∼ A, such that f(A) ∼= f(B) whenever A ∼ B.

Interpretations

We are especially interested in canonizations that are defined by interpreta-
tions. The notion of an interpretation is very important in mathematical logic,
and for model theory in particular. Interpretations are used to define a copy
of a structure inside another one, and thus permit us to transfer definability,
decidability, and complexity results between theories.

Definition 3.5.7. Let L be a logic, let σ, τ be vocabularies, where τ =
{R1, . . . , Rm} is relational, and let ri be the arity ofRi. A (one-dimensional)
L[σ, τ ]-interpretation is given by a sequence I of formulae in L(σ) consisting
of

• δ(x), called the domain formula,
• ε(x, y), called the equality formula, and,
• for every relation symbol R ∈ τ (of arity r), a formula ϕR(x1, . . . , xr).

An L[σ, τ ]-interpretation induces two mappings, one between structures,
and the other between formulae. For a τ -structure A and a σ-structure B, we
say that I interprets A in B (in short, I(B) = A) if there exists a surjective
map h : δB → A, called the coordinate map, such that

• for all b, c ∈ δB,
B |= ε(b, c) ⇐⇒ h(b) = h(c);
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• for every relation R of A and all b1, . . . , br ∈ δB,

B |= ϕR(b1, . . . , bk) ⇐⇒ (h(b1), . . . , h(bk)) ∈ R,

i.e. h−1(R) = (δB)k ∩ ϕB
R .

Hence I = 〈δ, ε, ϕR1
, . . . , ϕRm〉 defines (together with the function h :

δB → A) an interpretation of A = (A,R1, . . . , Rm) in B if and only if ε(x, y)
defines a congruence on the structure (δB, ϕB

R1
, . . . , ϕB

Rm
) and h is an isomor-

phism from the quotient structure (δB, ϕB
R1
, . . . , ϕB

Rm
)/εB to A.

Besides the mapping B 7→ I(B) from σ-structures to τ -structures, I also
defines a mapping from τ -formulae to σ-formulae. With every τ -formula ψ it
associates a σ-formula ψI , which is obtained by relativizing every quantifier
Qx to δ(x), replacing equalities u = v by ε(u, v), and replacing every atom
Ru by the corresponding formula ϕR(u).

Lemma 3.5.8 (Interpretation Lemma). For every interpretation I and
every structure A, we have that

A |= ψI ⇐⇒ I(A) |= ψ.

We shall omit δ or ε from an interpretation if they are trivial, in
the sense that δ(x) holds for all x and that ε(x, y) is equivalent to
x = y. The notion of an interpretation can be generalized in various
ways. In particular, a k-dimensional interpretation is given by a se-
quence δ(x), ε(x, y), ϕR1

(x1, . . . , xr1), . . . , ϕRm(x1, . . . , xrm), where x, y, x1, . . .
are disjoint k-tuples of distinct variables. A k-dimensional interpretation of A

in B represents elements of A by elements or equivalence classes of Bk, rather
than B.

Exercise 3.5.9. Show that up to first-order interpretation, all finite struc-
tures are graphs (see e.g. [66, Chapter 5] and [38, Chapter 11.2]). More pre-
cisely, for every vocabulary τ , construct an FO[{E}, τ ]-interpretation I and
an FO[τ, {E}]-interpretation J such that, for every finite structure A (with at
least two elements), I(A) is a graph and J(I(A)) ∼= A. It then follows that for
every model class K ⊆ Fin(τ), K is decidable in polynomial time if, and only
if, the class of graphs {I(A) : A ∈ K} is so.

Definition 3.5.10. Let L be a logic and ∼ an equivalence relation on a class
K of τ -structures. We say that (K,∼) admits L-definable canonization if
there exists an L[τ, τ ∪{<}]-interpretation I such that the function A 7→ I(A)
is a canonization function for ∼. For any domain D of structures, we say that
(D,∼) admits L-definable canonization if (D(τ),∼) does for every vocabulary
τ . Finally, we say that D admits L-definable canonization if (D,∼=) does.

Example 3.5.11. (Definable canonization versus definability of order.)
Whenever D admits L-definable linear orders, and L is closed under first-order
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operations, D also admits L-definable canonization. This is obvious if the
formula ϕ< defining the order has no parameters. If it uses parameters, then
it may define, for each structure A, a family of ordered expansions (A, <). But
these expansions can be compared by use of the lexicographic order of their
encodings. As L is closed under first-order operations, the minimal expansion
with respect to this lexicographical order is L-definable, which gives an L-
definable canonization.

Note, however, that there exist definable canonizations even in cases where
no order is definable. Consider for instance the class of finite directed paths Pn
(for n ∈ N), and take their ‘double graphs’ (see Section 3.2.5), i.e. the graphs
2Pn = (V,E), where V = {0, . . . , n−1}×{0, 1} and E = {〈(m, i), (m+1, j)〉 :
0 ≤ m < n− 1, i, j ∈ {0, 1}}. On this class, no order is definable in any logic
and with any finite number of parameters (to see this use Exercise 3.5.4).
However, the class admits DTC-definable canonization.

We shall explain the construction, which is uniform for all n, informally.
The obvious equivalence relation on 2Pn, where (m, i) ∼ (m′, j) iff m = m′,
is first-order definable, and so Pn is interpretable in 2Pn. Further, the nodes
0 and n − 1 are definable in Pn, and so (Cn, 0), the directed n-cycle with
a distinguished point, is interpretable in 2Pn as well. It therefore suffices to
show that an ordered copy of 2Pn is interpretable in (Cn, 0). We represent
nodes of 2Pn by edges and inverse edges of Cn: the node (m, 0) is represented
in Cn by the pair (m,m+ 1) and the node (m, 1) by the pair (m+ 1,m). The
order on these pairs is

(0, 1) < (1, 0) < (1, 2) < (2, 1) < · · · < (n− 2, n− 1) < (n− 1, n− 2).

The domain formula for the interpretation (of 2Pn in Cn) is δ(x, y) :=
Exy∨Eyz. It is not difficult to see that the edge relation and the linear order
are definable using DTC operators. The details are left to the reader.

A simple but interesting example of definable canonization is tree canon-
ization via fixed-point logic with counting.

Proposition 3.5.12. The class of (directed) trees admits (IFP + C)-definable
canonization.

Proof. The interpretation I that we construct maps a tree T = (V,E) (with
n nodes) to an ordered tree I(T ) = ({1, . . . , n}, E′, <), where < is the natural
order. That is, the interpretation is one-dimensional, maps nodes to numbers,
and is defined by the formulae δ(µ) := ∃ν(ν < µ), ϕ<(µ, ν) := µ < ν, and a
formula ϕE′(µ, ν) that we do not explicitly construct.

The construction of E′ is based on an inductively defined ternary relation
F ⊆ V × {1, . . . , n}2 that encodes the sequence of binary relations Fv :=
{(i, j) : (v, i, j) ∈ F}. For each node v of T , let Tv denote the subtree of T
with root v, and let Sv be the graph ({1, . . . , |Tv|}, Fv). The construction will
ensure that Sv is isomorphic to Tv.
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If v is a leaf, let Fv = ∅. Suppose now that v has children v1, . . . , vm, and
that the graphs Sv1 , . . . ,Svm have already been constructed. To define Sv, we
compute the code words wi = code(Svi , <) (where < is the natural order)
and arrange them in lexicographic order. Now let Sv be the graph with nodes
1, . . . , |Tv|, obtained by first taking a copy of the Svi with the smallest code
word, then taking a copy of the second, and so on, and finally adding another
node that is connected to the roots of the copies of the Svi . Obviously, Sv
determines Fv, and Sv ∼= Tv.

It is clear that the inductive construction of F can be done via an (IFP +
C)-formula ψF (x, µ, ν). Now take ϕE′(µ, ν) := ∃xψF (x, µ, ν). �

Theorem 3.5.13. Let D be a domain of (finite) structures, and let L be a
logic that captures PTIME on D<. If D admits L-definable canonization, then
L captures PTIME on D also.

Proof. Let K ∈ D(τ) be a model class tht is decidable in polynomial time,
and let ψ ∈ L(τ ∪ {<}) be a formula defining K< inside D<(τ). Further, let
I be an L[τ, τ ∪ {<}]-interpretation that defines a canonization on D(τ). By
the Interpretation Lemma,

A |= ψI ⇐⇒ I(A) |= ψ ⇐⇒ I(A) ∈ K< ⇐⇒ A ∈ K.

Hence L captures PTIME on D. �

This result is important because it has been shown, in particular in the
work of Grohe [58–60], that a number of interesting domains admit canoniza-
tion via fixed-point logic with counting (IFP + C). Among these are

(1) the domain of finite (labelled) trees (see Proposition 3.5.12);
(2) the class of planar graphs [58] and, more generally, any domain of struc-

tures, whose Gaifman graphs are embeddable in a fixed surface [59];
(3) any domain of structures of bounded tree width [60].

Corollary 3.5.14. (IFP + C) captures PTIME on any of these domains.

Further, the results extend to domains that can be reduced to any of the
domains mentioned above by simple definable operations such as adding or
deleting a vertex or edge. An example is that of nearly planar (or apex) graphs,
which become planar when one vertex is removed.

