Games for Inclusion Logic and
Fixed-Point Logic

Erich Gridel

Abstract One of the most intriguing results on logics of dependence and indepen-
dence is the tight connection between inclusion logic and the least fixed-point logic
LFP. Here we re-examine this connection from a game-theoretic point of view. We
study the model-checking games for inclusion logic and for posGFP, the fragment
of LFP that uses only (non-negated) greatest fixed points. We show that the evalua-
tion problems for both logics can be represented by a special kind of trap condition
in safety games. We then study interpretation arguments for games. In combination
with our study of traps for inclusion logic and posGFP, game interpretations will
give us a model-theoretic construction of translations between the two logics

1 Introduction

Modern logics of dependence and independence come with a semantics that, un-
like Tarski semantics, is not based on single assignments (mapping variables to el-
ements of a structure) but on sets of such assignments. Sets of assignments with
a common domain of variables are called teams. Team semantics was originallly
introduced by Hodges [10, 11] as a compositional, model-theoretic semantics for
the independence-friendly logic IF. In 2007, Viéinénen [14] proposed a new ap-
proach to logics of dependence and independence. Rather than stating dependencies
or independencies as annotations of quantifiers, he suggested to express dependen-
cies as atomic formulae, of the form =(xj,...,xy,y), saying that the variable y is
functionally dependent on (i.e. completely determined by) the variables xp,...,xp,.
Dependence logic is first-order logic together with such dependency atoms. Notice
that such dependency statements do not not even make sense on a single assign-
ment, but only on larger collection of data, given either by sets of assignments, i.e.,
teams, or by a table or relation. Besides the functional dependency atoms proposed

Erich Gridel
RWTH Aachen University, e-mail: graedel @logic.rwth-aachen.de

2 Erich Gradel

by Viinidnen, there are many other atomic dependence properties that give rise to
interesting logics based on team semantics. In [8] we have discussed the notion of
independence (which is a much more delicate but also more powerful notion than
dependence) and introduced independence logics, and Galliani [5] and Engstrom
[4] have studied several logics with team properties based on notions originating in
database dependency theory,

Most of the logics of dependence and independence studied so far, including
more traditional formalisms such as first-order logic with Henkin quantifiers and
IF-logic, have an expressive power that is, at least for sentences, equivalent to the
one of existential second-order logic [2, 5, 12, 13, 14], and it is rather easy to for-
malize NP-complete properties of, say, finite graphs in these logics. However, one
of the most surprising results on logics with team semantics is the tight connection,
established by Galliani and Hella [6], between inclusion logic and the least fixed-
point logic LFP. Inclusion logic extends first-order logic (with team semantics) by
atomic inclusion dependencies of the form (¥ C y), which are true in a team X if
every value for X in X also occurs as a value for ¥ in X. Inclusion logic has been
introduced and studied in [5].

The least fixed-point logic LFP, on the other side, is a logic with classical seman-
tics in the sense of Tarski, which extends first-order logic by least and greatest fixed
points of definable relational operators. The logic LFP is of fundamental importance
in finite model theory and descriptive complexity, for the study of inductive defin-
ability, and for the study of logic and games. Fragments of LFP, such as Datalog or
the modal p-calculus are very important in many areas of computer science, includ-
ing databases, knowledge representation, and verification. See for instance [9] for
background on least fixed-point logic.

Galliani and Hella showed, by a direct translation via structural induction, that
sentences of inclusion logic have the same expressive power as sentences from
the fragment of LFP that uses only (non-negated) greatest fixed points, denoted
posGFP. It is known that, on finite structures, the full logic LFP collapses to its
posGFP-fragment. Hence every property of finite structures that is LFP-definable is
also definable in inclusion logic, and vice versa. It follows by the Immerman-Vardi-
Theorem that, on ordered finite structures, inclusion logic captures polynomial time.
For formulae with free variables, the connection between inclusion logic and pos-
GFP is more complicated, due to the different semantics of the two logics. We will
discuss this issue in detail in Section 7.

In this article, we re-examine the connection between LFP and inclusion logic
from a game-theoretic point of view. We study the model-checking games for inclu-
sion logic and for the posGFP-fragment of least fixed-point logic and use interpre-
tation arguments for games to translate between the two logics.

It is well-known that the appropriate games for greatest fixed-point formulae are
safety games, i.e., games with potentially infinite plays, where Player O has just the
objective to keep the play inside a safe region or, equivalently, to avoid a given set
of losing positions. In our case the positions to avoid are the literals that evaluate to
false.

Games for Inclusion Logic and Fixed-Point Logic 3

Model-checking games for logics with team semantics are a priori quite differ-
ent. A uniform construction of such games has been presented in [7] in terms of
second-order reachability games played on trees or forests. Whereas in classical
reachability (or safety) games, the winning condition is specified by a set of po-
sitions that should be reached (or avoided), a second-order reachability condition
is given by a collection of sets of terminal positions. Furthermore, a second-order
reachability condition does not apply to single plays, but to strategies, and con-
siders the set of all plays that are compatible with the strategy. To be winning, a
strategy has to ensure that the set of all terminal positions that are reachable by a
play following the strategy forms a winning set. We have shown in [7] that for any
logic with team semantics, satisfying some natural basic conditions, the associated
model-checking problem can be captured by appropriate second-order reachability
games. In particular, this is the case for inclusion logic.

Although second-order reachability games are quite different from safety games,
and in general algorithmically more complicated, we shall prove that games played
on forests, with a second-order reachability condition of a special form given by a
universal-existential statement, can be translated into equivalent safety games, on a
transformed game graph that is no longer acyclic. This applies in particular to games
for inclusion logic and thus provides safety games for this logic, as an alternative to
the second-order reachability games obtained by the generic construction. Further
we introduce I-traps, a special notion of traps for initial positions in safety games,
and prove that this notion faithfully captures evaluation problems with respect to
teams, for formulae of inclusion logic and also for posGFP-formulae of a special
form. On the other side, such traps are definable in both logics in a quite simple
way.

We shall then study game interpretations. It is a general observation that the
model checking games for a given formula (from almost any reasonable logic) are
uniformly interpretable inside the structure on which the formula is evaluated. In
combination with our study of traps for inclusion logic and posGFP, interpretations
will give us translations between the two logics. The argument roughly is the fol-
lowing. Given any formula y in, say, inclusion logic, we consider the interpretation
J(y) which, for any structure 2, interprets the safety game for 2 and y, denoted
Gsate (A,), inside 2A. This game has the properties that the teams X that satisfy ¥ in
2 coincide with the I-traps in %, (2, ¥). On the other side, I-traps in safety games
are definable by a formula itrap of the target logic, in this case posGFP. The inter-
pretation J(y) maps this formula to another formula itrap’ (¥), which is also in pos-
GFP, and which essentially expresses in 2, what itrap expresses in the game. From
itrap’ (V) we then easily get a posGFP-formula that is equivalent to y. An analogous
translation works in the other direction. We thus obtain a high-level model-theoretic
technique for obtaining translations between the two logics, without the need to go
through cumbersome structural inductions on the syntax of the formulae.

4 Erich Gradel

2 Safety games and traps

There are many models for path-forming games played on graphs. Here we work
with a model of turn-based games with two players, called Player O and Player 1,
that makes explicit not only the sets of positions associated to the two players, but
also the initial and terminal positions.

A game graph is a structure 4 = (V,Vp, V1, T,1,E), where V. = Vo UV, UT is the
set of positions, partitioned into the sets Vp, V| of the two players and the set T
of terminal positions, where [is the set of initial positions, and where E CV x V
is the set of moves. We denote the set of immediate successors of a position v by
VE :={w: (v,w) € E} and require that vE = @ if, and only if, v € T'. A play from an
initial position vy is a finite or infinite path vov;v; ... through ¢ where the successor
vit1 € viE is chosen by Player O if v; € Vj and by Player 1 if v; € V|. A play ends
when it reaches a terminal node v,, € T. A subgraph of a graph (V,E) is a pair
(W,F)withW CVand F CEN(W xW).

Definition 1. A (nondeterministic strategy) of Player o in such a game ¥ is a sub-
graph & = (W, F) C (V,E) satisfying the following conditions:

(1) If v € WN Vg, then vF is non-empty.
2) Ifve WNV,_gs then vF = vE.

