
Is Polynomial Time Choiceless?

Erich Grädel and Martin Grohe

RWTH Aachen University, Germany
graedel@logic.rwth-aachen.de,

grohe@informatik.rwth-aachen.de

For Yuri Gurevich on the occasion of his 75th birthday

Abstract. A long time ago, Yuri Gurevich made precise the problem
of whether there is a logic capturing polynomial-time on arbitrary finite
structures, and conjectured that no such logic exists. This conjecture
is still open. Nevertheless, together with Andreas Blass and Saharon
Shelah, he has also proposed what still seems to be the most promising
candidate for a logic for polynomial time, namely Choiceless Polynomial
Time (with counting). We survey some recent results on this logic.

1 Introduction

Is there a logic for Ptime? More than thirty years after this problem has first
been posed by Chandra and Harel (in somewhat different form) in the context of
database theory, and after Yuri Gurevich has reformulated the question in logical
terms, we still do not know the answer. The quest for a logic for Ptime, or for a
proof that no such logic exists, still remains the perhaps most fundamental and
challenging open problem of finite model theory.

Yuri Gurevich has made many important contributions to this problem, in-
cluding numerous studies on the expressive power, structure, and complexity of
a number of different logics that arise in this context. Let us focus here on two
main achievements.

The precise formulation of what would really constitute a logic for Ptime has
been extremely influential, and is of course an indispensable prerequisite for all
attempts to prove that such a logic cannot exist. Gurevich’s first requirement is
that a logic should have a decidable syntax, that is, a decidable set of of sentences.
Each sentence defines a property of finite1 structures, that is, an isomorphism
closed class of structures of the same vocabulary. For the logic to capture polyno-
mial time we want every polynomial-time decidable property of structures to be
definable by some sentence of the logic. This is Gurevich’s second requirement
for a logic capturing Ptime. Conversely, we want every property definable in the
logic to be decidable in polynomial time. However, this is not sufficient to exclude
pathological examples. For example, we could take an (arbitrary, not necessarily

1 Structures are always assumed to be finite in this paper, with the exception of the
herditarily finite expansions introduced in Section 2.

2

computable) enumeration P0, P1, P2, . . . of all polynomial-time decidable prop-
erties of structures and define a logic whose sentences are the natural numbers
and where sentence i defines the property Pi. What we are still missing is an
effective link between sentences and the properties they define. Therefore, the
third requirement for a logic capturing Ptime is the existence of a “compiler”
that translates a sentence into a polynomial time evaluation algorithm, that is,
an algorithm that computes for each sentence ϕ of the logic a polynomial time
algorithm Aϕ deciding the property Pϕ defined by ϕ.

Despite his conjecture that there is no logic capturing Ptime, Yuri Gure-
vich has, together with Andreas Blass and Saharon Shelah [6], also proposed
Choiceless Polynomial Time, a logical formalism that, arguably, is still the most
promising candidate for a logic that might actually capture Ptime. This paper
is a survey of recent results on Choiceless Polynomial Time.

2 Choiceless Polynomial Time

There are several different presentations of Choiceless Polynomial Time (CPT).
The original intention was to explore a model for efficient computations on ab-
stract finite structures (and not on presentations of these via finite strings) which
preserve symmetries at every step in the computation. This prohibits the explicit
introduction of an ordering or, equivalently, arbitrary choices between indistin-
guishable elements of the input structure (or of the current state). Notice that
such choices appear in many algorithms of fundamental importance, including
depth-first search, Gaussian elimination, the augmenting-path algorithm for bi-
partite matching and many more.

Thus, Blass, Gurevich, and Shelah set out to define a computation model
that avoids symmetry breaking choices, but allows essentially everything else,
including parallelism and “fancy data structures”, as long as all operations can
be carried out in polynomial time. For a precise definition, they proposed a
model based on abstract state machines, which, given a finite input structure,
works on its extension by all hereditarily finite sets over it, which may be seen
as a powerful higher-order data structure.

Inspired by Rossman [27], we give a more “logical” definition of CPT.

2.1 BGS-Logic

We need to review a few set theoretic notions first. For a finite set A, the set
HF(A) of hereditarily finite sets over A is defined as follows: we let H0 := A∪{∅}
and Hi+1 := Hi∪2Hi for all i ≥ 0 and HF(A) :=

⋃
i≥0Hi. For every x ∈ HF(A),

we define the rank of x to be the least i such that x ∈ Hi. We call the elements
a ∈ A ⊆ HF(A) the atoms; all other elements of HF(A) are sets. With every
natural number n ∈ N we associate the corresponding van Neumann ordinal n,
inductively by 0 := ∅ and n+1 := n ∪ {n}.

Suppose now that we have a finite structure A with universe A over some
vocabulary τ consisting of relation, function, and constant symbols. We let τHF

3

be the extension of τ by a binary relation symbol ∈, a binary function symbol
Pair, unary function symbols Union, TheUnique, Card, and constant symbols ∅
and Atoms (of course we assume that none of these symbols appears in τ). We
define the hereditarily finite expansion of A to be the τHF-structure HF(A) with
universe HF(A), all symbols from τ interpreted as in A, with the convention that
functions take all arguments not from A to ∅, and the new symbols in τHF \ τ
are interpreted in the natural way: ∈ is the binary “element”-relation, Pair maps
x, y to the set {x, y}, Union maps x to the union of all sets in x, TheUnique maps
singleton sets {x} to their unique element x and all other sets to the empty set,
Card maps a set to its cardinality (represented as a von Neumann ordinal), ∅ is
the empty set, and Atoms is the set A, viewed as an element of HF(A) of rank 1.