3.5.3 Capturing PTIME up to Bisimulation

In mathematics, we consider isomorphic structures as identical. Indeed, it
almost goes without saying that relevant mathematical notions do not distin-
guish between isomorphic objects. As classical algorithmic devices work on
ordered representations of structures rather than the structures themselves,
our capturing results rely on an ability to reason about canonical ordered
representations of isomorphism classes of finite structures.
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However, in many application domains of logic, structures are distin-
guished only up to equivalences coarser than isomorphism. Perhaps the best-
known example is the modelling of the computational behaviour of (concur-
rent) programs by transition systems. The meaning of a program is usually
not captured by a unique transition system. Rather, transition systems are
distinguished only up to appropriate notions of behavioural equivalence, the
most important of these being bisimulation.

In such a context, the idea of a logic capturing PTIME gets a new twist.
One would like to express in a logic precisely those properties of structures
that are

(1) decidable in polynomial time, and
(2) invariant under the notion of equivalence being studied.

Let us look at one specific problem in this context, the problem of
bisimulation-invariant properties of transition systems.

Definition 3.5.15. Let G = (V, (Ea)a∈A, (Pb)b∈B) and G′ =
(V ′, (E′

a)a∈A, (P
′
b)b∈B) be two transition systems of the same vocabu-

lary. A bisimulation between G and G′ is a non-empty relation Z ⊆ V ×V ′,
respecting the Pb in the sense that v ∈ Pb iff v′ ∈ P ′b, for all b ∈ B and
(v, v′) ∈ Z, and satisfying the following back and forth conditions.

Forth. for all (v, v′) ∈ Z, a ∈ A and every w such that (v, w) ∈ Ea, there
exists a w′ such that (v′, w′) ∈ E′

a and (w,w′) ∈ Z.

Back. for all (v, v′) ∈ Z, a ∈ A and every w′ such that (v′, w′) ∈ E′
a, there

exists a w such that (v, w) ∈ Ea and (w,w′) ∈ Z.

A rooted transition system is a pair (G, u), where G is a transition
system G and u is a node of G. Two rooted transition systems (G, u) and
(G′, u′) are bisimilar, denoted by G, u ∼ G′, u′, if there is a bisimulation Z
between G and G′ with (u, u′) ∈ Z.

Exercise 3.5.16. Bisimulation is a greatest fixed point. Prove that two nodes
u, u′ of a transition system G are bisimilar, i.e. (G, u) ∼ (G, u′) if, and only
if,

G |= [gfpRxy .
∧

b∈B

Pbx↔ Pby∧
∧

a∈A

(∀x′ . Eaxx′)(∃y′ . Eayy′)Rx′y′∧
∧

a∈A

(∀y′ . Eayy′)(∃x′ . Eaxx′)Rx′y′](u, u′).

A class S of rooted transition systems is invariant under bisimulation
if, whenever (G, u) ∈ S and (G, u) ∼ (G′, u′), then also (G′, u′) ∈ S. We say
that a class S of finite rooted transition systems is in bisimulation-invariant
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PTIME if it is invariant under bisimulation, and if there exists a polynomial-
time algorithm deciding whether a given pair (G, u) belongs to S. A logic L is
invariant under bisimulation if all L-definable properties of rooted transition
systems are.

Exercise 3.5.17. Prove that ML, the modal µ-calculus Lµ, and the infinitary
modal logic ML∞ are invariant under bisimulation.

Clearly, Lµ ⊆ bisimulation-invariant PTIME. However, as pointed out in
Section 3.3.3, Lµ is far too weak to capture this class, mainly because it is
essentially a monadic logic. Instead, we have to consider a multidimensional
variant Lωµ of Lµ.

But before we define this logic, we should explain the main technical step,
which relies on definable canonization, but of course with respect to bisimu-
lation rather than isomorphism. For simplicity of notation, we consider only
transition systems with a single transition relation E. The extension to the
case of several transition relations Ea is completely straightforward.

With a rooted transition system G = (V,E, (Pb)b∈B), u, we associate a
new transition system

G∼u := (V ∼
u , E

∼, (P∼b )b∈B),

where V ∼
u is the set of all ∼-equivalence classes [v] of nodes v ∈ V that are

reachable from u. More formally, let [v] denote the bisimulation equivalence
class of a node v ∈ V . Then

V ∼
u := {[v] : there is a path in G from u to v}
P∼b := {[v] ∈ V ∼

u : v ∈ Pb}
E∼ := {([v], [w]) : (v, w) ∈ E}.

As shown in the following exercise, the pair G∼u , [u] is, up to isomorphism,
a canonical representant of the bisimulation equivalence class of G, u.

Exercise 3.5.18. Prove that (1) (G, u) ∼ (G∼u , [u]), and (2) if (G, u) ∼ (H, v),
then (G∼u , [u]) ∼= (H∼

v , [v]).

It follows that a class S of rooted transition systems is bisimulation-
invariant if and only if S = {(G, u) : (G∼u , [u]) ∈ S}. Let CR∼ be the domain
of canonical representants of finite transition systems, i.e.

CR∼ := {(G, u) : (G∼u , [u]) ∼= (G, u)}.

Proposition 3.5.19. CR∼ admits LFP-definable linear orderings.

Proof. We show that for every vocabulary τ = {E}∪{Pb : b ∈ B}, there exists
a formula ψ(x, y) ∈ LFP(τ) which defines a linear order on every transition
system in CR∼(τ).
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Recall that bisimulation equivalence on a transition system is a greatest
fixed point. Its complement, bisimulation inequivalence, is a least fixed point,
which is the limit of an increasing sequence 6∼i defined as follows: u 6∼0 v if u
and v do not have the same atomic type, i.e. if there exists some b such that
one of the nodes u, v has the property Pb and the other does not. Further,
u 6∼i+1 v if the sets of ∼i-classes that are reachable in one step from u and v
are different. The idea is to refine this inductive process, by defining relations
≺i that order the ∼i-classes. On the transition system itself, these relations
are pre-orders. The inductive limit ≺ of the pre-orders ≺i defines a linear
order of the bisimulation equivalence classes. But in transition systems in
CR∼, bisimulation classes have only one element, so ≺ actually defines a
linear order on the set of nodes.

To make this precise, we choose an order on B and define ≺0 by enumer-
ating the 2|B| atomic types with respect to the propositions Pb, i.e.

x ≺0 y :=
∨

b∈B

(

¬Pbx ∧ Pby ∧
∧

b′<b

Pb′x↔ Pb′y
)

.

In what follows, x ∼i y can be taken as an abbreviation for ¬(x ≺i y∨y ≺i
x), and similarly for x ∼ y. We define x ≺i+1 y by the condition that either
x ≺i y, or x ∼i y and the set of ∼i-classes reachable from x is lexicographically
smaller than the set of ∼i-classes reachable from y. Note that this inductive
definition of ≺ is not monotone, so it cannot be directly captured by an LFP-
formula. However, as we know that LFP ≡ IFP, we can use an IFP-formula
instead. Explicitly, ≺ is defined by [ifpx ≺ y . ψ(≺, x, y)](x, y), where

ψ(≺, x, y) :=x ≺0 y ∨
(

x ∼ y∧

(∃y′ . Eyy′)
(

(∀x′ . Exx′)x′ 6∼ y′∧

(∀z.z ≺ y′)
(

∃x′′(Exx′′ ∧ x′′ ∼ z)↔

∃y′′(Eyy′′ ∧ y′′ ∼ z)
)

))

.

�

Exercise 3.5.20. Complete the proof by showing that the formula [ifpx ≺ y .
ψ(≺, x, y)](x, y) indeed defines the order described above.

Corollary 3.5.21. On the domain CR∼, LFP captures PTIME.

In fact, this result already suffices to give an abstract capturing result for
bisimulation-invariant PTIME (in the sense of the following section): by com-
posing the mapping from rooted transition systems to their canonical rep-
resentants with LFP queries on these representants, we obtain an abstract
logic with recursive syntax and polynomial-time semantics that describes
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precisely the polynomial-time computable, bisimulation-invariant queries on
rooted transition systems.

In many situations (such as for polynomial time on arbitrary finite struc-
tures), we would actually be quite happy with such an abstract capturing
result. However, in the bisimulation-invariant scenario we can do better and
capture PTIME in terms of a natural logic, the multidimensional µ-calculus
Lωµ .

Definition 3.5.22. The syntax of the k-dimensional µ-calculus Lkµ (for
transition systems G = (V,E, (Pb)b∈B)) is the same as the syntax of the usual
µ-calculus Lµ with modal operators 〈i〉, [i] for a ∈ A, i = 1, . . . , k, and 〈σ〉, [σ]
for every substitution σ : {1, . . . , k} → {1, . . . , k}. Let S(k) be the set of all
these substitutions.

The semantics is different, however. A formula ψ of Lkµ is interpreted on a
transition system G = (V,E, (Pb)b∈B) at node v by evaluating it as a formula
of Lµ on the modified transition system

Gk = (V k, (Ei)1≤i≤k, (Eσ)σ∈S(k), (Pb,i)b∈B,1≤i≤k)

at node v := (v, v, . . . , v). Here V k = V × · · · × V and

Ei := {(v, w) ∈ V k × V k : (vi, wi) ∈ E and vj = wj for j 6= i}
Eσ := {(v, w) ∈ V k × V k : wi = vσ(i) for all i}
Pb,i := {v ∈ V k : vi ∈ Pb}

That is, G, v |=Lkµ
ψ iff Gk, (v, . . . , v) |=Lµ ψ. The multidimensional µ-

calculus is Lωµ =
⋃

k<ω L
k
µ.

Remark. Instead of evaluating a formula ψ ∈ Lkµ at single nodes v of G, we

can also evaluate it at k-tuples of nodes: G, v |=Lkµ
ψ iff Gk, v |=Lµ ψ.

