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Abstract
Automatic structures made their appearance at LICS twenty

years ago, at LICS 2000. However, their roots are much older.

The idea of automata based decision procedures for logical

theories can be traced back to the early days of automata

theory and to the work of Büchi, Elgot, Trakhtenbrot and

Rabin in the 1960s. The explicit notion of automatic struc-

tures has first been proposed in 1976 in the (unfortunately

largely unnoticed) PhD thesis of Hodgson, and later been

reinvented by Khoussainov and Nerode in 1995.

In this tutorial, we present an introduction into the history

and basic definitions of automatic structures, and survey the

achievements in the study of different variants of automatic

structures. We discuss their most important mathematical

and algorithmic properties, their characterisations in terms

of logical interpretations, and we present some of the mathe-

matical techniques that are used for the analysis of automatic

structures and for proving limitations of these concepts.
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1 What are automatic structures ?
Automatic structures are (in general infinite) structures that

admit finite presentations by automata. Roughly speaking, a
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relational structure𝔅 = (𝐵, 𝑅1, . . . , 𝑅𝑚) is called automatic if

its domain can be represented as a regular set in such a way

that its relations become recognisable by synchronous multi-

tape automata. More precisely, an automatic presentation

of 𝔅 = (𝐵, 𝑅1, . . . , 𝑅𝑚) consists of a language 𝐿, which is

recognisable by an automaton A, and a surjective function

𝜈 : 𝐿 → 𝐵 that associates with every object in 𝐿 the element

of 𝐵 that it represents. The function 𝜈 must be surjective

(every element of 𝐵 is named by some object of 𝐿) but need

not be injective (elements may have more than one name). In

addition it must be recognisable by automata, reading their

inputs synchronously, whether two objects in 𝐿 name the

same element of 𝐵, and, for each relation 𝑅𝑖 , whether a given

tuple of objects from 𝐿 names a tuple in 𝑅𝑖 . Together, the

automata A and the automata that recognise equality and

the relations 𝑅1, . . . , 𝑅𝑚 provide a finite representation of the

structure 𝔅.

In principle we can use automata over finite words, infi-

nite words, finite trees, or infinite trees, and possibly even

more general objects to obtain different classes of automatic

structures. For most of the purposes pursued in this field, it

is essential that these automata models are effectively closed

under first-order operations (union, intersection, comple-

mentation, and projection) and that their emptiness problem

is decidable. Indeed, these properties ensure that

• every automatic structure has a decidable first-order

theory and, more specifically,

• given any automatic presentation of 𝔅 and any first-

order formula 𝜑 (𝑥1, . . . , 𝑥𝑘 ) one can effectively con-

struct an automaton respresenting the relation 𝜑𝔅
:=

{ ¯𝑏 ∈ 𝐵𝑘 : 𝔅 |= 𝜑 ( ¯𝑏)}.

Thus, all (first-order) definable properties of automatic

structures can be algorithmically investigated using automata-

theoretic methods based on appropriate finite presentations.

This makes automatic structures a domain of considerable

interest for computer science.

The best understood case of automatic structures concerns

those presented by automata on finite words. These are some-

times called word-automatic structures, but often, just the
term “automatic structures” is used for them, provided that

the context makes it clear that we do not mean structures

presented by automata on more general objects. Examples of

(word-)automatic structures include the standard model of

Presburger arithmetic, (N, +), tree structures, Cayley graphs
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of automatic groups, well-orders of length < 𝜔𝜔
, the com-

putation graph of any Turing machine, and so on. By using

automata on infinite words for the presentation of structures

one obtains the more general class of𝜔-automatic structures,

which may have uncountable cardinality, such as the addi-

tive group of real numbers, or more general tree structures

that include as elements also their infinite branches.