The next step towards the definition of CPT is the definition of a more gen-
eral logic called BGS-logic. The syntactic objects of BGS-logic are terms and
formulae. There are three different types of terms, or rather, term constructions:
ordinary terms, comprehension terms, and iteration terms. The ordinary terms
of BGS-logic of vocabulary τ are τHF-terms defined in the usual way. The for-
mulae of BGS-logic are Boolean combinations of atomic formulae of the form
t = u, t ∈ u, and R(t1, . . . , tk) for every k-ary relation symbol R ∈ σ, where
t, u, t1, . . . , tk are terms. Thus all formulae are quantifier-free. (Example 2 below
gives an indication on how quantifiers can be simulated.) Besides the ordinary
terms, BGS-logic has comprehension terms of the form

{t : v ∈ u : ϕ}, (1)

where t, u are terms, v is a variable that is not free in u, and ϕ is a formula.
More suggestively, we may write {t(v) : v ∈ u : ϕ(v)} to indicate that this term
defines the set of all values t(x), where x is an element of the set defined by the
term u that satisfies the formula ϕ. Note that t, u, and v may have other free
variables besides v.

Finally, for every term t with just one free variable we have an iteration
term t∗. More suggestively, we may write t(v)∗, where v is the free variable of
t. Intuitively, the value of the term t∗ is the first fixed point of the sequence
t(∅), t(t(∅), t(t(t(∅))), . . ., if such a fixed point exists, or ∅ if no fixed point exists.

We define the free variables of terms and formulae in the natural way, stip-
ulating that the variable v in a comprehension term of the form (1) and in
an iteration term t(v)∗ be bound. Thus iteration terms t∗ can never have free
variables.

Terms and formulae of vocabulary τ are interpreted in the hereditarily fi-
nite expansion of τ -structures in the natural way. Formally, the denotation of
a term t = t(v1, . . . , vk) of vocabulary τ and with free variables v1, . . . , vk in a
τ -structure A is the function JtKA : HF(A)k → HF(A) that maps (x1, . . . , xk) ∈
HF(A)k to the value of the term if v1, . . . , vk are interpreted by x1, . . . , xk, repec-
tively. If a term t has no free variables, then JtKA is a nullary function, which
we interpret as a constant. Similarly, we define the denotation JϕKA of a formula
ϕ = ϕ(v1, . . . , vk) in A to be the set of all (x1, . . . , xk) ∈ HF(A)k satisfying
ϕ. Note that if ϕ is a sentence, that is, a formula without free variables, then

4

either JϕKA = {∅} =: True or JϕKA = ∅ =: False. In these and similar nota-
tions, we omit the superscriptA if A is clear from the context. The definition
is straightforward for ordinary terms and formulae. For a comprevension term
s := {t : v ∈ u : ϕ}, where for simplicity we assume that t and ϕ have the same
free variables v, v1, . . . , vk and u has free variables v1, . . . , vk, we define

JsK(x1, . . . , xk) :=
{
JtK(x, x1, . . . , xk)

∣∣ x ∈ JuK(x1, . . . , xk)

such that (x, x1, . . . , xk) ∈ JϕK},

for all (x1, . . . , xk) ∈ HF(A)k. For an iteration term t∗ we define a sequence
(xi)i≥0 by x0 := ∅ and xi+1 := JtK(xi), and we let

Jt∗K :=

{
x` for the least ` such that x` = x`+1 if such an ` exists,

∅ otherwise.

If there is no ` such that x` = x`+1, we say that t∗ diverges in A. We define the
length of the iteration len(t∗,A) of t∗ in A to be the least ` such that x` = x`+1,
or ∞ if t∗ diverges.

Remark 1. Instead of defining Jt∗K to be the emptyset if t∗ diverges, we could
also leave it undefined and work with a three valued logic. This would be closer
to Blass, Gurevich and Shelah’s original approach, but complicate things unnec-
essarily. For the fragment CPT of BGS-logic that we are mainly interested in,
this makes no difference, because all terms in this fragment will be required to
converge anyway.

The iteration terms play the role of the programs in Rossman’s version of
BGS-logic. It is easy to see that programs can be simulated by iteration terms
and, conversely, iteration terms can be simulated by programs. However, as
opposed to Rossman, we allow iteration terms to appear inside of other terms
and formulae, whereas Rossman does not allow nested programs. But again, for
the fragment CPT this makes no difference.

Example 2 (Triangles in a Graph). Let τ = {E} with one binary relation symbol
E; we view τ -structures as directed, or if E is symmetric undirected, graphs. We
shall construct a BGS-term that defines the set of all triangles (viewed as 3-
element sets) in an undirected graph.

We let ϕ(v1, v3, v3) := E(v1, v2) ∧ E(v2, v3) ∧ E(v3, v1) and

t1(v2, v3) := {Union(Pair(Pair(v1, v1),Pair(v2, v3))) : v1 ∈ Atoms : ϕ(v1, v3, v3)},
t2(v3) := {t1(v2, v3) : v2 ∈ Atoms : v2 = v2},

t3 := {t2(v3) : v3 ∈ Atoms : v3 = v3}.