Example 3.5.23. Bisimulation is definable in L2
µ (in the sense of the remark

just made). Let

ψ∼ := νX .
(

∧

b∈B

(Pb,1 ↔ Pb,2) ∧ [1]〈2〉X ∧ [2]〈1〉X
)

.

For every transition system G, we have that G, v1, v2 |= ψ∼ if, and only if, v1
and v2 are bisimilar in G. Further, we have that

G, v |= µY . 〈2〉(ψ∼ ∨ 〈2〉Y )

if, and only if, there exists in G a point w that is reachable from v (by a path
of length ≥ 1) and bisimilar to v.

Exercise 3.5.24. Prove that Lωµ is invariant under bisimulation. Further, show
that Lωµ can be embedded in LFP.
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This exercise establishes the easy direction of the desired result: Lωµ ⊆
bisimulation-invariant PTIME. For the converse, it suffices to show that LFP
and Lωµ are equivalent on the domain CR∼. Let S be a class of rooted transi-
tion systems in bisimulation-invariant PTIME. For any (G, u), we have that
(G, u) ∈ S if its canonical representant (G∼u , [u]) ∈ S. If LFP and Lωµ are
equivalent on CR∼, then there exists a formula ψ ∈ Lωµ such that G∼u , [u] |= ψ
iff (G∼u , [u]) ∈ S. By the bisimulation invariance of ψ, it follows that G, u |= ψ
iff (G, u) ∈ S.

Proposition 3.5.25. On the domain CR∼, LFP ≤ Lωµ. More precisely, for
each formula ψ(x1, . . . , xk+1) ∈ LFP of width ≤ k + 1, there exists a formula
ψ∗ ∈ Lk+1

µ such that for each (G, u) ∈ CR∼, we have that G |= ψ(u, v) iff
G, u, v |= ψ∗.

Note that although, ultimately, we are interested only in formulae ψ(x)
with just one free variable, we need more general formulae, and evaluation
of Lkµ-formulae over k-tuples of nodes, for the inductive treatment. In all
formulae, we shall have at least x1 as a free variable, and we always interpret
x1 as u (the root of the transition system). We remark that, by an obvious
modification of the formula given in Exercise 3.5.23, we can express in Lkµ the
assertion that xi ∼ xj for any i, j.

Atomic formulae are translated from LFP to Lωµ according to

(xi = xj)
∗ := xi ∼ xj

(Pbxi)
∗ := Pb,ix

(Exixj)
∗ := 〈i〉xi ∼ xj

(Xxσ(1) · · ·xσ(r))
∗ := 〈σ〉X.

Boolean connectives are treated in the obvious way, and quantifiers are
translated by use of fixed points. To find a witness xj satisfying a formula
ψ, we start at u (i.e. set xj = x1), and search along transitions (i.e. use the
µ-expression for reachability). That is, let j/1 be the substitution that maps
j to 1 and fixes the other indices, and translate ∃xjψ(x) into

〈j/1〉µY . ψ∗ ∨ 〈j〉Y.

Finally, fixed points are first brought into normal form so that variables appear
in the right order, and then they are translated literally, i.e. [lfpXx . ψ](x)
translates into µX .ψ∗.

The proof that the translation has the desired property is a straightforward
induction, which we leave as an exercise (see [90] for details). Altogether we
have established the following result.

Theorem 3.5.26 (Otto). The multidimensional µ-calculus captures
bisimulation-invariant PTIME.
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Otto has also established capturing results with respect to other equiva-
lences. For finite structures A,B, we say that A ≡k B if no first-order sentence
of width k can distinguish between A and B. Similarly, A ≡Ck B if A and B are
indistinguishable by first-order sentences of width k with counting quantifiers
of the form ∃≥ix, for any i ∈ N.

Theorem 3.5.27 (Otto). There exist logics that effectively capture ≡2-
invariant PTIME and ≡C2 -invariant PTIME on the class of all finite struc-
tures.

For details, see [89].

3.5.4 Is There a Logic for PTIME?

To discuss the problem of whether PTIME can be captured on the domain
of all finite structures, we need to make precise the notion of a logic, and
to refine the notion of a logic capturing a complexity class, so as to exclude
pathological examples such the following, which is due to Gurevich [61].

Example 3.5.28. Let the syntax of our ‘logic’ consist of all pairs (M,k), where
M is a Turing machine, and k a natural number. A finite τ -structure A is a
model of (M,k) if there exists a model class K ⊆ Fin(τ) such that A ∈ K, and
M accepts an encoding code(B, <) of a finite τ -structure B in time |B|k if,
and only if, B ∈ K. Note that this ‘logic’ captures PTIME on finite structures.
But the example is pathological, not mainly because of its unusual format,
but because its semantics is not effective: it is undecidable whether a Turing
machine accepts an isomorphism-closed class of structures.

Another example of this kind is order-invariant LFP. The τ -sentences of
this logic are the LFP-sentences of vocabulary τ ∪{<} such that, for all finite
τ -structures A and all linear orders<, <′ on A, we have that (A, <) |= ψ if and
only if (A, <′) |= ψ. This defines the syntax. The semantics is the obvious one:
a structure A is a model of ψ if, and only if, (A, <) |= ψ for some, and hence
all, linear orders on A. This ‘logic’ also captures PTIME, but again it has
an undesirable feature: it is undecidable whether a given sentence ψ ∈ LFP
is order-invariant (compare Exercise 3.1.12), so the ‘logic’ does not have an
effective syntax.

We start by defining a general notion of a logic on finite structures by
imposing two requirements: an effective syntax and an isomorphism-invariant
semantics.

Definition 3.5.29. A logic on a domainD of finite structures is a pair (L, |=),
where L is a function that assigns to each vocabulary τ a decidable set L(τ)
(whose elements are called τ -sentences), and |= is a binary relation between
sentences and finite structures, so that for each sentence ψ ∈ L(τ), the class
{A ∈ D(τ) : A |= ψ} is closed under isomorphism.
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Recall that, by Definition 3.2.10, a logic captures PTIME on a domain
D if every polynomial-time decidable model class in D is definable in that
logic, and if, for every sentence of the logic, the model-checking problem on D
can be solved in polynomial time. To exclude pathological examples such the
first one above, we impose in addition the condition that for each sentence, a
polynomial-time model-checking algorithm can be effectively constructed.

Definition 3.5.30. A logic (L, |=) effectively captures PTIME on a do-
main D of finite structures if it captures PTIME in the sense of Defini-
tion 3.2.10 and, moreover, there exists a computable function, which associates
with every sentence ψ ∈ L(τ) an algorithm M and a polynomial p, such that
M decides {A ∈ D(τ) : A |= ψ} in time p(n). We simply say that (L, |=)
effectively captures PTIME if it does so on the class of all finite structures.

This definition can be modified in the obvious way to other complexity
classes. All capturing results that we have proved so far are effective in this
sense.

Exercise 3.5.31. A complexity class C is recursively indexable on a domain
D if there is a recursive index set I, a computable function f mapping every
i ∈ I to (the code of) a Turing machine Mi, and an appropriate resource
bound (e.g. a polynomial bounding the running time of Mi) such that:

(1) The class Ki of all structures from D accepted by Mi is in C, and, more-
over, Mi together with the given resource bound witnesses the member-
ship of Ki in the complexity class C.

(2) For each model class K ∈ C on the domain D, there is an i ∈ I such that
Mi decides K.

Prove that there is a logic that effectively captures C on the domain D if, and
only if, C is recursively indexable on D.

The above definition of a logic may seem too abstract for practical pur-
poses. However, it is justified by the equivalence with recursive indexings, as
described in the exercise above, and by a result of Dawar [32], which shows
that if there is any logic that effectively captures PTIME, then there also
exists a natural one. More precisely, Dawar proved that, from any logic effec-
tively capturing PTIME, one could extract a model classK that is complete for
PTIME under first-order reductions. As a consequence, PTIME would also be
effectively captured by the logic FO[QωK], which adjoins to FO the vectorized
Lindstöm quantifiers associated with K (see [32, 38] for more information).

Exercise 3.5.32. Many finite-model theorists conjecture that there is no logic
that effectively captures PTIME on finite structures. If you are the first to
prove this, you may win one million dollars. Why?
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3.6 Algorithmic Model Theory

3.6.1 Beyond Finite Structures

For a long time, descriptive complexity theory has been concerned almost
exclusively with finite structures. Although important problems remain open,
the relationship between definability and complexity on finite structures is now
fairly well understood, and there are interesting connections to fields such as
databases, knowledge representation, and computer-aided verification.

However, for many applications, the strict limitation to finite structures
is too restrictive. In most of the fields mentioned above, there have been
considerable efforts to extend the relevant methodology from finite struc-
tures to suitable domains of infinite ones. In particular, this is the case for
databases and computer-aided verification where infinite structures (like con-
straint databases or transition systems with infinite state spaces) are of in-
creasing importance.

Finite model theory should therefore be generalized to a more compre-
hensive algorithmic model theory that extends the research programme, the
general approach, and the methods of finite model theory to interesting do-
mains of infinite structures. From a more general theoretical point of view,
one may ask what domains of infinite structures are suitable for such an ex-
tension. More specifically, one may ask what conditions must be satisfied by a
domain D of structures that are not necessarily finite such that the approach
and methods of finite model theory make sense. There are two obvious and
fundamental conditions:

Finite representations. Every structure A ∈ D should be representable in a
finite way (e.g. by a binary string, an algorithm, a collection of automata,
an axiomatization in some logic, an interpretation, . . . ).