Here W is the region of ¢ on which the strategy is defined, and F is the set of
moves that are admitted by the strategy. A strategy . = (W, F) for Player o is
deterministic if [vF| =1 for all v € W N V. A strategy . induces the set of those
plays from the initial positions in /W whose moves are consistent with F'. We call
. well-founded if it does not admit any infinite plays; this is always the case on
finite acyclic game graphs, but need not be the case otherwise. We are interested in
winning strategies according to different winning conditions. Here, we shall mainly
consider classical (first-order) safety and reachability conditions, and the second-
order reachability conditions introduced in [7].

A safety condition for Player 0 is given by a set L C V of ‘losing’ positions that
Player O has to avoid, or dually, by its complement S = V \ L, the region of safe
positions inside of which Player 0 has to keep the play. For convenience in game
constructions we do not require that losing positions are terminal (but we could do
so since deleting all outgoing edges from losing positions does not change anything
relevant in the game). A play in a safety game is won by Player O if she can guarantee
that the play never reaches a position v € L. If Player O can, moreover, ensure, that
the play reaches, after a finite number of steps a terminal position v € T \ L, then
she also wins the associated reachability game. The difference between reachability
and safety conditions is relevant only in cases where infinite plays are possible. In
first-order games, a winning strategy for a player is a strategy that guarantees that
all plays consistent with it are won by that player. For a safety game this amounts to
the following:

Definition 2. For a safety game ¢, with safety condition S C V and a set X C I of
initial positions, a strategy .’ = (W, F) for Player 0 is winning from X if X CW C S.

Games for Inclusion Logic and Fixed-Point Logic 5

Traps. Two notions of fundamental importance for the algorithmic analysis of
graph games, are attractors and traps. Intuitively the attractor (for Player 0) of a
set Y C V is the set of all positions from which Player ¢ has a strategy to ensure that
the play reaches Y in a finite number of steps. The dual notion of a trap (for Player 1)
encompasses those sets Z C V for which Player O has a strategy to guarantee that
every play starting at a position in Z remains inside Z.

Notice that in a game ¢ with I =V and a safety condition S C V for Player 0,
the winning region for Player O (i.e. the set of those positions from which she has
a winning strategy) is precisely the maximal trap Z C S. For our analysis of games
for inclusion logic and fixed-point logic, a specific variant of a trap will be relevant,
which we call an I-trap.

Definition 3. For a game ¢ with a set [of initial positions and a safety condition
S for Player 0, an I-trap is a set X C I of initial positions such that Player O has a
strategy to ensure that every play starting in X remains inside S and avoids 7 \ X.

To put it differently, X is an I-trap in (¢, S) if, and only if, Player 0 has a winning
strategy from all positions in X for the safety game on ¢ with losing positions
(VA S)U(I\ X). Notice that an I-trap X is not a trap in ¢, but it can be viewed as
a kind of trap restricted to the set /, in the sense that Player O ensures that starting
from X the only positions in / that are ever met in the play are those in X.

Clearly, the empty set is a trivial /-trap, and the union of two /-traps is again an
I-trap, so there is a uniquely defined maximal I-trap for every safety game (¥, S).

It is well-known that winning regions and winning strategies for reachability
and safety games are computable in linear time in the size of the game graph (see
e.g. [1, Chapt. 4]. Further one can, without loss of generality, restrict attention to
deterministic strategies.

3 Second-order reachability games

While reachability and safety games are sufficient for many important applica-
tions, and in particular for evaluation games of first-order logic and the posGFP
and posLFP-fragments of the least fixed-point logic LFP, they are, in general, not
adequate for more complicated logics, such as full LFP and logics with team seman-
tics. Model-checking games for the latter can be defined in terms of second-order
reachability games.

Definition 4. A second-order reachability condition is a collection Win C Z(T)
defining for each set U C T of terminal positions whether it is a winning set for
Player 0. A consistent winning strategy from X C [for Player O for a second-order
reachability game ¢4 = (V,V,V},T,1,E) with winning condition Win is a strategy
% = (W, F) such that

(1) W is the set of nodes that are reachable from X via edges in F.
2)WNT € Win.

6 Erich Gradel

Remark. The condition that W contains only nodes that are reachable from X
by edges in the strategy is not needed for winning conditions that are downwards
closed, and in particular for classical safety games. However, if Win is not down-
wards closed, then this condition is necessary to avoid the inclusion of unreachable
nodes which could change a losing set of terminal nodes to a winning one.

As shown in [7], the problem whether a second-order reachability game, given
by a finite game graph ¢ with an oracle for Win, admits a consistent winning strat-
egy for Player 0, is NP-complete. However, there are special cases of second-order
reachability conditions for which the associated reachability games are efficiently
solvable.

Universal-existential reachability conditions and the translation to safety games

Definition 5. We call a second-order reachability condition Win C 2 (T) universal-
existential if there exists a relation R C T x T such that

Win={U CT: (VxeU)(JyeU)(x,y) €R}.

We shall see below that, for instance, the model-checking games for inclusion
logic are second-order reachability games with universal-existential winning con-
ditions. Further, the game graphs of such model-checking games are forests. Let
now 4 = (V,Vo,V1,T,I,E) be a second-order reachability game, played on a for-
est, where [is the set of roots of the forest, with a universal-existential winning
condition Win={U CT: (VxeU)(3y € U)(x,y) € R}.

We want to associate with (¢, Win) a safety game %,¢. such that winning strate-
gies for (¢, Win) from X C I correspond to winning strategies for %;s. that ensure
that X is an I-trap. The idea is to add to ¥ moves of Player O for pairs (s,z) € R
and moves of Player 1 taking the play back from ¢ to ancestors in the forest. The
nodes that Player 0 has to avoid in the safety game %, are the nodes s € T without
outgoing R-edges and the roots in I\ X.

To make this precise, we duplicate the nodes of ¢, i.e. we add to ¢ the set
of vertices V* := {v* : v € V}. In %, we consider nodes s € T with sR # 0 as
positions of Player 0 and nodes v* € V* as positions of Player 1. We add moves so
that Player 0 can move from s to t* for any (s,7) € R, and Player 1 can move from
v* € V* either to v, or to the unique node u* such that (u,v) € E. We obtain the game
graph

Geafe = (VUV*,V()U {S €T :sR+# @},Vl UV*,T,I,E)

with 7 :={s € T : sR = 0} and
E:=EU{(s,t"): (s,t) e R}U{(v",u") : (u,v) € E}U{(v*,v),v €V}
We obtain a safety game %, where Player 0 has to avoid the positions in 7.

Proposition 6 Player 0 has a consistent winning strategy for the second-order
reachability game (¢, Win) from X C I if, and only if, X is an I-trap in Gyqf,.

Games for Inclusion Logic and Fixed-Point Logic 7

Proof. Let ¥ = (W,F) be a consistent winning strategy for Player 0 from X for
the game (¢, Win). For U := WNT it follows that U € Win and hence that (Vx €
U)Gy e U)(x,y) € R,

We transform .7 into a strategy . = (W, F) for Gz with

W =Wwu{y*:veWw}
F:=FU{(s,t"):5,t €U,(s,t) €RYU{(v*,v) :ve WIU{(v*,u*): (u,v) € F}.

We claim that . is a winning strategy for %,s. which moreover shows that X is
an I-trap. We have to prove that .# is indeed a strategy according to Definition 1
and additionally, avoids the positions in 7 U (7\ X). Clearly, F C ENW x W and
XCWCW.

It remains to verify the following conditions.

(1) If w € W is a node of Player 0, then wF is non-empty.
For w € WNV, this is clear since wF # 0. Otherwise w = s is a node in
WNT =U so there exists a node r € U with (s,) € R and hence an edge
(s,t*) € F.

(2) If w € W is a node of Player 1, then wF = wE.
For w € WNV, we have that wF = wF = wE = wE. Otherwise w = v* for
some v € W. Then wE consists of v and, unless v is a root, of the unique
node u* such that (u,v) € E. Since v € W is reachable from its root by F-
edges, also u € W and (u,v) € F. It follows that edges (v*,v) and (v*,u*)
also belong to F'. Hence in all cases wF = wE.

3) WNn(TU((I\X)) =0.
Assume that there is anode w € WNT. Then w € WNT = U which implies
that there exists a node ¢ € U with (w,t) € R. But then w € T, contradicting
our assumption. Finally, if w € W, then w ¢ I\ X because all nodes in W are
reachable from X by F-edges.

For the converse, consider any winning strategy . = (W, F) from X for Player 0
in the game %, which avoids T and I\ X, and its restriction .# = (W,F) to ¢4,
with W =WNV and F = FNE.