Then Jt3KG is the set of all triangles of an undirected graph G.

We can now define a formula ψ(v) expressing that v is contained in a triangle:
we simply let ψ(v) := v ∈ Union(t3).

5

Using ideas similar to those in the example, it is not difficult to express
bounded quantifiers ∃v ∈ t and ∀v ∈ t in BGS-logic. Thus all formulae of
bounded first-order logic (called ∆0-formulae in set theory) over the heredi-
tarily finite sets can be expressed by equivalent BGS-formulae (without using
iteration).

Example 3 (Power Set). We shall construct a BGS-term that defines the power
set of the set of atoms.

We observe that we can express the union of two sets s and t as

s ∪ t := Union(Pair(s, t)).

We define an auxiliary term

s(w) := {w ∪ Pair(w′, w′) : w′ ∈ Atoms : w′ = w′},

which defines the collection of sets obtained by adding an atom to w, and let

t(v) := Pair(∅, ∅) ∪ Union({s(w) : w ∈ v : w = w}).

Then

i times︷ ︸︸ ︷
t(t(· · · t(∅) · · ·)) defines the set of sets of at most i − 1 atoms. Thus for

every structure A we have Jt∗K = 2A.

We can use the previous example to show that BGS-logic can simulate
monadic second-order logic, and by iterating the construction, higher order logic.
Thus the logic is far too powerful to stay within the realm of polynomial time
computations.

2.2 Definition of Choiceless Polynomial Time

Intuitively, Choiceless Polynomial Time (CPT) is the polynomial-time fragment
of BGS-logic. To define CPT we first restrict the length of iterations to be
polynomial in the size of the input. However, this alone is not sufficient, as can
be seen by Example 3. In addition, it is necessary to restrict also the number of
elements that are being used, or active, in any step of the computation.

We inductively define for every term s = s(v1, . . . , vk), every structure A, and
every tuple x = (x1, . . . , xk) ∈ HF(A)k the set act(s,A, x) of active elements as
follows.

– If s = v is a variable then act(s,A, x) = {x}, and if s = c is a constant then
act(s,A) = {JcK}.

– If s = f(t1, . . . , t`) then

act(s,A, x) = {JsK(x)} ∪
⋃̀
i=1

act(ti,A, xi),

where xi is the subtuple of x corresponding the free variables of ti.

6

– If s = {t : v ∈ u : ϕ(v)}, then

act(s,A, x) = {JsK(x)} ∪ act(u,A, x) ∪
⋃

x∈JuK(x)

(
act(t,A, xx) ∪ act(ϕ,A, xx)

)
,

where xx denotes the tuple (x, x1, . . . , xk) and for simplicity we assume that
the free variables of t and ϕ are v, v1, . . . , vk and the free variables of u are
v1, . . . , vk.

– If s = t∗ we define the sequence (xi)i≥0 as in the definition of Jt∗K and let

act(s,A) =
⋃
i≥0

act(t,A, xi).

Note that if s converges then act(s,A) =
⋃len(t∗,A)

i=0 act(t,A, xi), and thus
act(s,A) ∈ HF(A). This is not necessarily the case if t diverges.

For a formula ϕ, we define act(ϕ,A, x) to be the union of the sets act(t,A, xt)
for the terms t that are used to built ϕ.

We are now ready to define Choiceless Polynomial Time (CPT) as the frag-
ment of BGS-logic consisting of all sentences ϕ for which there is a polynomial
p(x) such that for all structures A of order |A| = n we have

| act(ϕ,A)| ≤ p(n).

Observe that this implies that for all iteration terms t∗ appearing in ϕ (also as
subterms of other terms) we have len(t∗,A) ≤ p(n), because all values appearing
in the steps of the iteration are active elements.

Remark 4. Defined this way, CPT is not a logic in the strict sense because it does
not have a decidable syntax. However, it is easy to define a syntactic fragment
that does have a decidable syntax, but still has the same expressive power. The
key idea is to include explicit counters and cardinality tests in iteration terms.
The next example illustrates how this can be done.

Example 5 (Counter). In this example, we show how to modify an iteration term
s∗ in such a way that the iteration is aborted if no fixed-point is reached after n
(= order of the structure) steps.

It is not hard to define a binary term 〈·, ·〉 that combines its two arguments
into an ordered pair and projection terms π1, π2 that map an ordered pair to its
entries. Moreover, the term succ(v) := v ∪ Pair(v) maps a von-Neumann ordinal
n to ist successor n+1. Note that m < n ⇔ m ∈ n for all n,m ∈ N.

Now consider an iteration term s∗. We let

t(v) := 〈0, ∅〉 ∪ {〈succ(π1(w)), s(π2(w))〉 : w ∈ v : π1(w) ∈ Card(Atoms))}.

Then for all structure A of order n := |A| = JCard(Atoms)K we have Jt∗K =
{(i, xi) | 0 ≤ i ≤ n}, where the sequences (xi)i≥0 is defined by x0 := ∅ and

7

xi+1 := JsK(xi). Obsserve that if s∗ converges then xn = s∗ if and only if
xn = xn+1. Let

u := TheUnique
({
π2(w) : w ∈ t∗ : π1(w) = Card(Atoms) ∧ π2(w) = s(π2(w))

})
.

Then JuK = Js∗K if len(s,A) ≤ n and JuK = ∅ otherwise.