Effective semantics. For the relevant logics (e.g. first-order logic), the model-
checking problem on D should be decidable. That is, given a sentence
ψ ∈ L and a representation of a structure A ∈ D, it should be decidable
whether A |= ψ.

These are just minimal requirements, which may need to be refined accord-
ing to the context and the questions to be considered. We may, for instance,
also require the following:

Closure. For every structure A ∈ D and every formula ψ(x), the expansion
(A, ψA) of A with the relation defined by ψ, should as well be contained
in D.

Effective query evaluation. Suppose that we have fixed a way of representing
structures. Given a representation of A ∈ D and a formula ψ(x), we should
be able to compute a representation of ψA (or of the expanded structure
(A, ψA)).

Note that, contrary to the case of finite structures, query evaluation does not
necessarily reduce to model checking. Further, instead of just effectiveness
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of these tasks, it may be required that they can be performed within some
complexity bounds.

3.6.2 Finitely Presentable Structures

We briefly survey here some domains of infinite but finitely presentable struc-
tures which may be relevant to algorithmic model theory. We shall then discuss
in a more detailed way metafinite structures, for which descriptive complexity
issues have already been studied quite intensively.

Recursive structures are countable structures whose functions and re-
lations are computable and therefore finitely presentable. They have been
studied quite intensively in model theory since the 1960s (see e.g. [6, 42]). Al-
though recursive model theory is very different from finite model theory, there
have been some papers studying classical issues of finite model theory on re-
cursive structures and recursive databases [50, 64, 65, 94]. However, for most
applications, the domain of recursive structures is far too large. In general,
only quantifier-free formulae admit effective evaluation algorithms.

Constraint databases provide a database model that admits infinite
relations that are finitely presented by quantifier-free formulae (constraints)
over some fixed background structure. For example, to store geometrical data,
it is useful not just to have a finite set as the universe of the database, but
to include all real numbers ‘in the background’. Also, the presence of inter-
preted functions on the real numbers, such as addition and multiplication, is
desirable. The constraint database framework introduced by Kanellakis, Ku-
per, and Revesz [74] meets both requirements. Formally, a constraint database
consists of a context structure A, such as (R, <,+, ·), and a set {ϕ1, . . . , ϕm} of
quantifier-free formulae defining the database relations. Constraint databases
are treated in detail in [81] and in Chap. 5 of this book.

Automatic structures are structures whose functions and relations
are represented by finite automata. Informally, a relational structure A =
(A,R1, . . . , Rm) is automatic if we can find a regular language Lδ ⊆ Σ∗ (which
provides names for the elements of A) and a function ν : Lδ → A mapping
every word w ∈ Lδ to the element of A that it represents. The function ν must
be surjective (every element of A must be named) but need not be injective
(elements can have more than one name). In addition, it must be recognizable
by finite automata (reading their input words synchronously) whether two
words in Lδ name the same elements, and, for each relation Ri of A, whether
a given tuple of words in Lδ names a tuple in Ri.

Example 3.6.1. (1) All finite structures are automatic.
(2) Some important examples of automatic structures are Presburger arith-

metic (N,+), and its expansions Np := (N,+, |p) by the relation x |p y which
says that x is a power of p dividing y. Using p-ary encodings (starting with
the least significant digit), it is not difficult to construct automata recognizing
equality, addition, and |p.



208 3 Finite Model Theory and Descriptive Complexity

(3) For p ∈ N, let Tree(p) := ({0, . . . , p−1}∗, (σi)i<p, <, el), where σi(x) :=
xi, x < y means that xz = y for some z, and el(x, y) means that x and y have
equal length. Obviously, these structures are automatic as well.

Automatic structures provide a vast playground for finite-model theorists,
with many examples of high relevance to computer science. There are also in-
teresting connections to computational group theory, where automatic groups
have already been studied quite intensively [41, 44]. The general notion of
structures presentable by automata was proposed in [75], and their theory
has been developed in [16, 18, 19, 92].

The notion of an automatic structure can be modified and generalized in
many directions. By using automata over infinite words, we obtain the notion
of ω-automatic structures (which, unlike automatic structures, may have
uncountable cardinality).

Example 3.6.2. (1) All automatic structures are ω-automatic.
(2) The additive group of reals, (R,+), and indeed the expanded structure

Rp := (R,+,≤, |p, 1) are ω-automatic, where

x |p y iff x = pn and y = kx for some n, k ∈ Z.

(3) The tree structures Tree(p) can be extended in a natural way
to the (uncountable) ω-automatic structures Treeω(p) = ({0, . . . , p −
1}≤ω, (σi)i<p,�, el).

Unlike the class of recursive structures, automatic structures and ω-
automatic structures admit effective (in fact, automatic) evaluation of all
first-order queries and possess many other pleasant algorithmic properties.

Theorem 3.6.3. The model checking problems for first-order logic on the do-
mains of automatic or ω-automatic structures are decidable.

There are a number of extensions of this result, for instance to the ex-
tension of first-order logic by the quantifier ‘there exist infinitely many’
[19]. There also are model-theoretic characterizations of automatic and ω-
automatic structures, in terms of interpretations into appropriate expansions
of Presburger arithmetic, trees, or the additive group of reals (see Exam-
ples 3.6.1 and 3.6.2). We write A ≤FO B to denote that there exists a first-
order interpretation of A in B. Note that the domains of automatic and ω-
automatic structures are closed under fist-order interpretations.

Theorem 3.6.4 (Blumensath and Grädel). (1) For every structure A, the
following are equivalent:

(i) A is automatic.
(ii) A ≤FO Np for some (and hence all) p ≥ 2.
(iii) A ≤FO Tree(p) for some (and hence all) p ≥ 2.
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(2) For every structure A, the following are equivalent:

(i) A is ω-automatic.
(ii) A ≤FO Rp for some (and hence all) p ≥ 2.
(iii) A ≤FO Treeω(p) for some (and hence all) p ≥ 2.

For a proof, see [19] There are similar characterizations for tree-automatic
structures [16]. For further results on automatic structures, see [10, 16, 18, 19,
75–78, 92].

The model-theoretic characterizations of automatic and ω-automatic
structures in terms of interpretability suggest a general way to obtain other
domains of infinite structures that may be interesting for algorithmic model
theory: fix a structure A with ‘nice’ (algorithmic and/or model-theoretic)
properties and an appropriate notion of interpretation, and consider the class
of all structures that are interpretable in A. Obviously, each structure in this
class is finitely presentable (by an interpretation). Further, many ‘nice’ prop-
erties are preserved by interpretations, and so every structure in the class
inherits them from A. In particular, every class of queries that is effective
on A and closed under first-order operations is effective on the closure of A

under first-order interpretations. This approach is also relevant to the domain
of structures that we discuss next.

Tree-interpretable structures are structures that are interpretable in
the infinite binary tree T 2 = ({0, 1}∗, σ0, σ1) via a (one-dimensional) MSO-
interpretation. By Rabin’s Theorem, monadic second-order formulae can be
effectively evaluated on T 2. Since MSO is closed under one-dimensional in-
terpretations, the Interpretation Lemma implies that tree-interpretable struc-
tures admit effective evaluation for MSO. Tree-interpretable structures gen-
eralize various notions of infinite graphs that have been studied in logic, au-
tomata theory and, verification. Some examples are context-free graphs
[87, 88], which are the configuration graphs of pushdown automata, HR-
equational and VR-equational graphs [27], which are defined via certain
graph grammars, and prefix-recognizable graphs [25], which can for in-
stance be defined as graphs of the form (V, (Ea)a∈A), where V is a regular
language and each edge relation Ea is a finite union of sets X(Y × Z) =
{(xy, xz) : x ∈ X, y ∈ Y, z ∈ Z}, for regular languages X,Y, Z. In fact, some
of these classes coincide with the class of tree-interpretable graphs (see [17]).

Theorem 3.6.5. For any graph G = (V, (Ea)a∈A), the following are equiva-
lent:

(i) G is tree-interpretable.
(ii) G is VR-equational.
(iii) G is prefix-recognizable.
(iv) G is the restriction to a regular set of the configuration graph of a push-

down automaton with ε-transitions.

On the other hand, the classes of context-free graphs and of HR-equational
graphs are strictly contained in the class of tree-interpretable graphs.
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Exercise 3.6.6. Prove that every tree-interpretable structure is automatic. Is
the converse also true?

Tree-Constructible Structures: the Caucal Hierarchy

The question arises of whether there are even more powerful domains than
the tree-interpretable structures on which monadic second-order logic is effec-
tive. An interesting way to obtain such domains is to use tree constructions
that associate with any structure a kind of tree unravelling. A simple vari-
ant is the unfolding of a labelled graph G from a given node v to the tree
T (G, v). Courcelle and Walukiewicz [28, 29] have shown that the MSO-theory
of T (G, v) can be effectively computed from the MSO-theory of (G, v). A
more general operation, applicable to relational structures of any kind, has
been invented by Muchnik. Given a relational structure A = (A,R1, . . . , Rm),
let its iteration A∗ = (A∗, R∗1, . . . , R

∗
m, suc, clone) be the structure with uni-

verse A∗, relations R∗i = {(wa1, . . . , war) : w ∈ A∗, (a1, . . . , ar) ∈ Ri}, the
successor relation suc = {(w,wa) : w ∈ A∗, a ∈ A}, and the predicate clone

consisting of all elements of the form waa. It is not difficult to see that un-
foldings of graphs are first-order interpretable in their iterations. Muchnik’s
Theorem states that the monadic theory of A∗ is decidable if the monadic
theory of A is so (for proofs, see [11, 101]). We define the domain of tree-
constructible structures to be the closure of the domain of finite structures
under (one-dimensional) MSO-interpretations and iterations. By Muchnik’s
Theorem, and since effective MSO model checking is preserved under inter-
pretations, the tree constructible structures are finitely presentable and admit
effective evaluation of MSO-formulae.