Clearly W cannot contain any position v* such that v belongs to a tree whose root
is in 7\ X because from such a position, Player 1 can move upwards to that root and
win. Hence W only contains nodes that are reachable from a root in X and . is a
strategy from X. To see that . is winning for the second-order reachability game
¢, consider the set U := W N T of terminal nodes in W. Since . is winning for the
safety game, no node in U is terminal in %,. Hence (Vx € U)(3y € U)(x,y) € R
which means that U € Win. O

8 Erich Gradel

4 Logics and Their Games

4.1 First-order logic

We assume familiarity with first-order logic (FO) and briefly recall the construction
of model-checking games for FO. We consider formulae with relational vocabulary
T=1{Ry,...,R;} and assume that they are presented in negation normal form, i.e.
built from literals (atomic formulae and their negations) by means of the proposi-
tional connectives V and A and quantifiers 3 and V.

For any such formula y(X), let .7 (y) be its syntax tree whose nodes are the
occurrences of the subformulae of y, with edges leading from any formula to its
immediate subformulae, i.e. from ¢ V% and ¢ A ¥ to both ¢ and ¥ and from Jy¢
and Vyo to @. The leaves of the tree are the nodes associated to literals.

For a formula y(X) and a t-structure 2 = (A, Ry, ...,R,;;), the model-checking
game ¥ (2, y) is obtained by taking an appropriate product of .7 (y) with the set
of assignments mapping variables to elements of 2. More precisely, the positions
of the game are the pairs (¢,s) consisting of a node ¢ € () and an assign-
ment s : free(¢) — A. Verifier (Player 0) moves from positions associated with dis-
junctions and with formulae starting with an existential quantifier. From a position
(@ V 0,s), she moves to either (@,s') or (¥,s”) where s, s” are the restrictions of
s to the free variables of ¢ and ¥, respectively. From a position (Jy@,s), Veri-
fier can move to any position (¢,s[y — a]), where a is an arbitrary element of A.
Dually, Falsifier (Player 1) makes corresponding moves for conjunctions and uni-
versal quantifications. If @ is a literal then the positions (¢,s) are terminal. The
terminal positions are partitioned into the target sets 7y, 7} of the two players, with
Th={(p,s) eT: A= ¢} and 1 = {(@,s) € T : A =5 ~¢}. Notice that since
model-checking games for first-order logic are played on forests, it does not matter
whether we consider them as reachability games, where Player o has the objective
to reach Ty, or as safety games, where Player ¢ seeks to avoid 71_.

4.2 Least fixed-point logic

Least fixed-point logic, denoted LFP, extends first order logic by least and great-
est fixed points of definable relational operators. We will briefly recall some basic
definitions here. For a more extensive introduction to LFP, we refer to [9].

Every formula y(R,X), where R is a relation symbol of arity k and X is a tuple of
k variables, defines, for any structure 2 of matching vocabulary, an update operator
Fp' - 2(A%) — 2(AF) on the class of k-ary relations over the universe A of 2,
namely Fv%l :R—{a: (A,R) = w(R,a)}. If all occurrences of R in y are positive,
then this operator is monotone in the sense that R C R’ implies FV%[(R) C FV%[(R'). It
is well known that every monotone operator F has a least fixed point Ifp(F) and a
greatest fixed point gfp(F), with

Games for Inclusion Logic and Fixed-Point Logic 9

(WX :F(X)=X}=(|{X:F(X)CX}
UX:F(x)=x} = {X:F(X) 2 X},

which can also be constructed by transfinite induction.

LFP is defined by adding to the syntax of first order logic the following fixed
point formation rule: If y(R,X) is a formula of vocabulary 7 U {R}, in which the
relational variable R occurs only positively, and if X is a tuple of variables such that
the length of X matches the arity of R, then [Ifp Rx. y](X) and [gfp Rx . y](X) are also
formulae (of vocabulary 7).

The semantics of least fixed-point formulae in a structure 2, providing interpre-
tations for all free variables in the formula, is the following: 2 (= [ifpRx. v|(a) if a
belongs to the least fixed point of the update operator defined by y on (. Similarly
for greatest fixed points.

Note that in formulae [Ifp Rx. w](X) one may allow ¥ to have other free variables
besides X; these are called parameters of the fixed-point formula. However, at the
expense of increasing the arity of the fixed-point predicates and the number of vari-
ables one can always eliminate parameters. For the construction of model-checking
games it is convenient to assume that formulae are parameter-free.

The duality between least and greatest fixed point implies that for any y,

Ifp(F)
gfp(F)

[gfp Rx. y](x) = ~[ifpRx. ~y[R/~R]] (%).

Using this duality together with de Morgan’s laws, every LFP-formula can be
brought into negation normal form, where negation applies to atoms only.

Example 1 (Definability in safety games). Winning regions of reachability and
safety games are definable by LFP-formulae of rather simple form. On game graphs
¢ where the objective of Player 0 is to keep the play inside a given safe region
S CV, and Player 1 wants to reach the set L = V' \ S, the winning regions of the two
players are uniformly definable by

win(x) := [gfpWx.Sx A (Vox — Ty(Exy AWy)) A (Vix — Vy(Exy — Wy))](x)
lose(x) := [fpWx.LxV (Vix A Jy(Exy AWy)) V (Vox AVy(Exy — Wy))](x)

A simple modification of this construction gives a definition of /-traps in safety
games. Let

itrap(X,x) := [gfpYx.Sx A (Ix — Xx) A (Vox — Ty(Exy AYy))A
(Vix = Vy(Exy = Yy))] (x).

Then, for every safety game ¢ and every set X C [of initial positions we have that
(9,X) = Vx(Xx — itrap(X,x)) < Xisan/-trapin 9.

The model-checking games for general LFP-formulae are parity games. These
are games of possibly infinite duration, where each position is assigned a natural

10 Erich Gridel

number, called its priority, and an infinite play is won by Player 0 if the least priority
seen infinitely often in the play is even.

Let v be an LFP-formula, which is assumed to be parameter-free, in negation
normal form and in which distinct occurrences of fixed-point operators use distinct
fixed-point variables. To construct the parity game ¢ (2,), one extends the con-
struction of the first-order model-checking game as follows: For every subformula
of y of form ¢ := [fpRx. ¢(R,X)|(X) (where fp is either Ifp or gfp) we add moves
from positions (¥,s) to (@,s), and from positions (RYy, s) to (¢,) for the assignment
t with #(X) = s(¥). Since these moves are unique it makes no difference to which of
the two players we assign the positions (9, s) and (Ry,t). Priorities are assigned in
such a way that positions (Ry,s), associated with fixed-point variables, get an even
priority if R is a gfp-variable, and an odd priority if R is an Ifp-variable. Further R
gets a smaller (i.e. more significant) priority than R’ if R’ depends on R, i.e., if R
occurs free in the formula defining R'. All other positions, associated with formu-
lae that are not fixed-point atoms, get maximal (the least significant) priority. Thus
the number of priorities needed in a parity game for a fixed-point formula y coin-
cides with the alternation depth of least and greatest fixed points in y. For details,
the proof of correctness, and for algorithmic and model-theoretic results based on
parity games, see [9, Chapter 3.3].

4.3 The fragment of positive greatest fixed points

We denote by posGFP the fragment of LFP of formulae in negation normal form
such that all its fixed-point operators are greatest fixed-points. Since all fixed-points
are of the same kind, the priority assignment is trivial (all positions get prior-
ity 0), and the model-checking game ¥ (2, v) for a t-structure 2(and a formula
v € posGFP is a safety game. The positions that Player O has to avoid are those of
the form (¢, s) where o is a T-atom or a negated 7-atom such that 2 |=; —a. From
positions associated with a gfp-variable R, the play is taken back to the fixed-point
formula that defines R, and infinite plays correspond to successful infinite regenera-
tion sequences of greatest fixed-points.

Proposition 7 For every structure 2, every formula W (X) of posGFP and every as-
signment s : free(y) — A we have that 2 =5 W(X) if, and only if, Player 0 has a
winning strategy for the safety game 4 (24, v) from the initial position (Y, s).