2.3 Defining Properties of Small Substructures

To illustrate the power of CPT, we consider specific structures that we call
padded graphs. The vocabulary τ consist of a unary relation symbol V and
a binary relation symbol E. A padded graph is a τ -structure A where EA ⊆
V A×V A and EA is symmetric and irreflexive. The underlying graph of a padded
graph A is the graph GA with vertex set V A and edge relation EA. In the
following, we always use n to denote the order |A| of a padded graph A and ` to
denote the order |V A| of its underlying graph. We usually assume that `� n.

Example 6 (3-Colourability of Padded Graphs). In this example, we consider
padded graphs A where ` ≤ log n. Using the construction of Example 3, we

obtain a term t that defines the powerset of V , that is, JtK = 2V
A

. The assumption
` ≤ log n guarantees that this works within the polynomial bounds imposed by
CPT. Using this term, we can easily write a CPT-sentence of the form ∃v1 ∈
t∃v2 ∈ t∃v3 ∈ t (· · ·) stating that the underlying graph of A is 3-colourable.

The following example is due to Blass, Gurevich, and Shelah.

Example 7 (Linear Orders). We consider padded graphs where `! ≤ n. Then,
using a similar idea as in Examples 3 and 6, we construct a term t that defines
the set of all linear orders of V . As there are `! linear orders of V , the assumption
`! ≤ n guarantees that we stay within the polynomial bounds imposed by CPT.

Now, exploiting the facts that least fixed-point logic LFP captures polynomial
time on ordered graphs and that CPT is at least as expressive as LFP, it is easy
to show that CPT can express all polnomial time properties of the underlying
graph of the given padded graph.

It is not hard to show that there are polynomial time properties of the under-
lying graph that cannot be expressed in LFP, not even in fixed-point logic with
counting FPC (see Section 3), because the padding does not help these logics
very much. This is the easiest way to show that CPT is strictly more expressive
than FPC.

Laubner [25], in his PhD-thesis, slightly strengthened the result of the previ-
ous example and proved the following theorem, which intuitively says that CPT
expresses all polynomial time properties of definable subgraphs of logarithmic
size.

Theorem 8. For every property P of graphs that is decidable in polynomial
time there is a CPT-sentence ϕ such that for all padded graphs A with ` ≤ log n,
the following are equivalent.

8

1. A satisfies ϕ.
2. The underlying graph GA has property P .

The crucial step in the proof of this theorem is the implementation of a
combinatorial graph canonization algorithm due to Corneil and Goldberg [11],
running in time 2O(`) on graphs of order `, in CPT.

2.4 Choiceless Polynomial Time Without Counting

To be a serious candidate for being a logic for polynomial time, CPT has (and
needs) the cardinality operator Card. Blass, Gurevich and Shelah also considered
a variant of CPT without the Card-operator, which we denote by CPT−.

Not surprisingly, CPT− is unable to determine whether a structure has an
even or odd number of elements, but this is much more difficult to prove than
for, say, least fixed-point logic. The proof requires a sophisticated analysis of the
support of hereditarily finite sets used in CPT-computations (see [27]). Never-
theless CPT− is quite a powerful language; for instance it has been in shown in
[14] that CPT− can express (a variant of) the CFI-query that separates fixed-
point logic with counting (FPC) from Ptime and is therefore incomparable with
FPC. An interesting result on CPT− is the zero-one law established by Shelah
(see [5] for details) saying that for every CPT−-definable property P of relational
τ -structures the probability µn(P) that a random τ -structure of cardinality n
satisfies property P tends either to 0 or 1 as n goes to infinity.

3 Fixed-Point Logic With Counting

The logic of reference, or yardstick, in the search for a logic for Ptime is fixed-
point logic with counting, denoted FPC. This logic was introduced, somewhat
informally, by Immerman [23], a more formal definition, based on two-sorted
structures, inflationary fixed-points, and counting terms was given in [17]. For a
recent survey on FPC, see [12].

Fixed-point logic with counting comes actually rather close to being a logic
for polynomial time. It is strong enough to express most of the fundamental
algorithmic techniques leading to polynomial-time procedures and it captures
Ptime on many interesting classes of finite structures, including trees, planar
graphs, structures of bounded tree width, and actually all classes of graphs
with an excluded minor [20]. Indeed, these classes even admit FPC-definable
canonisation which means that FPC can define, given an input structure, an
isomorphic copy of that structure over a linearly ordered universe. Clearly, if
a class of structures admits FPC-definable canonisations, then FPC captures
Ptime on this class, since by the Immerman-Vardi Theorem (see e.g. [19]) fixed-
point logic can define every polynomial-time query on ordered structures.

Although it has been known for more than twenty years that FPC fails to
capture Ptime in general, by the fundamental CFI-construction due to Cai,
Fürer, and Immerman [10], we still know only relatively few properties of finite
structures that provably separate FPC from Ptime.

9

Roughly we have, at this time, two main sources for such problems. The first
one includes tractable cases of the isomorphism problem for finite structures,
in particular for graphs. It is, in general still open, whether the general graph
isomorphism problem is solvable in polynomial time, but efficient isomorphism
tests are known in many special cases, including all classes of graphs of bounded
degree or bounded colour class size. However, the CFI-construction shows that
FPC cannot define the isomorphism problem even on graphs with bounded de-
gree and bounded colour class size.