One of the most prominent and important structures with

a decidable first-order theory is certainly the field of reals

(R, +, ·) . The decidability goes back to Tarski [56] and is

based on a quantifier elimination argument. Therefore, it

is very natural to ask whether the field of reals admits an

automatic presentation of some kind. Of course, such a pre-

sentation cannot be based on automata on finite words or

finite trees, because languages of finite words and trees are

countable. However, it might, a priori, be the case that the

field of reals is 𝜔-automatic, i.e., admits a presentation based

on automata on infinite words, or that it is 𝜔-tree-automatic,

with a presentation based on automata on infinite trees. The

question whether this is the case is closely related to clas-

sical problems raised by Büchi and Rabin in context with

decidable theories such as Presburger arithmetic and the

theory of the field of reals. The decidability of Presburger

arithmetic, the first-order theory of (N, +), had originally

been proven by quantifier elimination, but Büchi’s work on

the automata based decision procedure of WS1S (the weak

monadic theory of (𝜔, suc)) carries over to an automata-

theoretic decidability argument for Presburger arithmetic.

In Rabin’s classical paper [52], where he proved the decid-

ability of S2S (the monadic theory of the infinite binary tree)

and several other theories, he explicitly raised the question

whether also the decidability of the field of reals could be

proved by automata-theoretic methods. This is up to now

one of the most intriguing open problems in the field of

automatic structures.

2 Early History
The history of automatic structures can be traced back to

the early days of automata theory, for instance to the au-

tomata theoretic decision procedures for Presburger arith-

metic and other theories by Büchi [13, 14], Elgot [20], Rabin

[52], and others. The first explicit definition of automatic

and 𝜔-automatic structures appeared in the PhD thesis of

Bernard Hodgson [27] in 1976, and the two articles [28, 29]

that are based on it. Hodgson also coined the terms auto-

matic structures and 𝜔-automatic structures (first called

macroautomatic structures in [27]). Hodgson’s definition

is only slightly less general than the one presented above, in

the sense that it requires automatic presentations to be injec-

tive; this makes no essential difference for word-automatic

structures, but (as has been discovered much later) does not

provide full generality for 𝜔-automatic ones. Hodgson starts

with the notion that a theory Th(𝔄) of a 𝜏-structure 𝔄 is

decidable by finite automata to mean that there is an effective

procedure that associates with every formula 𝜑 (𝑥) ∈ FO(𝜏)
a finite automaton (on finite or infinite words) that accepts

a suitable encoding of 𝜑𝔄
, the relation defined by 𝜑 on 𝔄.

He describes the encoding of relations over finite or infi-

nite words via convolutions, and then identifies automatic

and 𝜔-automatic structures as special cases of structures

whose theories are decidable by automata, due to the effec-

tive closure properties and the decidability of the emptiness

problems of automata. He provides a number of examples of

automatic structures, including the basic types of dense and

discrete linear orders, and the structures of natural numbers,

integers, or p-adic numbers with addition. Finally Hodgson

proves that finite direct products of 𝜔-automatic structures,

as well as weak or strong countable powers of automatic

structures have theories that are decidable by finite automata.

This includes the theory of any finitely generated Abelian

group, Skolem arithmetic Th(N, · ), and the theory of any

free Abelian group of countable rank. Unfortunately, Hodg-

son’s work went largely unnoticed and did not have a major

impact at the time.

A different root for the study of automatic structures is the

theory of automatic groups, developed around 1990 in com-

putational group theory (see [21, 22]). Automatic groups are

finitely generated groups, whose Cayley graphs can be pre-

sented by finite automata in a specific sense. The importance

of automatic groups for computational group theory comes

from the fact that an automatic presentation of a group yields

efficient algorithmic solutions for computational problems

that are undecidable in the general case. However, automatic

groups are presented by automata in a specific way, with

important differences to more general notions of automatic

structures. In particular, it is not the group structure (𝐺, · )
itself that is automatically presented, but the Cayley graph,

and not even all groups with an automatically presentable

Cayley graph are automatic groups in the sense of compu-

tational group theory. As a result there has not been that

much interaction between the study of automatic groups

in computational group theory and the study of automatic

structures in logic and computer science.We shall discuss the

relationship of automatic groups with automatic structures

in Sect. 5.