For the relationship between inclusion logic and fixed-point logic, we shall con-
sider sentences in posGFP of vocabulary U {X} of the form

Y = Vx(Xx — (X))

such that X occurs only positively in ¢. The model checking game ¥4 ((2(,X), ¥) is
a safety game with initial position (¥,0) and safety condition

Games for Inclusion Logic and Fixed-Point Logic 11

S(X)={(n,s) :if n is a t-literal, then A =, 1 and
if n = Xy then s(¥) € X and
if n = XX then s(x) € X}.

We modify these model-checking games by eliminating every explicit reference
to the relation X and associate the model checking problem of whether (2(,X) = &
with a trap condition for a modified game ¥*(2(, ¢). To do this, we identify every
position of form (X7¥,¢) with the position (¢(%),s) such that s(¥) = #(¥); this means
that every edge in the game graph to a position (X7y,7) is replaced by an edge to
(¢(x),s), and the node (X,t) is deleted. The set I of initial positions now consists
of all pairs of form (¢(x),s) and the safety condition is simplified to

S*:={(n,s): if n is a t-literal, then A =, n}.

Given any interpretation for the relation X, let X* C I be the set of positions (¢, s)
where s(X) € X.

Proposition 8 The resulting game 4*(2,) has the property that

(2,X) EVX(XX — @(X)) < X" isanI-trap in 9" (A,).

4.4 Logics with team semantics

Let 2 be a structure of vocabulary T with universe A. An assignment (into %) is a
map s : ¥ — A whose domain ¥ is a set of variables. Given such an assignment s, a
variable y, and an element a € A we write s[y — a] for the assignment with domain
¥ U{y} that updates s by mapping y to a. A team is a set of assignments with the
same domain. For a team X, a variable y, and a function F : X — Z?(A), we write
X[y — F] for the set of all assignments s[y — a] with s € X and a € F(s). Further
we write X [y — A] for the set of all assignments s[y — a] with s € X and a € A.
Team semantics, for a logic L, defines whether a formula y € L is satisfied by
a team X in a structure 2, written 2 =y y. We always assume formulae to be in
negation normal form and require that the domain of X contains all free variables
of y. Further we shall always make sure that the locality principle holds, saying
that the meaning of a formula can only depend on the variables actually occurring
in it. More precisely, if ¥ = X | free(y) is the restriction of the team X to the free
variables of y then 2 =x v if, and only if, 2 =y y. A special case is the empty
team which satisfies all formulae: 2 |=¢ y for all 2 and all y. The locality principle
implies that a sentence Y (i.e. a formula without free variables) is true for a non-
empty team X if, and only if, it is true for the team {@} consisting only of the empty
assignment. Thus, as it should be and as in logics with Tarski semantics, the truth of
a sentence just depends on the structure in which it is evaluated. For sentences we
then write 2(|= y to denote that 2 =g, y. This allows us to directly compare the
expressive power of sentences between logics with team semantics and logics with

12 Erich Gridel

Tarski semantics. For open formulae, the situation is different and will be discussed
later

For the operators of first-order logic (FO) the semantic rules are the following.

(1) If v is an atom x =y or Rxj...x, or the negation of such an atom, then
2 |=x y if, and only if, 2 =5 W (in the sense of Tarski semantics) for all
scX.

(2) A E=x (o AD) if, and only if, A =x ¢ and A =x 0.

3) A=x (¢ V) if, and only if, there exist teams Y, Z with X =Y UZ such that
Ql):Y (pandQH:Zﬁ.

(4) A [=x Vyg if, and only if, 2 =y 4] .

(5) A l=x Jye if, and only if, there is a map F : X — (L (A)\ {0}) such that
2):X[}'HF] ?.

Remark. Clause (5) giving semantics to existential quantifiers might seem surpris-
ing at first sight since it permits the choice of an arbitrary non-empty set of witnesses
for an existentially quantified variable rather than a single witness (for each s € X).
What we use here has been called lax semantics in [5], as opposed to the more
common strict semantics. For disjunctions (clause (3)) there is also a strict variant,
requiring that the team X is split into disjoint subteams Y and Z. For first-order
logic, and also for dependence logic, the difference is immaterial since the two se-
mantics are equivalent. However, this is not the case for other logics of dependence
and independence, in particular for independence logic and inclusion logic. In these
cases, only the lax semantics is appropriate since it preserves the locality princi-
ple whereas the strict semantics violates this principle. In game-theoretic terms the
difference between strict and lax semantics corresponds to the difference between
deterministic and nondeterministic strategies, and it turns out that model-checking
games for inclusion logic and independence logic do not admit deterministic win-
ning strategies.

For first-order logic itself, team semantics does not provide anything new since a
first order formula is true for a team X if, and only if, it is true in the sense of Tarski
semantics, for all individual assignments s € X:

AExy & Ay o ARy,

This changes radically, when atomic statements on teams which express prop-
erties of dependence or independence are added to the logic. The most common
examples of such properties are the following.

Dependence: A dependence atom has the form =(x; ..., X, y). [tis true in a team
X if all assignments s,s’ in X that agree on the variables x, ..., x;, also have the
same value for y. Dependence logic is first-order logic with dependence atoms.
An important property of dependence logic is downwards closure: If a formula is
satisfied by a team X then it is also satisfied by all subteams ¥ C X. Formulae of
dependence logic are equivalent to sentences of existential second-order logic,

Games for Inclusion Logic and Fixed-Point Logic 13

with an additional predicate for the team that may occur only negatively. See
[14, 12] for further results.

Independence: Independence atoms come in several variants. Intuitively two
variables x and y are independent, denoted x_Ly, if acquiring more knowledge
about one does not provide any additional knowledge about the other, which
means that values for (x,y) appear in all conceivable combinations: if values
(a,b) and (da’,b") occur for (x,y), then so do (a,b’) and (d',b). To make this
sufficiently general, we proposed in [8] the general conditional independence
atom y_l 5z, for arbitrary tuples X, y,z of variables, which is true in team X if, and
only if, for all assignments s,s" € X such that s(x) = s'(X) there is an assignment
5" € X with 5" (x) = s(x), 5" (y) = s(¥) and 5" (Z) = (). Independence logic is
strictly more powerful than dependence logic and it is not downwards closed for
teams. Galliani [5] has shown that independence logic is equivalent with existen-
tial second-order logic. Furthermore the conditional independence atoms can be
eliminated in favour of pure independence atoms x_Ly.

Exclusion and inclusion: ~ An exclusion atom (X | ¥) expresses that the values of
X in the given team are disjoint from the values of . Inclusion atoms (x C y) state
that all values for X in the given team occur also as values for y in X. It has been
proved by Galliani [5] that first-order logic with both inclusion and exclusion
atoms is equivalent with independence logic.

There are many other variants of atomic dependence or independence proper-
ties. In [7] we have shown that there is a uniform construction of model-checking
games for logics with team semantics, based on the notion of a second-order reach-
ability game. For every formula y(X) (which we always assume to be in negation
normal form) and every structure 2 we define the game ¢ (2, y) as follows. The
game graph is defined in precisely the same way as in the case of first-order logic.
In particular, ¢4 (2,) is a forest, consisting of trees with roots (y,s) for all as-
signments s : free(y) — A. In the case that ¥ is a sentence, we only have the empty
assignment to consider, and the game graph is a tree. Given a team X of assignments
s : free(y) — A, the relevant set of initial positions is I(X) := {(y,s) : s € X }.

Although the game graphs for logics with team semantics are defined as for
first-order logic, the winning conditions are very different. Indeed, model checking
games for logics with team semantics are special cases of second-order reachability
games.

To describe the second-order winning condition, we observe that any set W of
nodes in a model-checking game for y associates to a formula ¢ € .7 (y) a team

Team(W, @) := {s: free(¢) = A: (@,s) € W}.
We now say that a set U of terminal positions is a winning set if, for every literal o,

2):Team(U.,oc) a.

14 Erich Gridel

Notice that for literals o for which no pair (o,s) appears in U, this is trivially
satisfied because for the logics that we consider here, the empty team satisfies all
formulae.

Described more abstractly, the model-checking game for y on 2{ consists of the
game graph ¢4 (2L, y) = (V,V,V;,T,1,E) and the second-order reachability condi-
tion Win consisting of all sets U C T such that

A ETeam(u,) @, for all literals a.

Thus, a consistent winning strategy S = (W, F) of Player 0 for ¢ (2, y), from
the set I(X) C I of those initial positions that are associated with a team X, has
the property that, for every literal ¢, the team Team(S, @) := Team(W, ¢) = {s :
(p,s) € W} satisfies . As proved in [7] this then extends beyond the literals to all
formulae in 7 (y) and in particular to the formula v itself. Let L be a logic with
team semantics.