Multipedes. An interesting instance of such a problem is the isomorphism
problem for multipedes. Multipedes2 have been introduced in [7] and studied
also in [21]. Informally, a multipede is a finite two-sorted structure, consisting
of an ordered set of segments, and a set of feet, such that exactly two feet are
attached to each segment. Further there is a collection of hyperedges H of size
3 on the segments, and a corresponding collection of hyperedges P of feet, also
of size 3, called positive triples, such that each positive triple of feet is attached
to a hyperedge H of segments, and out of the eight triples of feet attached to
H, exactly four are positive. Further if P and P ′ are two positive triples of feet
attached to the same hyperedge H, then |P − P ′| is even. Finally, exactly one
of the two feet attached to the first segment carries a shoe.

Blass, Gurevich, and Shelah [7] proved that the isomorphism problem for
multipedes can be solved in polynomial time, but that it is not expressible in
fixed-point logic with counting. They asked the question whether it is definable
in CPT.

Linear algebra. The second class of hard problems for FPC includes queries
from linear algebra. In general, the definability of central problems of linear al-
gebra provides an interesting challenge in the study of the expressive power of
logical systems and for the quest for a logic for Ptime. On one side, it has turned
out that a fair amount of linear algebra, in particular for fields of characteristic
zero, is expressible in fixed-point logic with counting, including arithmetic oper-
ations on matrices, singularity of matrices, determinants, characteristic polyno-
mials, and matrix rank over Q (but not over fields of prime characteristic). On
the other side, Atserias, Bulatov and Dawar [3] proved that FPC cannot express
the solvability of linear equation systems over any finite Abelian group, and it
then follows that also a number of other problems from linear algebra are not
definable in FPC either. This motivated the introduction of rank logic, which
extends FPC by operators for the rank of definable matrices over prime fields
Fp, and which permits to express the solvability of linear equation systems over
finite fields [13]. Interestingly, also the CFI-query can be formulated as linear
equation system over F2 and is thus expressible in rank logic. There are differ-
ent variants of rank logic. For the most powerful of them, with a rank operator
where the prime over which the rank is computed is not fixed, but part of the
input, it is still open whether it captures Ptime [18].

2 Actually, Gurevich and Shelah introduced a number of different variants of multi-
pedes. What we use here are called 3-multipedes with shoes in [7].

10

4 Structures of Bounded Colour Class Size

Recall a that a preorder of width q is a reflexive, transitive, and total binary
relation � such that the induced equivalence relation a ∼ b := (a � b � a) only
has equivalence classes of size ≤ q. A q-bounded structure is a structure that is
equipped with a pre-order � of width q. The equivalence classes induced by �
are also called colour classes.

It is still open whether Choiceless Polynomial Time captures Ptime on all
classes of finite structures with bounded colour class size. A partial positive
answer was given in [1], for any class of q-bounded structures with Abelian colours,
which means that the automorphism groups of all substructures induced by the
colour classes are commutative.

An important ingredient in the CPT-canonization procedure for such classes
is a choiceless algorithm for solving a special class of linear equation systems.
Clearly linear equation systems over an ordered set of variables can be solved
in fixed-point logic with counting. However, classical solution algorithms for
linear equation systems require choice, and for unordered sets of variables they
cannot be carried out in FPC. An intermediate class are cyclic linear equation
systems (CES) over finite rings Zpk , equipped with a pre-order � on the set
of variables, such that every pair of �-equivalent variables x, y is related by an
equation x+ a = y for some constant a. This means that fixing the value of one
variable in a solution of the CES fixes also the values for all other variables in the
same �-class. Cyclic equation systems arise for instance in Cai-Fürer-Immerman
(CFI) constructions. The original CFI-query (over ordered input graphs) can be
formulated as cyclic equation systems over Z2 where the cyclic constraint on
pairs x0, x1 of �-equivalent variables simply has the form x0 +x1 = 1. In Holm’s
PhD-thesis [22] and also in [18] a generalized CFI-construction over rings Zq

has been exhibited which is, for instance, relevant for the study of rank logic.
Again, the isomorphism problem for generalized CFI-structures, which can be
formulated as a CES over Zq, separates Ptime from FPC, but it also gives rise to
a number of further separation results, concerning for instance different variants
of rank logics [18].

Theorem 9. The solvability problem for cyclic linear equation systems can be
defined in Choiceless Polynomial Time.

Any �-class of variables in a CES has a cyclic structure, and we can order
each such class by fixing one variable. However, in Choiceless Polynomial Time
it is not possible to simultaneously fix one variable in each class, since this would
require to take into account also all symmetric choices of which there may be
exponentially many. One can circumvent this problem by means of so-called hy-
perterms which avoid this exponential blow-up by identifying equivalent choices
and encoding equivalence classes as hereditarily finite sets over the universe of
variables. Choiceless Polynomial Time is powerful enough to perform arithmetic
operation on hyperterms, and to translate any cyclic linear equation system into
an ordered system of hyperequations. Finally the solvability of such systems can
then be determined in CPT by a variant of Gaussian elimination for finite rings.

11

Cyclic linear equation systems are an essential ingredient in the canonization
procedure for q-bounded structures with Abelian colours. For details, we refer
to [1] and the forthcoming PhD thesis of Wied Pakusa.

Theorem 10. CPT captures Ptime on every class of q-bounded structures with
Abelian colours.