The tree-constructible graphs form the Caucal hierarchy, which was de-
fined in [26] in a slighly different way. The definition is easily extended to
arbitrary structures: let C0 be the class of finite structures, and let Cn+1 be
the class of structures that are interpretable in the iteration A∗ of a structure
A ∈ Cn. There are a number of different, but equivalent, ways to define the
levels of the Caucal hierarchy. For instance, one can use the inverse ratio-
nal mappings given in [25] rather than monadic interpretations, and simple
unfoldings rather than iterations without changing the hierarchy [24]. Equiv-
alently, the hierarchy can be defined via higher-order pushdown automata. It
is known that the Caucal hierarchy is strict, and that it does not exhaust the
class of all structures with a decidable MSO-theory. We refer to [24, 98] for
details and further information.

3.6.3 Metafinite Structures.

The class of infinite structures for which descriptive complexity theory has
been studied most intensively is the class of the metafinite structures, pro-
posed by Grädel and Gurevich [48], and studied also in [30, 49, 53, 84]. These
structures are somewhat reminiscent of the two-sorted structures that we used
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to define fixed-point logic with counting, (IFP + C). There, the second sort
was a finite linear order ({0, . . . , n}, <). Metafinite structures are similar two-
sorted structures, with the essential differences that (1) the numerical sort
need not be finite, (2) the structures may contain functions from the first to
the second sort, and (3) operations more general than counting are considered.

Definition 3.6.7. A (simple) metafinite structure is a triple D =
(A,R,W ) consisting of the following:

(i) A finite structure A, called the primary part of D.
(ii) A finite or infinite structure R, called the secondary (or numerical) part

of D. We always assume that R contains two distinguished elements 0
and 1 (or true and false).

(iii) A finite set W of functions w : Ak → R.

The vocabulary of D is the triple τ(D) = (τa, τr, τw), where each compo-
nent of τ(D) is the set of relation or function symbols in the corresponding
component of D. (We always consider constants as functions of arity 0.) The
two distinguished elements 0, 1 of R are named by constants of τr.

Example 3.6.8. (R-structures) The descriptive complexity theory over the
real numbers developed by Grädel and Meer [53] (see Sect. 3.6.5) is based on
R-structures, which are simple metafinite structure with a secondary part R =
(R,+,−, ·, /,≤, (cr)r∈R). It is convenient to include subtraction and division
as primitive operations and assume that every element r ∈ R is named by a
constant cr, so that any rational function g : Rk → R (i.e. any quotient of two
polynomials) can be written as a term.

There are many variations of metafinite structures. An important one is
metafinite structures with multiset operations. Any function f : A→ R
defines a multiset mult(f) = {{f(a) : a ∈ A}} over R (where the notation {{. . .}}
indicates that we may have multiple occurrences of the same element). For
any set R, let fm(R) denote the class of all finite multisets over R. In some
of the metafinite structures that we consider, the secondary part R is not
just a (first-order) structure in the usual sense, but instead it comes with a
collection of multiset operations Γ : fm(R) → R, mapping finite multisets
over R to elements of R. Some natural examples on, say, the real numbers
are addition, multiplication, counting, mean, maximum, and minimum. The
use of multiset operations will become clearer when we introduce logics for
metafinite structures. Let us just remark that multiset operations are a natural
way to make precise the notion of aggregates in database query languages such
as SQL.

Example 3.6.9. (Arithmetical structures). Of particular interest to us are
metafinite structures, whose secondary part is a structure N over the nat-
ural numbers such that
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• N includes at least the constants 0, 1, the functions +, · , the ordering rela-
tion <, and the multiset operations max,min,

∑

(sum), and
∏

(product).
• All functions, relations, and multiset operations of N can be evaluated in

polynomial time.

We call metafinite structures of this kind arithmetical structures. A simple
arithmetical structure is obtained from an arithmetical structure by omitting
the multiset operations.

By itself, the notion of metafinite structures contains nothing revolution-
ary: they are just a special kind of two-sorted structures. The interesting
feature of metafinite model theory is not just the structures themselves, but
the logics, which access the primary and the secondary part in different ways
and are designed so that the approach and methods of finite model theory
remain meaningful and applicable. An important feature of these logics is
that they contain, besides formulae and terms in the usual sense, a calculus
of weight terms from the primary to the secondary part.

Definition 3.6.10. Let L be any of the logics for finite structures, such as
FO, LFP, . . . as described in the previous sections, and let τ = (τa, τr, τw) be a
vocabulary for metafinite structures (where τr may or may not have names for
multiset operations). The appropriate modification of L for reasoning about
metafinite structures D = (A,R,W ) of vocabulary τ is defined as follows. We
fix a countable set V = {x0, x1, . . .} of variables ranging over elements of the
primary part A only. The point terms (defining functions f : Ak → A), the
weight terms (defining functions w : Ak → R), and the formulae (defining
relations R ⊆ Ak) of L[τ ] are defined inductively as follows:

(1) Point terms are defined in the usual way, by closing the set of variables
V under application of function symbols from τa.

(2) Weight terms can be built by applying weight function symbols from τw
to point terms, and function symbols from τr to previously defined weight
terms. Note that there are no variables ranging over R.

(3) Atomic formulae are equalities of point terms, equalities of weight terms,
expressions Pt1 · · · tr containing relations symbols P ∈ τa and point
terms t1, . . . , tr, or expressions Qf1 · · · fr containing predicates Q ∈ τr
and weight terms f1, . . . , fr.

(4) All the rules of L for building formulae (via propositional connectives,
quantifiers, and other operators) may be applied, taking into account the
condition that only variables from V may be used.

(5) In addition, we have the characteristic function rule: if ϕ(x) is a
formula, then χ[ϕ](x) is a weight term.

(6) If τw contains multiset operations, these provide additional means for
building new weight terms. Let F (x, y) be a weight term, ϕ(x, y) a formula
(both with free variables among x, y), and Γ a multiset operation. The
expression

Γx(F (x, y) : ϕ)
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is then a weight term with free variables y. (If ϕ = true, we simplify this
notation to ΓxF (x, y).)

The semantics for (1)–(4) is the obvious one. A term χ[ϕ](x) evaluates
to 1 if ϕ(x) is true, and to 0 otherwise. Finally, let G(y) be a weight term
Γx(F (x, y) : ϕ) formed by application of a multiset operation. The weight
term F (x, y) defines, on a metafinite structure D = (A,R,W ), a function
FD : Ak+m → R. For any fixed tuple b, the collection of values FD(a, b), as a
ranges over those tuples such that ϕ(a, b) is true, forms a finite multiset

(F : ϕ)D(b) := {{FD(a, b) : a ∈ Ak such that D |= ϕ(a, b)}}.

The interpretation of G(b) on D is obtained by applying Γ to this multiset,
i.e.

GD(b) := Γ ((F : ϕ)D(b)).

Example 3.6.11. (Binary representations.) Consider arithmetic structures
with a primary part of the form A = ({0, . . . , n − 1}, <, P ) where P is a
unary relation. P is interpreted as a bit sequence u0 · · ·un−1 representing the
natural number

∑n−1
i=0 ui2

i (where ui = 1 iff A |= P (i)). The number repre-
sented by P is definable by the term

∑

x

(

χ[Px]
∏

y

(2 : y < x)
)

.

Example 3.6.12. (Counting elements.) On arithmetic structures, first-order
logic can count. For any formula ϕ(x), there is a weight term #x[ϕ(x)] count-
ing the number of tuples a such that ϕ(a) is true, namely

#x[ϕ(x)] :=
∑

x

χ[ϕ].

3.6.4 Metafinite Spectra

Does descriptive complexity theory generalize in a meaningful way from finite
to metafinite structures? To give some evidence that such generalizations are
indeed possible and fruitful, we focus here on generalizations of Fagin’s The-
orem to (1) arithmetical structures, and (2) R-structures (see the examples
given above).

Recall that Fagin’s Theorem says that generalized spectra (or, equivalently,
the properties of finite structures that are definable in existential second-order
logic) coincide with the complexity class NP. To discuss possible translations
to metafinite structures, we need to make precise two notions:

• The notion of a metafinite spectrum, i.e. a generalized spectrum of
metafinite structures.

• The notion of complexity (in particular, deterministic and non-
deterministic polynomial time) in the context of metafinite structures.
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For a fixed structure R, let Mτ [R] denote the class of metafinite structures
with a secondary part R and vocabulary τ = (τa, τr, τw) (where, of course, τr
is the vocabulary of R). We start with two notions of metafinite spectra.

Definition 3.6.13. A class K ⊆ Mτ [R] is a metafinite spectrum if there
exists a first-order sentence ψ of a vocabulary τ ′ ⊇ τ such that D ∈ K if and
only if there exists an expansion D′ ∈ Mτ ′[R] of D with D′ |= ψ. (Note that
the secondary part is not expanded.) A primary metafinite spectrum is
defined in a similar way, except that only the primary part of the structures is
expanded, and not the set of weight functions. This means that the expanded
structures D′ have the same set of weight functions as D.