Theorem 9 For every structure 2, every formula Wy(x) € L and every team X with
domain free(y) we have that A |=x v if, and only if, Player 0 has a consistent
winning strategy S = (W, F) for 4 (0, y) from I(X), with Team(S, y) = X.

Proof. We proceed by induction on . First, let y be a literal. The game ¢ (2, y)
is just the set of isolated nodes (y,s) for all possible assignments s. If 2 |=x y then
let Wy, = {(y,s) : s € X} and Fyy = 0. Clearly Sy, = (Wy, Fy) is a consistent win-
ning strategy in ¢ (2, y) with Team(Sy,, ¥) = X. If A }=x y then for any consistent
winning strategy S with 2 Frean(s,y) W it must be the case that Team(S, y) # X.

Next suppose that y =1V 3. If A |=x 1 VO then there exist teams Y,Z with
X =Y UZ such that 2 =y 1 and 2 =z ¥. By induction hypothesis there are con-
sistent winning strategies S = (Wy,Fy) in 9 (24, 1) and Sy = (Wy,Fy) in 4 (2, 9)
with Team(Sy,n) =Y and Team(Sy,) = Z. We obtain a consistent winning strat-
egy Sy = (Wy,Fy) in 9 (2, y) by setting Wy, := W UW, U{(y,s) : s € X} and
Fy = Fy UFy U{((,5), (11,5)) :5 € ¥,5' =5 e UL ((W,5), (8,5")) 15 €2, =
8 |free(v) } - Obviously Team(Sy, ¥) = X and since X =Y UZ the strategy Sy, admits,
from every point (v, s) € Wy, at least one edge to either (17,s’) or (,s’). Conversely,
every consistent winning strategy Sy = (Wy,, Fy) for Player O with Team(Sy,, y) =X
induces a decomposition X =Y UZ where Y contains those s € X such that Fy, ad-
mits a move from (¥, s) to (1,5 [free(n)) and analogously for Z and . By induction
hypothesis it follows that 2 =y 1 and 20 =z ¢ and therefore 2 =x .

The arguments for y = 1 A ¥ are analogous (and in fact even simpler).

Let us now consider formulae y = Jy@. If A |=x v then there is a function F :
X — (2(A)\{0}) such that 2 |=x|,,,r) @. By induction hypothesis, Player 0 has a
consistent winning strategy So = (Wy, Fyp) with Team(Sy,) = X [y — F]. We obtain
a consistent winning strategy Sy, = (Wy,, Fy) by setting Wy, := W, U{(y,s) :s € X}
and Fy = FoU{((y,s),(@,s[y—>a])) :s € X,a € F(s)}. Obviously, Team(Sy, y) =
X. Conversely, a consistent winning strategy Sy = (Wy, Fy) with Team(Sy,) =
X requires that from every node (y,s) with s € X the set (y,s)Fy of admissible

Games for Inclusion Logic and Fixed-Point Logic 15

successor nodes is non-empty. Let F(s) := {a € A : (@,s]y — a]) € (y,s)Fy}. By
induction hypothesis 2| [=x|y,,r| ¢ and hence A |=x .
Again the arguments for formulae Vy¢ are analogous. 0O

4.5 Inclusion logic

We now turn to inclusion logic, which is a specific case of a logic with team seman-
tics. We recall the definition.

Definition 10. A team X satisfies an inclusion atom x C y if for all s € X there is
an s’ € X with s(x) = s/(¥). Inclusion logic is the extension of first-order logic with
team semantics by inclusion atoms.

By structural induction, it is easy to verify that formulae ¢ (X) of inclusion logic
are closed under union of teams. For every structure 2 and any collection {X; : i € I'}
of teams such that 2 =, ¢ for all i € I we also have that 2 |=x ¢ for X = J{X; :
i € I'}. Thus, there exists, for every structure 2(a unique maximal team Xpax With
A =X P

We next exhibit important examples for the power of inclusion logic, showing
that winning regions, traps, and /-traps of safety games are definable in this logic.
Further the trap-formula also reveals the technique of copying values from one vari-
able to another one which is often necessary for dealing with disjunctions in the
intended way. To simplify notation we identify a relation ¥ C V¥ with the team of
all those assignments s : {xi,...,x} — V such that s(X) := (s(x1),...,s(xx)) €Y.

For safety games ¥ = (V,Vp, V1, T, 1, E) with safety condition S C V, we construct
the formulae

trap(x) := Sx A Jz(z S x A (Vox — TFy(Exy Ay C z)) A (Vix = Vy(Exy — vy C 2))),
itrap(x) := Jy(x Cy Atrap(y) A (Iy = y C x)).

Here (and elsewhere) implications (& — ¢), for first-order literals a, are just
meant as a different notation for (—a V @).

Proposition 11 For every game graph &4, every safety condition S C'V and every
set X CV, we have that (¢,S) f=x trap(x) if, and only if, X is a trap for Player 1,
i.e., Player 0 has a winning strategy that keeps every play from X inside X. Further
X ClisanlI-trap in (4,S) if, and only if, (4,S) =x itrap(x).

Proof. A set X CV is a trap for Player 1 in ¢ if, and only if, X C § and there exists
aset of edges F C (X x X)NE such that, for all v € VyNX there exists anode w € X
with (v,w) € F, for all v € V; N X and all edges (v,w) € E it holds that also w € X.
We claim that given such an X and F we can show that (¥¢,5) |=x trap(x). Let XX
be the team of assignments s : (x,z) — (v,v') such that v,»" € X. It suffices to prove
that 4 =xx (Vox — Fy(Exy Ay Cz)) and 4 |=xx Vix — Vy(Exy — y C z)). For the
first claim we split the team XX into the subteams VpX = {s € XX : s(x) € Vo } and

16 Erich Gridel

VoX = {s € XX : s(x) € Vo }. Trivially, VoX satisfies =Vpx. To prove that Vo X satisfies
Jy(Exy Ay C z), the team VpX is expanded to VoXY = {s: (x,z,y) — (V' ,w) :v €
Vo,V €X,(v,w) € F} and we claim that 4 =y, xy ExyAy C z. Since F C E, the atom
Exy is clearly satisfied, and for the inclusion atom we find, for each s : (x,z,y) —
(v,v/,w) the assignment s : (x,z,y) — (v,w,w) so that s(y) = s'(z) and s’ is in VoXY
as well (because w € X). The reasoning for ¢ =xx Vix — Vy(Exy — y C 7)) is
analogous. We get a team V1 XX which has to be universally expanded, by values
for y, to a team Vi XY = {s: (x,z,y) = (v,/,w) :v € V|,V € X,w € V}. This team
is then split into, on one hand, the subteam of those assignments with (v,w) & E, to
satisfy the literal =Exy, and, on the other hand, the remaining set of assignments.
But in the remaining team all assignments s : (x,z,y) — (v,V/,w) satisfy (v,w) € F
and hence w € X. Thus we can again map s to s’ : (x,z,y) — (v,w,w) to make sure
that y C z is satisfied. Notice that without copying all values for x in X also as values
for z this reasoning would not work.

For the converse, assume that (¢, S) |=x trap(x). Clearly X C S. If X were not a
trap, then there would be a node v € X such that either v € V) and no edge from v
leads to a node in X, or v € V| and at least one edge from v leaves X. In both cases
the formula is false for X, hence we would have a contradiction.

Finally (¢,S) [=x itrap(x) if, and only if, there is a trap ¥ in (¥,S) such that
X CY and Y NI C X. This is the case if, and only if X is an I-trap in (¢,S). O

Let us now look at games for inclusion logic. In the second-order reachability
games for formulae of inclusion logic, the terminal positions are associated either
with first-order literals or with inclusion atoms of form x C .

Proposition 12 The winning conditions of second-order reachability model check-
ing games for inclusion logic are universal-existential.

Proof. The winning condition in a game ¢ (2L, y) consists of those sets U C T such
that, for every literal @,

2 ':Team(U.,(D) 0.