Notice that 2-bounded structures trivially have Abelian colours, since the
automorphism group of every colour class is either trivial or Z2. Hence CPT
capture polynomial-time on 2-bounded structures. Further, since also multipedes
are 2-bounded structures, this resolves the above-mentioned problem posed by
Blass, Gurevich, and Shelah (cf. [7, Question 5.12, p. 1115]).

Corollary 11. The isomorphism problem for multipedes is CPT-definable.

5 Symmetric Circuits

Any property of finite τ -structures can be considered as a sequence of Boolean
functions (fn)n∈N where fn takes as inputs the truth values of the atomic τ -
formulae on a given structure A with universe [n] = {0, . . . , n− 1}, and returns
either 0 or 1, depending on whether or not A satisfies the given property. To
represent really a property of structures of size n, and not of ordered presenta-
tions of these, the function fn must be invariant under any permutation of the
universe [n].

Clearly every property of finite structures that is decidable in polynomial time
is also decidable by a p-uniform sequence (Cn)n∈N of polynomial-size Boolean
circuits that are invariant in the semantic sense just described. More precisely,
every permutation π ∈ Sn of the universe [n] induces a permutation of the input
gates of Cn, and the value computed by the circuit Cn does not change if the
values a of the input gates (representing a structure A with universe [n]) are
changed to πa (representing the structure πA ∼= A). Such circuits, and circuit
families, are called invariant.

On the other side, if we translate a formula from a simple logical language,
say, first-order logic or fixed-point logic, into a sequence of circuits, such that
circuit Cn simulates the evaluation of the formula on input structures with uni-
verse [n], then these circuits are of course invariant, of polynomial size, and in
fact p-uniform in the sense that the circuit Cn is computable in polynomial time
in n. But moreover such circuits satisfy the stronger property that every per-
mutation of the input universe induces in fact an automorphism of the circuit.
Circuits with this property are called symmetric. Obviously, symmetric circuits
are invariant, and it is easy to see that the converse is not true. However, it is a
priori not clear whether polynomial size symmetric circuits (over a given basis)
define a weaker computation model than invariant ones.

For logics with counting, such as FPC, it is natural to consider circuits with
threshold or majority gates. Notice that the extension of the standard Boolean
basis by majority gates does not change the power of polynomial-size circuit

12

families, but it can make a difference for specific classes of circuits, such as
bounded-depth circuits or symmetric ones. It is a simple observation that every
sentence of FPC is equivalent to a p-uniform sequence of symmetric circuits with
majority gates.

Can also Choiceless Polynomial Time be translated into such circuits fami-
lies? If this were the case, then one might use methods from circuit complexity
theory to study the power of CPT and understanding its connection with Ptime.
With this question in mind, Anderson and Dawar [2] set out to study the power
of polynomial-size families of symmetric circuits, both over the standard Boolean
basis, and the extension by majority or threshold gates. However, their main re-
sults show that symmetric circuits (of polynomial size) are too weak for CPT.
In fact, in the version with threshold gates, they are equivalent to FPC and thus
cannot define, say, the CFI-query.

Theorem 12. A class of finite structures is decided by a p-uniform sequence
of symmetric threshold circuits if, and only if, it is definable in fixed-point logic
with counting. Similarly, a class of finite structures A is decided by a p-uniform
sequence of Boolean circuits if, and only if, it is definable in least fixed-point
logic over their two-sorted expansions A∗ = A ∪ 〈n,<〉.

This theorem has interesting consequences for the study of Choiceless Poly-
nomial Time. It shows that a translation of CPT programs into equivalent se-
quences of symmetric threshold circuits cannot be done in a p-uniform way. To
put it differently, any p-uniform translation from CPT into equivalent sequences
of threshold circuits has to break symmetry in some way.

6 Interpretation Logic

While the common presentations of Choiceless Polynomial Time via the manipu-
lation of hereditarily finite sets, by abstract state machines or terms in BGS-logic
is convenient and powerful for the design of abstract computations on structures,
it makes the analysis of the expressive power of CPT rather difficult. Standard
techniques for the analysis of logical systems as used in finite model theory, for
instance those based on Ehrenfeucht-Fräıssé methods, are not directly available.
In particular, applications of comprehension terms increase the rank of objects
and are difficult to handle by the common logical tools, which are usually re-
stricted to ‘flat’ objects.

However, as recently shown in [16], one can provide alternative presentations
of CPT (with and without counting) that are based on classical model-theoretic
techniques. In particular, the ‘fancy data structures’ of the hereditarily finite sets
and the manipulation of comprehension terms can be replaced by traditional
first-order interpretations. In this context, counting can then be handled by
Härtig quantifiers which are classical quantifiers for cardinality comparison. Thus
choiceless computations on finite structures can be captured by iterations of
interpretations. A run is a sequence of states, each of which is now a finite
structure of a fixed vocabulary. There is an initial interpretation that produces

13

the initial state as a structure interpreted in the input structure, and a second
interpretation Istep that always maps the current state to its successor state.
Since interpretations need not be one-dimensional they can increase the size of
the states. Although one application of an interpretation increases the size only
polynomially, without imposing restrictions, the iterated application through a
polynomial number of steps could produce states of exponential size.

Polynomial-Time Interpretation Logic, denoted PIL, is obtained by imposing
polynomial bounds on the length of such computations and the size of the states.
It turns out that PIL has precisely the same expressive power as Choiceless
Polynomial Time.