These two notions of metafinite spectra correspond to two variants of ex-
istential second-order logic. The more restrictive variant allows second-
order quantification over primary relations only, whereas the general one al-
lows quantification over weight functions as well. Thus, a primary metafinite
spectrum is the class of structures D ∈ Mτ [R] which are models of an ex-
istential second-order sentence of the form ∃R1 · · · ∃Rmψ, where R1, . . . , Rm
are relation variables over the primary part, and ψ is first-order. Since rela-
tions over the primary part can be replaced by their characteristic functions,
a metafinite spectrum in the more general sense is the class of models of a
sentence ∃F1 · · · ∃Fmψ, where the Fi are function symbols ranging over weight
functions. We shall see that both notions of metafinite spectra capture (suit-
able variants of) non-deterministic polynomial-time in certain contexts, but
fail to do so in others.

In general, the notion of complexity for problems on metafinite strucures
depends on the computation model used and on the cost (or size) associated
with the elements of the secondary part. For instance, if the secondary part
consists of natural numbers or binary strings, then a natural notion of cost
is given by the number of bits. On the other hand, below we shall study
complexity over real numbers with respect to the Blum–Shub–Smale model,
and there every element of R will be treated as a basic entity of cost one.

Let ‖r‖ denote the cost of r. For a metafinite structure D = (A,R,W ) ∈
Mτ [R], let |D| := |A| and let max D := maxw∈W maxa ‖w(a)‖, the cost of
the maximal weight. Assuming R and τ to be fixed, then ‖D‖, the cost of
representing D, is polynomially bounded in |A| and max D (via a polynomial
that depends only on the vocabulary of D). Since most of the popular com-
plexity classes are invariant under polynomial increase of the relevant input
parameters, it therefore makes sense to measure the complexity in terms of
|D| and max D. For instance, an algorithm on a class of metafinite structures
runs in polynomial time or in logarithmic space if, for every input D, the
computation terminates in at most q(|D|,max D) steps, for some polynomial
q, or uses at most O(log |D|+ log max D) of work space, respectively.

We first discuss arithmetical structures, as described in Example 3.6.9,
assuming that the cost of natural numbers is given by the length of their binary
representations. So the question is whether, or under what circumstances, NP
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is captured by the class of metafinite spectra or primary metafinite spectra.
The original proof of Fagin’s Theorem generalizes to the case of arithmetical
structures with weights that are not too large.

Definition 3.6.14. A class K of metafinite structures has small weights if
there exists a k ∈ N such that max D ≤ |D|k for all D ∈ K. As max D stands
for the cost of the largest weight this means that the values of the weights are
bounded by a function 2p(|D|) for some polynomial p.

We obtain the following first generalization of Fagin’s result.

Theorem 3.6.15 (Grädel and Gurevich). Let K ⊆ Mτ [N] be a class of
arithmetical structures with small weights which is closed under isomorphisms.
The following are equivalent:

(i) K is in NP.
(ii) K is a primary generalized spectrum.

Proof. It is obvious that (ii) implies (i). The converse can be reduced to Fa-
gin’s Theorem as follows. We assume that for every structure D = (A,N,W )
in K, we have that max D ≤ nk, where n = |D| = |A|; further, we suppose
without loss of generality, that an ordering < on A is available (otherwise we
expand the vocabulary with a binary relation < and add a conjunct β(<)
asserting that < is a linear order). We can then identify Ak with the initial
subset {0, . . . , nk − 1} of N, viewed as bit positions of the binary representa-
tions of the weights of D. With every D ∈ K we associate a finite structure Df

by expanding the primary part A as follows: for every weight function w ∈ W
of arity j, we add a new relation Pw of arity j + k, where

Pw := {(a, t) : the tth bit of w(a) is 1}.

Then K is in NP if and only if Kf = {Df : D ∈ K} is an NP-set of finite
structures, and, in fact, we can choose the encodings in such a way that D

and Df are represented by the same binary string. Thus, if K is in NP, then,
by Fagin’s Theorem, Kf is a generalized spectrum, defined by a first-order
sentence ψ.

As in Example 3.6.11, one can construct a first-order sentence α (whose
vocabulary consists of the weight functions w ∈ τw and the corresponding
primary relations Pw) which expresses the assertion that the Pw encode the
weight functions w in the sense defined above. Then ψ ∧ α is a first-order
sentence witnessing that K is a primary metafinite spectrum. �

The above result also holds for arithmetical structures without multiset
operations. However, without the restriction that the weights are small, it is
no longer true that every NP-set is a primary metafinite spectrum. If we have
inputs with huge weights compared with the primary part, then relations over
the primary part cannot code enough information to describe computations
that are bounded by a polynomial in the length of the weights.
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It is tempting to use unrestricted metafinite spectra instead. However,
metafinite spectra in the general sense capture a much larger class than NP.

Theorem 3.6.16 (Grädel and Gurevich). On arithmetical structures,
metafinite spectra capture the recursively enumerable sets.

We sketch the proof here. It is not difficult to show that every metafinite
spectrum of arithmetical structures is recursively enumerable. For the con-
verse, we first note that any tuple a ∈ Nk can be viewed as an arithmetical
structure with an empty primary vocabulary and k nullary weight functions
a1, . . . , ak. Thus an arithmetical relation S ⊆ Nk can be viewed as a special
class of arithmetical structures. We show first that every recursively enumer-
able set S ⊆ Nk is a metafinite spectrum. In particular, there exist undecidable
metafinite spectra.

By Matijasevich’s Theorem (see [83]), every recursively enumerable set
S ⊆ Nk is Diophantine, i.e. can be represented as

S = {a ∈ Nk : there exists b1, . . . , bm ∈ N such that Q(a, b) = 0}

for some polynomial Q ∈ Z[x1, . . . , xk, y1, . . . , ym]. Let P, P ′ ∈ N[x, y] such
that Q(x, y) = P (x, y)−P ′(x, y). Thus S is a metafinite spectrum; the desired
first-order sentence uses additional weight functions b1, . . . , bm and asserts
that P (a, b) = P ′(a, b).

This can be extended to any recursively enumerable class of arithmetical
structures, with an arbitrary vocabulary. To see this, we encode structures
D ⊆ Mτ [N] by tuples c(D) ∈ Nk, where k depends only on τ . (In fact, it is
no problem to reduce k to 1.) Similarly to the case of finite structures, an
encoding involves the selection of a linear order on the primary part. In fact,
it is often more convenient to have a ranking of the primary part rather than
just a linear ordering.

Definition 3.6.17. Suppose that R contains a copy of (N, <). A ranking of
a metafinite structure D = (A,R,W ) is a bijection r : A → {0, . . . , n− 1} ⊆
R. A class K ⊆ Mτ [R] is ranked if τ contains a weight function r whose
interpretation on every D ∈ K is a ranking.

The Coding Lemma for arithmetical structures [48] says that for every
vocabulary τ there exists an encoding function that associates with every
ranked arithmetical τ -structure D a tuple code(D) ∈ Nk with the following
properties:

(1) code is definable by first-order terms.
(2) The primary part and the weight functions of D can be reconstructed

from code(D) in polynomial time.
(3) There exists a polynomial p(n,m) such that ci(D) ≤ 2p(|D|,maxD) for

every i ≤ k.
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Now let K ⊆Mτ [N] be recursively enumerable. The set

code(K) := {code(D, r) : D ∈ K, r is a ranking of D} ⊆ Nk

is then also recursively enumerable and therefore Diophantine. The desired
first-order sentence ψ uses, besides the symbols of τ , a unary weight function
r and nullary weight functions b1, . . . , bm and expresses the assertions (i) that
r is a ranking and (ii) that Q(code(D, r), b)) = 0 for a suitable polynomial
Q ∈ Z[x1, . . . , xk, y1, . . . , ym] defining code(K).

3.6.5 Descriptive Complexity over the Real Numbers

There are other contexts in which metafinite spectra do indeed capture (a
suitable notion of) non-deterministic polynomial time. An important example
are computations over the real numbers based on the model of Blum, Shub,
and Smale.

Computation over R

In 1989 Blum, Shub, and Smale [15] introduced a model for computations
over the real numbers (and other rings as well), which is now usually called
the BSS machine. The important difference from, say, the Turing model is
that real numbers are treated as basic entities and that arithmetic operations
on the reals are performed in a single step, independently of the magnitude or
complexity of the numbers involved. In particular, the model abstracts from
the problems that in actual computers real numbers have to be approximated
by bit sequences, that the complexity of arithmetic operations depends on the
length of these approximate representations, that rounding errors occur, and
that exact testing for 0 is impossible in practice. Similar notions of computa-
tions over arbitrary fields or rings had been investigated earlier in algebraic
complexity theory (see [22] for a comprehensive treatment). A novelty of the
approach of Blum, Shub, and Smale is that their model is uniform (for all
input lengths) whereas the ideas explored in algebraic complexity (such as
straight-line programs, arithmetic circuits, and decision trees) are typically
non-uniform. One of the main purposes of the BSS approach was to create a
uniform complexity theory dealing with problems that have an analytical and
topological background, and to show that certain problems remain hard even
if arbitrary reals are treated as basic entities.

Many basic concepts and fundamental results of classical computability
and complexity theory reappear in the BSS model: the existence of universal
machines, the classes PR and NPR (real analogues of P and NP), and the
existence of NPR-complete problems. Of course, these ideas appear in a dif-
ferent form, with a strong analytical flavour: typical examples of undecidable,
recursively enumerable sets are complements of certain Julia sets, and the
first problem that was shown to be NPR-complete is the question of whether
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a given multivariate polynomial of degree four has a real root [15]. As in the
classical setting, all problems in the class NPR are decidable within exponen-
tial time (but this is not as trivial as in the classical case), and the PR versus
NPR question is one of the major open problems.