We have to find a relation R C T x T such that a set U C T is winning if, and
only if, (Vx € U)(3y € U)R(x,y). Positions in T are either of the form (@,s)
where ¢ is a first-order literal, or of the form (¥ C y,s). We define R to contain
all loops ((@,s)(¢,s)) for first-order literals ¢ such that 2 |=; ¢, and all edges
((xCy,s),(x C¥,t)) such that 7(¥) = s(x). Then clearly, for all U C T it holds that

A Fream(u,p) @ for all literals ¢~ < (Vx € U)(3y € U)R(x,y).
O

By the construction in Sect. 3 we thus obtain safety games for inclusion logic and
associate the teams satisfying the formula with the /-traps in the game. For further
reference, let us describe this in a more detailed way. Given a structure 2 and a
formula y(X) of inclusion logic we obtain a safety game %re (2,), with the set /
of initial positions consisting of all pairs (,s) with assignments s : free(y) — A,

Games for Inclusion Logic and Fixed-Point Logic 17

and the safety winning condition S excluding the pairs (@, s) where @ is a first-order
literal with 2 =5 —¢. The game consists of

e the forest ¥ = ¥ (2, y) defined as for first-order logic, with positions of form
(@,5).

e acopy ¢¥* of this forest, with positions (¢,s)*, in which Player 1 either moves
upwards the forest, or from (¢, s)* to the corresponding position (¢,s) in ¢, and

e moves of Player 0 from positions in ¢ associated to inclusion atoms, into ¢*.
Such moves go from (¥ C y,s) to positions (¥ C y,7)* subject to the condition
that 1(y) = s(%).

The objective of Player 0 in this game is to keep the play inside S and to avoid
the initial positions (y,s) with s ¢ X. We formulate this in terms of I-traps.

Proposition 13 For every structure 2, every formula y(X) of inclusion logic, and
every team X with domain free(y), we have that A =x y if, and only if X* :=
{(y,s) €l:s€ X} is an I-trap in G (A,).

S Interpretations

The notion of an interpretation is fundamental in mathematical logic. Interpretations
are used to define a copy of a structure inside another one, and thus permit us to
transfer definability, decidability, and complexity results between theories. Here we
shall use interpretations of model-checking games as a method to embed one logic
inside another and to provide normal forms and complete problems for logics. A
bit of care is necessary for the application of interpretations in the context of team
semantics.

The interpretations that we consider are classical first-order interpretations (with
Tarski semantics); in fact we are interested in interpretations that are given by very
simple formulae, namely quantifier-free ones. However, we shall apply these simple
interpretations as translations among formulae of more powerful logics, such as
greatest fixed-point logic and inclusion logic.

For every first-order formula ¢ (x1, . ..x;) and every structure 2, we write ¢ for
the relation defined by @ (%) on 2, i.e., 0% := {a c AF : A = 9(a@)}.

Definition 14. Let L be a fragment of first-order logic, let 6,7 be vocabularies,
where T = {Ry,...,R,,} is relational, and let r; be the arity of R;. A (k-dimensional)
Lo, t]-interpretation is given by a sequence I of formulae in L(&) consisting of

e 5(xy,...,x), called the domain formula,
o &(Xi,. ., X, V1,5, Vk), called the equality formula, and,
e for every relation symbol R € T (of arity r), a formula yg(Xi,...,X,) (of arity kr).

An L[o, t]-interpretation induces two mappings, one between structures, and the
other one between formulae. For a 7-structure B and a o-structure 2, we say that /

18 Erich Gridel

interprets B in 2 (in short, I(A) = B) if there exists a surjective map /1 : §* — B,
called the coordinate map, such that

e foralla,a € &%,
A= e(@ad) < h(a)=h@);

e for every relation R of B and all @, ...,a, € 8%,
A= yr(@,....a,) < (h(a1),...,h(a,)) €R,
ie. i 1(R) = (8¥) Nyg.

Hence I = (38,€,Yg,, ..., Yr,,) defines (together with the function 4 : 8% - B)
an interpretation of B = (B,Ry,...,R,) in 2 if, and only if, £(,¥) defines a con-
gruence on the structure (5%, l//,%‘l yeees w%n) and h is an isomorphism between the
quotient structure (8%, l/l,%ﬁ yeeos l//,%fn)/sQl and B.

Besides the mapping 2 — I(2{) from o-structures to 7-structures, I also defines
a mapping from 7-formulae to o-formulae. With every 7-formula ¢ it associates a
o-formula ¢/, which is obtained by replacing every variable x by a k-tuple X of vari-
ables, by replacing every quantifier Qx by a quantifier Ox over k-tuples, relativized to
6 (), by replacing equalities u = v by €(&, V), and by replacing every atom Ruj ... u,
by the corresponding formula yg(uj, . . . ,u,). In the case of fixed-point formulae or
second-order-formulae, we may have relation variables Y (of some arity r) which
we have to translate into corresponding relation variables Y* of arity kr.

Most of the common logics (with Tarski semantics), including FO, LFP and its
gfp-fragment, second-order logic etc., are closed under interpretations, that is, for
every formula ¢ and every (first-order)-interpretation 1, also ¢’ is a formula of the
same logic.

The semantics of these transformations is described by the Interpretation Lemma,
which we formulate for formulae ¢@(Y1,...,¥y,x1,...,x,) which may contain free
relation variables Y; and free element variables x;. A k-dimensional interpretation /
with coordinate map 4 : 8% — Binduces for every relation ¥; C B” the relation Y;* :=
h='(¥;) C A*" and for every assignment s : {x1,...,x,} — B, the set of assignments
h~'s consisting of all : {xij: 1 <i<n, 1 <j<k}— Asuch that, for all i <n,
t(xi1,- .. xix) € h 1 (s(x))).

Lemma 15 (Interpretation Lemma) Let I be an L[C,T]-interpretation with coor-
dinate map h, let A be a o-structure, and let ¢ = @(Y1,..., Yy, X1,...,%,) be a
formula of vocabulary T with free relation variables Y,...,Y,, and free element

variables x1,...,x,. Then for every tuple Y1,...Y,, of relations over (), every as-
signment s : {x1,...,x,} — B and every assignment t € h~'(s) we have that

(Q[,Yl*,...,Y,Z)):l (pl g (I(Q[),Yh,.,,Ym) ':S ¢.
In particular;, for every T-sentence @, we have that A |= ¢! < I() |= o.

For formulae with team semantics, the translation is a little bit more delicate,
since we need to consider the transformations of teams under interpretations and

Games for Inclusion Logic and Fixed-Point Logic 19

make sure that the atomic properties of teams are compatible with these transfor-
mations. In the presence of congruences, this may require to change the atomic
formulae.

For inclusion logic, however, such complications do not arise. The interpretation
I translates an inclusion statement 1 := (x1,...,%u Cy1,...,Ym) on m-tuples of vari-
ables into an inclusion statement)/ := (%1,...%, C y;,...,,,) on mk-tuples. For a
team X of assignments s mapping variables x; into the interpreted structure /(2), we
get the team 7~ (X) = J{h~'(s) : s € X} taking values in 2.

Lemma 16 An inclusion atom 1 := (X C¥) holds in a team X with values in I1(21)
if, and only if, n' holds in the team h='(X).

Proof. For simplicity of notation we just consider inclusion atoms of form 1 :=
(x C y). Suppose that the translated inclusion statement (¥ C ¥) holds in A~ (X).
Take any s € X. We have to prove that there exists a s € X with s'(y) = s(x). For
every t € h™!(s) there exists a #’ € h~!(X) with ¢/(y) = ¢(%). For s’ = h(t') € X we
have that s'(y) = h(¢'(7)) = h(t(x)) = s(x).

For the converse, assume that (x C y) holds in X. For every ¢ € h~!(X) we can
choose some s = h(t) € X. By assumption there exists an s’ € X with s'(y) = s(x).
Since A(t(X)) = s(x) = s'(y) there exists a t’ € h~!(s") C h~1(X) with /() = ¢(%).
Thus (¥ C ¥) holds in 2~ (X).

As above this extends to a translation from arbitrary formulae ¢ of inclusion
logic on I(2A) into formulae ¢’ of inclusion logic on 2.

Lemma 17 (Interpretation Lemma for Inclusion Logic) Let I be a quantifier-free
first-order interpretation, mapping a structure 2 to 1(21) with coordinate map h, and
let ©(X) be a formula of inclusion logic. Then for any team X with values in I(21)
we have that

A1) ¢ < 1) Ex 0.

6 Interpretability of game graphs

We now prove that for every formula there is a uniform interpretation of the model
checking games for that formula in the structure in which the formula is evaluated.
We first explain the construction for first-order formulae, but it immediately carries
over to stronger logics such as the least fixed-point logic LFP and its fragments, and
to logics with team semantics.