Theorem 13. PIL ≡ CPT.

The equivalence survives also in the absence of counting: Polynomial-Time
Interpretation Logic without the Härtig quantifier PIL− is equivalent to CPT−.

Further, the presentation of CPT in terms of first-order interpretations leads
to natural fragments and stratifications of this logic along familiar syntactic
parameters. For instance, one can consider the natural restrictions of PIL to
k-dimensional interpretations, and/or to interpretations where the domain or
equivalence formulae are trivial. It turns out that the iteration of one-dimensional
interpretations is in fact equivalent to the familiar relational iteration appearing
in the partial fixed-point logic PFP, or equivalently, in the database language
while. Thus, without the Härtig quantifier, one-dimensional Polynomial-Time
Interpretation Logic turns out to be equivalent to the polynomial-time restric-
tion of PFP, which by means of a classical result due to Abiteboul and Vianu
implies that one-dimensional PIL− is equivalent to LFP if, and only if, Ptime
= Pspace. On the other hand, it is known (see e.g. [26]) that the polynomial-
time restriction of PFP with counting is actually equivalent to FPC. It follows
that one-dimensional PIL, when evaluated on the expansions of finite structures
by an ordered numerical sort, has precisely the expressive power of FPC. One
can thus view FPC as a one-dimensional fragment of PIL and CPT. This con-
firms the intuition that the additional power of Choiceless Polynomial Time
over FPC comes from the generalization of relational iteration in a fixed arity
(as in fixed-point logics) to iterations of relations of changing arities. Already
two-dimensional interpretations give us this additional flexibility of relational
iteration and, indeed, two-dimensional PIL turns out to be equivalent to full
PIL.

Another interesting aspect is the representation of equality by congruence
relations and the passage to quotient structures. One may ask whether these are
really necessary for obtaining the full expressive power of PIL. The answer is
yes.

In the absence of counting, PIL− without congruences is equivalent to a pre-
viously studied extension of the database language while, called whilenew |Ptime
which is known to be strictly weaker than CPT. In the presence of counting,
the situation is even more intriguing. On any class of structures of bounded
colour class size, PIL without congruences can be simulated by CPT-programs

14

that access only hereditarily finite sets of bounded rank. In particular this holds
for the class of CFI-graphs. Since Dawar, Richerby, and Rossman prove in [14]
that the CFI-query is definable in CPT, but not by programs of bounded rank,
this separates also congruence-free PIL from full PIL. Hence with or without
counting, congruences are really essential for reaching the full power of PIL.

7 Challenges for Future Research

Of course the main open problem concerning Choiceless Polynomial Time re-
mains the question whether it captures all of Ptime. But no matter whether or
not this is the case, there are a number of interesting open problems that seem
to be within the reach of current techniques.

7.1 A Characterization Without Explicit Polynomial Bounds

An unsatisfactory point in the definition of both CPT and PIL is the require-
ment for explicit polynomial bounds on the running time, the number of active
elements or the size of the interpreted structures appearing in a run. It would be
desirable to have a characterization of CPT that does not depend on such explicit
bounds, but guarantees polynomial-time evaluation implicitly, by construction,
as in classical logical approaches such as fixed-point logics.

7.2 Polynomial-Time Properties of Small Definable Subgraphs

Recall Theorem 8, intuitively stating that CPT expresses all polynomial time
properties of definable substructures of logarithmic size. It is quite possible that
this theorem can further be strengthened, say, to definable substructures of poly-
logarithmic size.

Is there a function f with f(n) = ω(log n) such that the theorem can be
strengthened to hold for all ` ≤ f(n)? Or is this even the case for all f with
polylogarithmic growth rate?

7.3 Isomorphism of CFI-Graphs and Graphs of Bounded Colour
Class Size

We have already mentioned the question of whether isomorphism of graphs of
bounded colour class size is in CPT; this is basically only known for graphs
with Abelian colours (see Section 4). The CFI-graphs are usually presented as a
special case. These are graphs of colour class size four (or more general structures
of colour class size two) with Abelian colours, provided that the input graphs
are coloured in a certain way. This is not inherent in the construction, but just
a convenience of the presentation.

It is an open problem whether the isomorphism of uncoloured CFI-graphs
(which is still in polynomial time) is in CPT. Actually, this might be a candidate
for separating CPT from Ptime.

15

7.4 Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs), defined in terms of their constraint
language, form a rich family of problems in NP that contains many practically
important problems, but is still relatively well behaved and excludes pathological
examples of problems such as Ladner’s [24] NP-problems that are neither in
Ptime nor NP-complete. Indeed, Feder and Vardi’s [15] well known Dichotomy
Conjecture states that all CSPs are either in Ptime or NP-complete. Bulatov,
Jeavons, and Krokhin [9] made a refined conjecture characterising the CSPs in
Ptime algebraically.

We may ask which CSPs are solvable in CPT. If this class coincides with
the class of CSPs conjectured to be PTIME-solvable by Bulatov, Jeavons, and
Krokhin, this could be seen as evidence that CPT captures polynomial time, or
at least does so on the class of all CSPs.