However, there also are many differences between classical and real com-
plexity theory. Just to mention a few, we note that the meaning of space
resources seems to be very different, that certain separation results between
complexity classes can be established (such as NCR ( PR and NPR ( EXPR)
whose analogues in the classical theory are open, and that some discrete prob-
lems seem to change their complexity behaviour when considered in the BSS
model. For a detailed treatment we refer the interested reader to the book [14].

The BSS Model

Let R∗ :=
⋃

k∈N Rk, or (almost) equivalently, the set of functions X : N→ R
with X(n) = 0 for all but finitely many n. For any X ∈ R∗, we call |X | :=
max{n : X(n) 6= 0} the length of X . Note that R∗×R∗ can be identified with
R∗ in a natural way by concatenation. A Blum–Shub–Smale machine – in
what follows called a BSS machine – is essentially a Random Access Machine
over R which can evaluate rational functions at unit cost and whose registers
can store arbitrary real numbers.

Definition 3.6.18. A BSS machine M over R is given by a finite set I of
instructions labelled by 0, . . . , N . The input and output spaces are subsets of
R∗. A configuration is a quadruple (k, r, w, x) ∈ I × N × N × R∗, where k is
the instruction currently being executed, r and w are the numbers of the so
called ‘copy registers’ (see below) and x describes the content of the registers
of the machine. Given an input x ∈ R∗, the computation is started with a
configuration (0, 0, 0, x). If a configuration (k, r, w, x) with k = N is reached,
the computation stops; in that case the value of x is the output computed by
the machine. The instructions of M are of the following types:

• Computation. An instruction k of this type performs an update x0 ← gk(x)
of the first register, where gk is a rational function on Rm (for some m).
Simultaneously, the copy registers may be updated by rules r ← r + 1 or
r ← 0, and similarly for w. The other registers remain unchanged. The
next instruction will be k + 1.

• Branch. k: if x0 ≥ 0 goto ℓ else goto k+ 1. The contents of the registers
remain unchanged.

• Copy. k : xw ← xr, i.e. the content of the ‘read register’ is copied into the
‘write register’. The next instruction is k + 1; all other registers remain
unchanged.

A set L ⊆ R∗ is in PR if there exists a BSS machine whose running time
on every X ∈ R∗ is bounded by a polynomial in |X |, and which accepts X if
and only if X ∈ L. The analogue of NP is the class NPR. A set L ⊆ R∗ is in
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NPR if there exists a set L′ ∈ PR and a constant k such that L = {X ∈ R∗ :
(∃Y ∈ R∗)(|Y | ≤ |X |k ∧ (X,Y ) ∈ L′)}. Equivalently, NPR can be defined as
the class of problems over R∗ that are decidable in polynomial time by a non-
deterministic BSS machine, i.e. a BSS machine that can non-deterministically
guess real numbers Y ∈ R at unit cost.

Encodings. Recall that R-structures are metafinite structures D =
(A,R,W ) with a second sort R = (R,+,−, ·, /,≤, (cr)r∈R). We want to relate
decision problems for R-structures (described by logical formulae) to decision
problems on R∗ (decided by BSS-machines). We first consider an example.

Example 3.6.19. (4-Feasibility.) The first problem that was shown to be NPR-
complete was the problem of whether a real polynomial of degree at most four
in n unknowns (where n varies with the input) has a real zero. This problem
can be considered as a decision problem on R-structures as follows. Let A =
{0, . . . , n}. The coefficients of a homogeneous polynomial g ∈ R[X0, . . . , Xn]
can be coded via a function C : A4 → R, such that

g =
∑

0≤i,j,k,ℓ≤n

C(i, j, k, ℓ)XiXjXkXℓ.

We obtain an arbitrary (not necessarily homogeneous) polynomial f ∈
R[X1, . . . , Xn] of degree four by setting X0 = 1 in g. Thus, every multi-
variate polynomial f of degree at most four is represented by the R-structure
(A,R, {C}), where A = ({0, . . . , n}, <, 0, n) and C is a function from A4 into
R.

Observe that R∗ can be viewed as the class of all R-structures where the
primary part is a finite linear order ({0, . . . , n − 1}, <), and W consists of a
single unary function X : {0, . . . , n − 1} → R. Hence decision problems on
R∗ can be regarded as a special case of decision problems on R-structures (in
the same way as words can be considered as special cases of finite structures).
Conversely, R-structures D = (A,R,W ) can be encoded in R∗. We choose a
ranking on A and replace all functions and relations in the primary part by
the appropriate characteristic functions χ : Ak → {0, 1} ⊆ R. This gives a
structure whose primary part is a plain set A, with functions X1, . . . , Xt of
the form Xi : Ak → R and with the ranking r : A→ R. Each of the functions
Xi can be represented by a tuple x0, . . . , xm−1 ∈ Rm, where m = |A|k and
xi = X(a(i)), and where a(i) is the ith tuple in Ak with respect to the
lexicographic order induced by r. The concatenation of these tuples gives an
encoding code(D, r) ∈ R∗ (which depends on the ranking r that was chosen).

Obviously, for structures D of a fixed finite signature, the length of
code(D, r) is bounded by some polynomial nℓ, where n = |D| and ℓ depends
only on the signature. Thus we can also view code(D, r) = (x0, . . . , xnℓ−1) as
a single function XD : Aℓ → R, where X(a(i)) = xi for all i < nℓ. Thus, en-
coding an R-structure in R∗ basically means representing the whole structure
by a single function (of appropriate arity) from {0, . . . , n− 1} into R.
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Furthermore, this encoding is first-order definable in the following sense.

Lemma 3.6.20. For every signature τ , there is a first-order formula β(X, r)
of signature τ ∪{X, r} such that, for all R-structures D of signature τ , for all
rankings r, and for all functions X,

(D, X, r) |= β(X, r) iff X = code(D, r).

As in the case of finite structures, we say that a class K of R-structures is
in the complexity class PR or NPR if the set of its encodings is. Recall that a
metafinite spectrum of R-structures is a set K of R-structures that is definable
by an existential second-order sentence ∃Y1 · · · ∃Yrψ, where ψ is first-order and
the variables Yi range over weight functions Yi : Ak → R. Fagin’s Theorem
now has the following analogue in the real setting.

Theorem 3.6.21 (Grädel and Meer). Let K be a class of R-structures.
Then K ∈ NPR if and only if K is a metafinite spectrum.

Proof. It is easy to see that metafinite spectra are in NPR. Suppose that
ψ = ∃Y1 · · ·Yrϕ. Given an input structure D, we guess assignments for all
functions Yi and evaluate ϕ on (D, Y1, . . . , Yr) in polynomial time.

For the converse, let K ∈ NPR and let K′ be the corresponding problem
in PR, with K = {D : ∃Y ((D, Y ) ∈ K′)}. Let M be a polynomial-time BSS
machine deciding K′, and let m be a natural number such that M stops on
encodings of (D, Y ) after less than nm steps and uses at most nm−3 registers,
where n = |D|.

We first suppose that we have a ranking r : A→ R available. From r, the
induced (lexicographic) ranking rm : Am → R is first-order definable: we can
identify the element in A of maximal rank and thus have the number term n
available; we can then use rm(t) as an abbreviation for

r(t1)nm−1 + · · · r(tm−1)n+ r(tm).

We can then identify Am with the initial subset {0, . . . , nm−1} of N. Thus, in
the formulae to be constructed below, m-tuples t = t1, . . . , tm of variables are
considered to range over natural numbers t < nm. Conditions such as t = 0
or t = s+ s′ can then be expressed by first-order formulae of vocabulary {r}.

The computation of M for a given input code(D, Y ) can be represented
by a function Z : A2m → R as follows:

• Z(0, t) is the instruction executed by M at time t.
• Z(1, t) and Z(2, t) are the indices of the read and write registers of M at

time t.
• Z(j + 3, t) is the content of register j at time t.

We construct a first-order formula ψ with the property that, for all ranked
structures (D, Y ) and all Z, we have that (D, Y, Z) |= ψ iff Z represents an
accepting computation of M for code(D, Y ).
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We first have to express the assertion that at time t = 0, the function Z
encodes the input configuration of M on (D, Y ). Thus we need a subformula
stating that Z(i, 0) = 0 for i = 0, 1, 2 and that the values Z(j + 3, 0) encode
the input (D, Y ). By Lemma 3.6.20 this can be expressed in first-order logic.

Second, we have to ensure that for every t < nm − 1, if the sequence
〈Z(j, t) : j = 0, . . . , nm − 1〉 represents a configuration of M , then the se-
quence of values Z(j, t+1) represents the successor configuration. The formula
asserting this has the form

∀t
N
∧

k=0

(Z(0, t) = k → ϕk)

where ϕk describes transitions performed by the instruction k.
Consider for example a computation instruction k : x0 ← g(x0, . . . , xℓ),

and assume in addition that it increases the index of the read register by 1
and sets the index of the write register back to 0. The formula ϕk then has
to express the following:

• Z(0, t+ 1) = k + 1 (the next instruction is k + 1);
• Z(1, t+ 1) = Z(1, t) + 1 (the read register index is increased by 1);
• Z(2, t+ 1) = 0 (the write register index is set back to 0);
• Z(3, t + 1) = g(Z(3, t), Z(4, t), . . . , Z(ℓ + 3, t)) (into register 0, M writes

the result of applying the rational function g to the register contents at
time t).

• Z(j, t+ 1) = Z(j, t) for all j > 3 (the other registers remain unchanged).