Proposition 18 For every formula y(x) € FO(t) there exists a quantifier-free in-
terpretation Iy which, for every T-structure 2 with at least two elements, interprets
the game graph 4 (2,) in 2L.

Proof. Let Sf(y) be the set of subformulae of y(X) and let .7 (y) = (Sf(y),Ey) be
its syntax-tree. Let x; ..., x; be the variables occurring in y. Recall that an equality

20 Erich Gridel

type in m-variables uy,...,u, is a maximally consistent conjunction of equalities
u; = u; and inequalities u; # u; . Let E,, be the set of equality types in u; ...u, (up
to equivalence). Choose m sufficiently large so that |E,,| > |Sf(y)| and fix for every
formula ¢ € Sf(y) a separate equality type ey € Ey,.

A node (@,s) of the game graph ¢ (2, y) is represented in 2 by the class of
all (m+ k)-tuples (c,a@) such that ¢ has equality type e, and a; = s(x;) for all x; €
free(¢). Thus, the domain and equality formulae of the interpretation Iy, are

oeSt(y)
e(@xv,y) = \/ (e(p(ﬁ)Ae(p(v)A A x,-:y,-).
oeSt(y) x;Efree()

The relations Vy, Vy, E, Ty, T} of the game graph ¢ (2, y) are clearly representable by
quantifier-free formulae in 2. Actually the formulae for Vp, V), E are pure equality
formulae. Explicitly,

W, (1,%) = V eq(@),

¢ belongs to Player o

ve@sry) = \ (ep@res®n A xi=w).
(0,0)€Ey xjEfree(@)Nfree(V)

Finally, the formulae defining the target sets 7p and 77 of the two players are

YT, (ﬁ,f) = \/ €p (ﬁ) A (P(f),
¢ is a literal

yr(@%) = \/ ep(@)A-9().

@ is a literal

This completes the definition of Iy. Clearly, for every structure 2 with more than
one element, we have the coordinate map /4 : §% — % (2, y) that maps every tuple
(¢,a) € 8% to the unique node (@, s) such that ¢ has equality type ey and s(x;) = a;
for all free variables x; of . O

Obviously this construction is not limited to model-checking games for first-
order logic. Indeed, with only trivial modifications it also works for many other
logics, including the following cases.

(1) Least fixed point logic LFP and the associated parity games.

(2) The posGFP-fragment of LFP and the associated safety games.

(3) Logics with team semantics and the associated second-order reachability
games.

(4) The safety games for inclusion logic (and other logics with universal-existential
dependencies)

Games for Inclusion Logic and Fixed-Point Logic 21

We briefly describe the modifications. For a parity game ¢ (2, y) for an LFP-
formula y one has to take into account the additional edges from fixed-point formu-
lae and fixed-point atoms to the formulae defining the fixed-point (as explained in
Sect. 4.2), which changes the syntax tree to a syntax graph. In addition, the model
checking game ¢ (2L, y) has unary relations P; associated to the priorities. These are
defined by formulae yp (,%) which are just the disjunctions over all equality types
eq(u) for the fixed-point atoms ¢ = Rx which have priority i. For the safety games
associated to posGFP-formulae the construction is similar, but instead of priorities
we need a formula for the safety condition, of the form

ws@x) = \/ epr) = (3),

¢ is a literal

saying that Player O has to avoid positions (¢,s) where @ is a literal with 2 =; —¢.

In what follows we shall need such game interpretations for the safety games
associated with formulae of posGFP and for formulae of inclusion logic. The fol-
lowing proposition is an immediate consequence of the arguments given above and
the constructions given in Sect. 3 and Sect. 4.5.

Proposition 19 For every formula y(X) of inclusion logic, there is a quantifier-
[ree first-order interpretation I(y) which, for every structure 2, interprets the safety
game Gyup, (A, W) in A

An analogous statement holds for the safety games associated with posGFP,
based on the construction of Sect 4.3.

Game interpretations can be very useful to give high-level arguments for trans-
formations of formulae among different logics (as we are going to show in the next
section) and for establishing normal forms, without the need to go through a cum-
bersome structural induction over formulae. Let us illustrate this for the posGFP-
fragment of least fixed-point logic.

Consider the formula win(x) that defines the winning region of Player 0 in safety
games ¢. For any formula v of posGFP, possibly with deeply nested gfp-operators,
the interpretation I = () induces a translation of win(x) into a formula win’ (7, %)
such that, for every structure 2, every subformula ¢(¥) of v, and every assignment
s : free(¢) — A we have that

A =, ¢(x) < Player 0 wins 4 (2, y) from position (¢, s)
& 42 y) Ewin((@,s))
& 2l = win! (¢,a) for one, and hence all, tuples (¢,a) € A~ ((@,s))

o Ak Hﬁay(e(p(ﬁ) AN vi=xAwin (ﬁ,y)).
x;Efree()

Since the interpretation / is quantifier-free, the transformation win(x) — win! (z, %)
does not change the structure very much; in particular it does not change the num-
ber of gfp-operators and the alternation depth of existential and universal quanti-
fiers. Since the winning region of safety games is definable in posGFP by a formula

22 Erich Gridel

with just one application of a gfp-operator to a disjunction (or conjunction) of an
existential and a universal formula, the same is true for the translated formula.

Proposition 20 Every formula in posGFP is equivalent to a formula with a single
application of a gfp-operator to a positive Boolean combination of purely existential
and purely universal first-order formulae.

It is known that, on finite structures, every LFP-formula is equivalent to a
posGFP-formula. Thus, on finite structures, the normal form given by this propo-
sition is in fact a normal form for LFP, a result first observed by Dahlhaus [3]. On
arbitrary structures, however, this is not true since least fixed points are not express-
ible by greatest ones without negation, and the alternation hierarchy of least and
greatest fixed points is strict.

7 Least fixed-point logic versus inclusion logic

We now are ready to explain in what sense inclusion logic and positive greatest
fixed-point logic are ‘equivalent’. For sentences, this is an unproblematic statement:
for every sentence Y of inclusion logic there is a sentence ¢ of posGFP, and vice
versa, such that, for every structure 2 we have that 2 = y if, and only if, 2 = ¢. An
informal proof of this goes as follows. The model-checking games for a sentence
v in any of these two logics are safety games, and these are interpretable by an
interpretation /() in the structure in which the sentence y is evaluated. Now take
a formula of the other of the two logics, saying that Player O wins the given safety
game (from the root), and transform it, by means of I(y) back into a sentence on
2A, which is equivalent to y. (We shall give a precise argument for a more general
statement below.)

For formulae with free variables, the situation is more complicated since for-
mulae of logics with team semantics, such as inclusion logic, define different se-
mantic objects than formulae of logics with Tarski semantics, such as posGFP.
A formula ¢(X) (of vocabulary T and arity k) with Tarski semantics defines a
query Qg, a function that associates with every t-structure 2| the k-ary relation
% := {a: A = ¢(@)}. Of course, the relation ¢ can be identified with a team,
namely the team

X%l ={s:xa:ac o™} ={s: A 0}.

For the general definition of a query, one has to require invariance under isomor-
phism.

Definition 21. A query (of vocabulary 7 and arity k) is a function Q, that associates
with every 7-structure a team Q(%() of assignments s : {xj,...,x;} — A such that, for
any isomorphism 4 : 20 — B between two T-structures, we also have that hQ() =
Q(*B), which means that for any assignment s : {x1,...,x} — A we have that s €
QO(2) if, and only if, hos € Q(*B).

Games for Inclusion Logic and Fixed-Point Logic 23

On the other side, a formula y(X) (again of vocabulary T and arity k) with team
semantics defines what we call a team query. It associates with every structure the
set [w]* of all teams X such that 2 |=x . For a general definition, we again have
to impose isomorphism invariance.

Definition 22. A team query (of vocabulary T and arity k) is a function TQ that as-
sociates with every 7 structure 2l a set TQ(2l) of teams with domain {xi,...,x;}
and values in A, such that, for every isomorphism % : 2 — B between two 7-
structures and every team X with values in A, we have that X € TQ(®l) if, and
only if hX € TQ(*B). We say that a team query TQ is L-definable (for a logic L with
team semantics) if there exists a formula y € L such that [y]® = TQ(2!) for all
structures 2.

Definability of team queries can also be considered in logics with Tarski seman-
tics, by means of sentences of a vocabulary that is expanded by a relation represent-
ing the team.