The notion of an automatic structure has been rediscov-

ered almost twenty years after Hodgsons’ work by Khous-

sainov and Nerode [37]. They were motivated by an earlier

approach aiming at a constructive description of infinite

structures, namely recursive model theory, based on struc-

tures presented by Turing machines rather than finite au-

tomata (or in a restricted version, based on p-time com-

putability [16]). Recursive structures are mathematically

very interesting but the algorithmic content turned out to be

rather limited; indeed in general only quantifier-free formu-

lae are decidable on such structures. In contrast, as is nicely
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pointed out in [37], “research on automatic structures, unlike
research on recursive and p-time structures, concentrates on
positive results”. Khoussainov and Nerode discuss several

variants of structures presentable by automata over finite

words and also suggest their extension to tree-automatic

structures; they provide a number of further examples of au-

tomatic structures, such as finitely generated Abelian groups,

countable vector spaces over finite fields, permutation struc-

tures, and make an important connection to computability

theory by observing that the computation graph of any Tur-

ing machine is automatic. Khoussainov and Nerode have also

proposed a number of mathematical challenges that have

been very fruitful for the field, in particular the problem of

classifying the automatic structures inside particular alge-

braic domains such as linear orders, Boolean algebras, etc.

They also showed that for word-automatic structures it is

no restriction to assume that automatic presentations are

injective.

Automatic structures have been brought to LICS in 2000

[10]. One of the motivations for this work came from finite

model theory: to “explore to what extent automatic structures
are a suitable framework for extending the methods of finite
model theory to infinite structures”. The results in [10], and in

the journal paper [11] extending it, include a detailed com-

plexity analysis of the first-order theory of automatic struc-

tures and its low-level fragments, an algorithm for evaluating

the quantifier “there exist infinitely many”, composition the-

orems for automatic structures, undecidability results for

several important properties that are not first-order express-

ible, such as isomorphism and connectedness, and methods

for establishing that certain structures are not automatic.

But the perhaps most important contribution of this work

has been the model-theoretic characterisations of automatic

structures via first-order interpretations. As proved in [10],

a structure is automatic if, and only if, it is first-order in-

terpretable in an expansion of Presburger arithmetic by a

restricted divisibility relation or, equivalently, in the infinite

binary tree with prefix order and equal length predicate (see

Sect. 4). Similar results hold for 𝜔-automatic structures and

first-order interpretations into appropriate expansions of the

real ordered group or into extended tree structures, and also

for structures presented by automata on finite or infinite

trees. Such results also suggest a very general way for ob-

taining other interesting classes of infinite structures that

admit finite presentations: Fix a structure 𝔄 (or a finitely

presentable class of such structures) with good algorithmic

and model-theoretic properties, and consider the class of all

structures that are first-order interpretable in 𝔄. Obviously

each structure in this class is finitely presentable (by an in-

terpretation). Further, since many important properties are

preserved under interpretations, every structure in the class

inherits them from 𝔄. In particular, every class of formulae

that admits effective evaluation on 𝔄 and is closed under

first-order operations, also admits effective evaluation on

the interpretation-closure of 𝔄.

From 2000 onwards, this field has become very rich, with

a large amount of research on different variants of automatic

structures and other forms of finitely presented structures.

For a survey on such work, up to ten yers ago, we refer to [7],

more specific accounts on word-automatic structures had

been given earlier in [36, 54]. Interestingly a quite relevant

part of all this work has been accomplished by students in a

number of very strong theses, including those by Abu Zaid

[1], Bárány [6], Blumensath [9], Colcombet [17], Huschen-

bett [30], Kaiser [31], Kartzow [33], and Rubin [53].

3 Automatic structures and their logical
theories

We now formally introduce the notion of an automatic struc-

ture, assuming that the reader is familiar with the basic no-

tions of automata theory and regular languages (see [57, 58]).