Clearly, these conditions are first-order expressible. It should be noted that
whenever f0, . . . , fℓ are number terms and g : Rℓ → R is a rational function,
then g(f0, . . . , fℓ) is also a number term.

For another example illustrating the explicit use of the embedding func-
tion, consider a copy instruction k : xw ← xr. Here the formula has to express
(besides the updating of the instruction number, etc. which is done as above),
the assertion that the content of the register Z(2, t) at time t+1 is the same as
the content of the register Z(1, t) at time t. This is expressed by the formula

∀j∀j′([Z(1, t) = rm(j) ∧ Z(2, t) = rm(j
′
)]

→ Z(j
′
+ 3, t+ 1) = Z(j + 3, t)).

To express the assertion that M accepts its input, we just have to say that
Z(3, nm−1) = 1 (by convention, the result of the computation, if it is a single
number, is stored in register 0).

Combining all these subformulae in the appropriate way, we obtain the
desired formula ψ. It then follows that for all structures D,

D ∈ K iff D |= (∃Y )(∃Z)ψ,
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which proves the theorem for the case of ranked structures.
Finally, we do away with the assumption that the input structures are

ranked. If no ranking is given on the input structures D, we can introduce one
by existentially quantifying over the function r and adding a conjunct α(r)
which asserts that r is one–one and that, for all t with r(t) 6= 0, there exists
an element s such that r(s) + 1 = r(t). It follows that

K = {D : D |= (∃r)(∃Y )(∃Z)(α ∧ ψ)}.
�

Example 3.6.22. (Logical description of 4-Feasibility.) An existential second-
order sentence for the 4-feasibility problem quantifies two functionsX : A→ R
and Y : A4 → R where X(1), . . . , X(n) describes the zero and Y (u) is the
partial sum of all monomials up to u ∈ A4 in f(X1, . . . , Xn) (according to the
lexicographical order on A4). Thus the 4-feasibility problem is described by
the sentence

ψ := (∃X)(∃Y )
(

Y (0) = C(0) ∧ Y (n) = 0 ∧ ∀u(u 6= 0→
Y (u) = Y (u − 1) + C(u)

∏4
i=1X(ui))

)

.

Indeed, D |= ψ if and only if the polynomial f of degree four defined by D

has a real zero.

Capturing Results for Other Complexity Classes

By combining the general ideas of descriptive complexity theory on finite
structures with the approach described here, one can find logical characteriza-
tions for many other complexity levels, notably for polynomial time, provided
that the given R-structures are ranked (i.e. an ordering on the finite part is
available). This is carried out in some detail in [30, 53].
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3.7 Appendix: Alternating Complexity Classes

Alternating algorithms are a generalization of non-deterministic algorithms,
based on two-player games. Indeed, one can view non-deterministic algorithms
as the restriction of alternating algorithms to solitaire (i.e. one-player) games.
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Since complexity classes are mostly defined in terms of Turing machines, we
focus on the model of alternating Turing machines. But note that alternating
algorithms can be defined in terms of other computational models, also.

Definition 3.7.1. An alternating Turing machine is a non-deterministic
Turing machine whose state set Q is divided into four classes Q∃ , Q∀ , Qacc,
and Qrej . This means that there are existential, universal, accepting and re-
jecting states. States in Qacc ∪Qrej are final states. A configuration of M is
called existential, universal, accepting, or rejecting according to its state.

The computation graph GM,x of an alternating Turing machine M for an
input x is defined in the same way as for a non-deterministic Turing machine.
Nodes are configurations (instantaneous descriptions) of M , there is a distin-
guished starting node C0(x) which is the input configuration of M for input x,
and there is an edge from configuration C to configuration C′ if, and only if,
C′ is a successor configuration of C. Recall that for non-deterministic Turing
machines, the acceptance condition is given by the Reachability problem:
M accepts x if, and only if, in the graph GM,x some accepting configuration
Ca is reachable from C0(x). For alternating Turing machines, acceptance is
defined by the Game problem (see Sect. 3.1.3): the players here are called
∃ and ∀, where ∃ moves from existential configurations and ∀ from universal
ones. Further, ∃ wins at accepting configurations and loses at rejecting ones.
By definition, M accepts x if, and only if, Player ∃ has a winning strategy
from C0(x) for the game on GM,x.

Complexity Classes

Time and space complexity are defined as for nondeterministic Turing ma-
chines. For a function F : N→ R, we say that an alternating Turing machine
M is F -time-bounded if for all inputs x, all computation paths from C0(x)
terminate after at most F (|x|) steps. Similarly, M is F -space-bounded if no
configuration of M that is reachable from C0(x) uses more than F (|x|) cells
of work space. The complexity classes ATIME(F ) and ASPACE(F ) contain
all problems that are decidable by, respectively, F -time bounded and F -space
bounded alternating Turing machines.

The following classes are of particular interest:

• ALOGSPACE = ASPACE(O(log n)),
• APTIME =

⋃

d∈N ATIME(nd),

• APSPACE =
⋃

d∈N ASPACE(nd).

Alternating Versus Deterministic Complexity

There is a general slogan that parallel time complexity coincides with sequen-
tial space complexity. Indeed, by standard techniques of complexity theory,
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one can easily show that, for well-behaved (i.e. space-constructible) func-
tions F , ATIME(F ) ⊆ DSPACE(F 2) and DSPACE(F ) ⊆ NSPACE(F ) ⊆
ATIME(F 2) (see [9] for details). In particular,

• APTIME = PSPACE;
• AEXPTIME = EXPSPACE.

On the other hand, alternating space complexity corresponds to exponen-
tial deterministic time complexity.

Theorem 3.7.2. For any space-constructible function F (n) ≥ log n, we have
that ASPACE(F ) = DTIME(2O(F )).

Proof. The proof is closely associated with the Game problem. For any F -
space-bounded alternating Turing machine M , one can, given an input x,
construct the computation graph GM,x in time 2O(F (|x|) and then solve the
Game problem in order to decide the acceptance of x by M .

For the converse, we shall show that for any G(n) ≥ n and any constant
c, DTIME(G) ⊆ ASPACE(c · logG).

Let L ∈ DTIME(G). There is then a deterministic one-tape Turing ma-
chine M that decides L in time G2. Let Γ = Σ∪(Q×Σ)∪{∗} and t = G2(n).
Every configuration C = (q, i, w) (in a computation on some input of length
n) can be described by a word

c = ∗w0 · · ·wi−1(qwi)wi+1 · · ·wt∗ ∈ Γ t+2.

The ith symbol of the successor configuration depends only on the symbols
at positions i− 1, i, and i + 1. Hence, there is a function fM : Γ 3 → Γ such
that, whenever symbols a−1, a0, and a1 are at positions i− 1, i and i + 1 of
some configuration c, the symbol fM (a−1, a0, a1) will be at position i of the
successor configuration c′.

The following alternating algorithm A decides L:

Input: x
Existential step: guess s ≤ t,

guess (q+a) ∈ Qacc ×Σ , i ∈ {0, . . . , s}
b := (q+a)

for j = 1 . . . s do
Existential step: guess a−1, a0, a1 ∈ Γ 3

verify that fM (a−1, a0, a1) = b. If not, reject.
Universal step: choose k ∈ {−1, 0, 1}

b := ak
i := i+ k

od
if ith symbol of input configuration of M on x equals b then accept

else reject.
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The algorithm A needs space O(logG(n)). If M accepts the input x, then
Player ∃ has the following winning strategy for the game on CA,x: the value
chosen for s is the time at which M accepts x, and (q+a), i are chosen so that
the configuration of M at time s is of the form ∗w0 · · ·wi−1(q+a)wi+1 · · ·wt∗.
At the jth iteration of the loop (that is, at configuration s− j), the symbols
at positions i− 1, i, i+ 1 of the configuration of M at time s − j are chosen
for a−1, a0, a1.

Conversely, if M does not accept the input x, the ith symbol of the config-
uration at time s is not (q+a). The following holds for all j: if, in the jth iter-
ation of the loop, Player ∃ chooses a−1, a0, a1, then either f(a−1, a0, a1) 6= b,
in which case Player ∃ loses immediately, or there is at least one k ∈ {−1, 0, 1}
such that the (i+ k)th symbol of the configuration at time s− j differs from
ak. Player ∀ then chooses exactly this k. At the end, ak will then be different
from the ith symbol of the input configuration, so Player ∀ wins.

Hence A accepts x if, and only if, M does so. �

In particular, it follows that

• ALOGSPACE = PTIME;
• APSPACE = EXPTIME.

The relationship between the major deterministic and alternating com-
plexity classes is summarized by the following diagram:

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆ . . .
|| || || ||

ALOGSPACE ⊆ APTIME ⊆ APSPACE ⊆ AEXPTIME ⊆ . . .

Alternating Logarithmic Time

For time bounds F (n) < n, the standard model of alternating Turing machines
needs to be modified a little by an indirect access mechanism. The machine
writes down, in binary, an address i on an separate index tape to access the ith
symbol of the input. Using this model, it makes sense to define, for instance,
the complexity class ALOGTIME = ATIME(O(log n)).

Example 3.7.3. Construct an ALOGTIME algorithm for the set of palin-
dromes (i.e., words that are same when read from right to left and from
left to right).

Important examples of problems in ALOGTIME are

• the model-checking problem for propositional logic;
• the data complexity of first-order logic.

The results mentioned above relating alternating time and sequential space
hold also for logarithmic time and space bounds. Note, however, that these do
not imply that ALOGTIME = LOGSPACE, owing to the quadratic overheads.
It is known that ALOGTIME ⊆ LOGSPACE, but the converse inclusion is
an open problem.
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