Atserias, Bulatov, and Dawar [3] characterised the CSPs solvable in FPC as
precisely those with a property called bounded width. It is known that CPT can
solve CSPs of unbounded width; cyclic equation systems are examples. These
equations systems are CSPs that belong to a polynomial time solvable class of
CSPs known as CSPs with Mal’tsev polymorphisms [8]. As a first step towards
the general question, we ask whether all CSPs with Mal’tsev constraints are
solvable in CPT. We remark that an affirmative answer to this question would
imply that isomorphism of graphs of bounded colour class size is in CPT (via a
reduction described in [4]).

7.5 A Notion of Symmetric Circuits for CPT

We mentioned in Section 5 the result by Anderson and Dawar that p-uniform
symmetric circuits are too weak for CFP, and that therefore any p-uniform
translation of CPT into equivalent sequences of threshold circuits has to break
symmetry in some way. It is an interesting challenge to see how, and to come up
with a circuit model capturing CPT. Anderson and Dawar suggest to consider
weaker notions of symmetry, requiring induced automorphisms of the circuit
only for certain subgroups of the symmetric group on the input universe.

7.6 Choiceless Polynomial Time versus Rank Logic

Besides Choiceless Polynomial Time, one may consider rank logic to be the most
prominent candidate for a logic for Ptime. The relationship between these two
logics is, at this point unclear.

Theorem 9 about the solvability of cyclic linear equation systems might pro-
vide a handle to separate the two logics. Indeed, while the solvability of (arbi-
trary) linear equation systems over finite fields can clearly be expressed in rank
logic, we see no way how rank logic would be able to deal with solvability prob-
lems for CES over rings Zpk for k > 1. Indeed we conjecture that the solvability
of CES over Z4 might be problem that is definable in CPT but not in rank logic.

16

References

1. F. Abu Zaid, E. Grädel, M. Grohe, and W. Pakusa. Choiceless Polynomial Time
on structures with small Abelian colour classes. In MFCS 2014, volume 8634 of
Lecture Notes in Computer Science, pages 50–62. Springer, 2014.

2. M. Anderson and A. Dawar. On symmetric circuits and fixed-point logics. In
STACS, pages 41–52, 2014.

3. A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting
infinitary logic. Theoretical Computer Science, 410:1666–1683, 2009.

4. C. Berkholz and M. Grohe. Limitations of algebraic approaches to graph isomor-
phism testing. ArXiv, arXiv:1502.05912 [cs.CC], 2015.

5. A. Blass and Y. Gurevich. Strong extension axioms and shelah’s zero-one law for
choiceless polynomial time. J. of Symbolic Logic, 68(1):65–131, 2003.

6. A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure
and Applied Logic, 100:141–187, 1999.

7. A. Blass, Y. Gurevich, and S. Shelah. On polynomial time computation over
undered structures. Journal of Symbolic Logic, 67:1093–1125, 2002.

8. A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM
Journal on Computing, 36(1):16–27, 2006.

9. A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

10. J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12:389–410, 1992.

11. D.G. Corneil and M.K. Goldberg. A non-factorial algorithm for canonical num-
bering of a graph. Journal of Algorithms, 5(3):345–362, 1984.

12. A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG
News, 2(1):8–21, 2015.

13. A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In
Proc. 24th IEEE Symp. on Logic in Computer Science (LICS 09), pages 113–122,
2009.

14. A. Dawar, D. Richerby, and B. Rossman. Choiceless Polynomial Time, counting
and the Cai-Fürer-Immerman graphs. Annals of Pure and Applied Logic, 152:31–
50, 2009.

15. T. Féder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM
Journal on Computing, 28:57–104, 1998.

16. E. Grädel, L. Kaiser, W. Pakusa, and S. Schalthöfer. Characterising Choiceless
Polynomial Time with first-order interpretations. In LICS, 2015.

17. E. Grädel and M. Otto. Inductive definability with counting on finite structures. In
Computer Science Logic, CSL 92, volume 702 of LNCS, pages 231–247. Springer-
Verlag, 1992.

18. E. Grädel and W. Pakusa. Rank logic is dead, long live rank logic!
http://arxiv.org/abs/1503.05423, 2015.

19. E. Grädel et al. Finite Model Theory and Its Applications. Springer-Verlag, 2007.
20. M. Grohe. Fixed-point definability and polynomial time on graph with excluded

minors. J. ACM, 59(5):27:1–27:64, 2012.
21. Y. Gurevich and S. Shelah. On finite rigid structures. J. of Symbolic Logic, 61:549–

562, 1996.
22. B. Holm. Descriptive Complexity of Linear Algebra. PhD thesis, University of

Cambridge, 2010.

17

23. N. Immerman. Expresibility as a complexity measure: results and directions. In
Structure in Complexity Theory, pages 194–202, 1987.

24. R.E. Ladner. On the structure of polynomial time reducibility. Journal of the
ACM, 22:155–171, 1975.

25. B. Laubner. The Structure of Graphs and New Logics for the Characterization of
Polynomial Time. PhD thesis, Humboldt-Universitätt zu Berlin, 2011.

26. M. Otto. Bounded Variable Logics and Counting. Springer, 1997.
27. B. Rossman. Choiceless computation and symmetry. In A. Blass, N. Dershowitz,

and W. Reisig, editors, Fields of Logic and Computation: Essays Dedicated to Yuri
Gurevich on the Occasion of His 70th Birthday, volume 6300 of Lecture Notes in
Computer Science, pages 565–580. Springer-Verlag, 2010.