Definition 23. A team query TQ of vocabulary 7 is defined by a sentence ¥ of
vocabulary TU {X} if, for every t-structure 2 we have that TQ() = {X : (,X) &

Vi
In this sense it has been shown in [12, 5] that

e the team queries definable in dependence logic are precisely those that are defin-
able by an existential second-order sentence in which the predicate for the team
occurs only negatively, and

e the team queries definable in independence logic (or inclusion-exclusion logic)
are precisely those definable by existential second-order sentences.

Notice that, by the closure under unions of teams, there exists for every for-
mula @(%) of inclusion logic and every structure 2l a unique maximal team Xp,x :=
max{X : 2 =x @}. It follows that every team query TQ that is definable in inclusion
logic induces a query max TQ associating with 2[the maximal team X € TQ(%().
For the same reason it follows that inclusion logic cannot be equivalent with great-
est fixed point logic in the same sense in which independence logic is equivalent
with existential second-order logic. Indeed sentences y(X) of posGFP need not be
closed under union (of relations for X), and there need not be a well-defined maxi-
mal relation X satisfying y.

The relationship between inclusion logic and positive greatest fixed-point logic
can be made precise in several ways:

(1) The queries definable in posGFP are precisely those that occur as the maxi-
mum of a team query that is definable in inclusion logic.

(2) The team queries definable in inclusion logic are those definable by sentences
in posGFP (of expanded vocabulary) of the form Vx(Xx — yw(X,X)) where
the team predicate X occurs only positively in y.

(3) The post-fixed points of posGFP-definable relational operators coincide with
the team queries definable in inclusion logic.

24 Erich Gridel

Theorem 24 For every formula y(X) of inclusion logic there is a formula ¢(X,X)
in posGFP, with only positive occurrences of X, such that, for every structure 2 and
every team X we have that

Ax (@) & (AX) FVIXT = 9(X.3) & F'(X) 2X.

In particular, for all assignments s, we have that A =, [gfpXX. ¢(X,X)](X) if, and
only if, s € max{X : A =x y(x)}.

Proof. Let I(y) be the quantifier-free first-order interpretation which, for every
structure 2 and every team X, interprets the safety game %, (2L,) in 2, and
let i be the associated coordinate map. Recall that 2 |=x w(%) if, and only if,
X*={(y,s):s € X} is an I-trap in Gare (A, ¥).

Further, let itrap(X*, z) be the posGFP-formula, from Example 1, defining I-traps
in safety games, in the sense that (¢, X*) = Vz(X*z — itrap(X*,z)) if, and only if
X*is anI-trapin ¢.

By the Interpretation Lemma we get a formula itrap’ ("’)(Y ,Z), which is also in
posGFP such that, for Y = h~!(X*),

(A,Y) = Vz(Yz — itrap’) (¥,2)) & (Goare (A, W), X*) = V2(X*z — itrap(X*,2)).

For an assignment s with domain free(y) = {xi,...x;} the tuples (¢,a) in 2
that interpret the position (y,s) are those satisfying ey (¢) A AL a; = s(x;). (Notice
that the length of @ is in general, greater than the length of X.) Thus we may write
tuples Z representing game positions as 7 = (&, ¥) and observe that Y = 7~ (X*) =
{(@,xx) : (A,X) = ey(u) AXx}. Let now itrap”(X,u,%,¥') be the formula that is
obtained from itrap’(¥) (Y, xx’) by replacing all atoms Y vyy’ by the formula (ey(V)A
X7y). Finally, we put

@(X,X) := Vavx' (ey (u) — itrap™ (X, uxx)).

Notice that all occurrences of X in @ (X,X) are positive. Putting everything together,
we have that
Ax y(x) < (A,X) = VX(XT = o(X,X)).

O

Corollary 25 If TQ is a team query that is definable in inclusion logic, then the
query max TQ is definable in posGFP. Moreover, TQ is definable by a sentence of
posGFP (of an expanded vocabulary by a relation for the team).

For the converse relationship we establish the following result.

Theorem 26 For every formula ¢(X,X) in posGFP, with only positive occurrences
of X, there is a formula y(X) in inclusion logic such that, for every structure A and
every team X we have that

(2,X) = Vx(Xx = 9(X,X)) & A =x y(3).

Games for Inclusion Logic and Fixed-Point Logic 25

Proof. Let 9*(2, @) be the game from Proposition 8 such that (2(,X) | Vx(Xx —
©(X,x)) if, and only if, X* = {(@,s) : s(X) € X} is an I-trap in ¥*(2, @). Further,
let J(¢@) be the quantifier-free interpretation with coordinate map & which, for every
structure 2, interprets ¢* (2, ¢) in 2.

Let itrap(x) be the formula of inclusion logic, constructed in Sect. 4.5, such that
for all games ¢, [itrap(x)]|? is the set of teams that define an I-trap in ¢. By the
Interpretation Lemma we get a formula itrap’ (q’)(ﬁ,z), which is also in inclusion
logic, such that [[itrap’(®) (71,Z)] % is the set of all teams Z = ' (Y) where Y defines
an [-trap of ¥*(2L,). Notice that such a Z consists of all assignments ¢’ : (#,z) —
(¢,a) such that h(c,a) = t(x) for somez € Y.

For the specific team that defines X* we can write 7 =yy and get, that Z(X) =
h=1(X*) is the set of all assignments (#,%¥') — (,aa’) such that ey, (¢) and @ € X.
We now set

V(%) := Vavx (ey (i) — itrap”(?) (a,x¢))

so that 2 [=x y(X) if,and only if, 2 [=7x) itrap’(®) (71, x¥'). Putting everything to-
gether, we have
(A,X) EVX(XX — ¢(X)) < X™isan I-trap in 9" (2, @)
&9 (2,0) Fx- itap(x)
& Az itrap’(®) (11, ')
)
O

Corollary 27 For every formula ¢(X) in posGFP there is a formula y(X) in inclu-
sion logic such that, for every structure 2 and every team X we have that

A= 0X) foralls e X & Akx y().

Corollary 28 For every query Q that is definable in posGFP, the team query & (Q),
which associates with every structure 2 the power-set of the team Q(21), is definable
in inclusion logic.

Corollary 29 The posGFP-definable queries Q are precisely those, for which there
exists a team query TQ that is definable in inclusion logic with maxTQ = Q.

References

1. K. Apt and E. Gridel, editors. Lectures in Game Theory for Computer Scientists. Cambridge
University Press, 2011.

2. A. Blass and Y. Gurevich. Henkin quantifiers and complete problems. Annals of Pure and
Applied Logic, 32:1-16, 1986.

26

10.
11.

12.

13.

Erich Gradel

E. Dahlhaus. Skolem normal forms concerning the least fixed point. In E. Borger, editor,
Computation Theory and Logic, number 270 in Lecture Notes in Computer Science, pages
101-106. Springer Verlag, 1987.

. F. Engstrom. Generalized quantifiers in dependence logic. Journal of Logic, Language, and
Information, 2012.

. P. Galliani. Inclusion and exclusion in team semantics — on some logics of imperfect infor-
mation. Annals of Pure and Applied Logic, 163:68-84, 2012.

. P. Galliani and L. Hella. Inclusion logic and fixed-point logic. In Computer Science Logic
2013, volume 23 of Leibniz International Proceedings in Informatics (LIPIcs), pages 281—
295, 2013.

. E. Gridel. Model-checking games for logics of incomplete information. Theoretical Computer
Science, 493:2—-14, 2013.

. E. Gridel and J.Vidnédnen. Dependence and independence. Studia Logica, 101(2):399—410,
2013.

. E. Gridel et al. Finite Model Theory and Its Applications. Springer-Verlag, 2007.

W. Hodges. A shorter model theory. Cambridge University Press, 1997.

W. Hodges. Logics of imperfect information: Why sets of assignments? In Johan van Ben-

them, Benedikt Lowe, and Dov Gabbay, editors, Interactive Logic, volume 1 of Texts in Logic

and Games, pages 117-134. Amsterdam University Press, 2007.

J. Kontinen and J. Viddnidnen. On definability in dependence logic. Journal of Logic, Lan-

guage, and Information, 18:317-241, 2009.

A. Mann, G. Sandu, and M. Sevenster. Independence-Friendly Logic. A Game-Theoretic Ap-

proach, volume 386 of London Mathematical Societay Lecture Notes Series. Cambridge Uni-

versity Press, 2012.

. J. Vididnidnen. Dependence Logic. Cambridge University Press, 2007.