We focus on the basic case of word-automatic structures, but

the extension to presentations by automata on other objects

is obvious. One slightly nonstandard aspect is a notion of

regularity not just for languages 𝐿 ⊆ Σ∗
, but also for 𝑘-ary

relations of words where 𝑘 > 1. It can be formulated in terms

of synchronousmultihead automata that take tuples of words

as inputs and work synchronously on components, but in-

stead, we reduce the case of higher arity to the unary one by

encoding tuples �̄� ∈ (Σ∗)𝑘 by a single word𝑤1⊗· · ·⊗𝑤𝑘 over

the alphabet (Σ∪ {□})𝑘 , called the convolution of𝑤1, . . . ,𝑤𝑘 .

Here□ is a padding symbol not belonging to Σ. It is appended
to some of the words𝑤𝑖 to make sure that all components

have the same length. More formally, for 𝑤1, . . . ,𝑤𝑘 ∈ Σ∗
,

with𝑤𝑖 = 𝑤𝑖1 · · ·𝑤𝑖ℓ𝑖 and ℓ = max {|𝑤1 |, . . . , |𝑤𝑘 |},

𝑤1 ⊗ · · · ⊗𝑤𝑘 :=


𝑤′

11

...
𝑤′
𝑘1

 . . .

𝑤′

1ℓ

...
𝑤′
𝑘ℓ

 ∈
(
(Σ ∪ {□})𝑘

)∗
where 𝑤 ′

𝑖 𝑗 = 𝑤𝑖 𝑗 for 𝑗 ≤ |𝑤𝑖 | and 𝑤 ′
𝑖 𝑗 = □ otherwise. Now,

a relation 𝑅 ⊆ (Σ∗)𝑘 is called regular, if {𝑤1 ⊗ · · · ⊗ 𝑤𝑘 :

(𝑤1, . . . ,𝑤𝑘 ) ∈ 𝑅} is a regular language.

Definition 3.1. A relational structure 𝔄 is automatic if

there exist a regular language 𝐿𝛿 ⊆ Σ∗
and a surjective

function 𝜈 : 𝐿𝛿 → 𝐴 such that the relation

𝐿𝜖 := {(𝑤,𝑤 ′) ∈ 𝐿𝛿 × 𝐿𝛿 : 𝜈𝑤 = 𝜈𝑤 ′} ⊆ Σ∗ × Σ∗

and, for all predicates 𝑅 ⊆ 𝐴𝑟
of 𝔄, the relations

𝐿𝑅 := {�̄� ∈ (𝐿𝛿 )𝑟 : (𝜈𝑤1, . . . , 𝜈𝑤𝑟 ) ∈ 𝑅} ⊆ (Σ∗)𝑟

are regular. A structure with functions is automatic if its

relational variant is.

We write AutStr for the class of all automatic structures.

Each structure 𝔄 ∈ AutStr can be represented, up to isomor-

phism, by a list 𝔡 = ⟨𝑀𝛿 , 𝑀𝜀 , (𝑀𝑅)𝑅∈𝜏 ⟩ of finite automata

that recognise 𝐿𝛿 , 𝐿𝜖 , and 𝐿𝑅 for all relations 𝑅 of 𝔄. An
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automatic presentation 𝔡 is called injective if 𝐿𝜖 = {(𝑢,𝑢) :

𝑢 ∈ 𝐿𝛿 } (which implies that 𝜈 : 𝐿𝛿 → 𝐴 is injective).

Universal automatic structures. We have already men-

tioned a number of examples of automatic structures. There

are two further important classes of automatic structures,

that will turn out to be universal, or complete, for AutStr.

First, let 𝔑𝑝 := (N, +, |𝑝 ) be the expansion of the standard

model of Presburger arithmetic, (N, +), by the relation

𝑥 |𝑝 𝑦 : iff 𝑥 is a power of 𝑝 dividing 𝑦.

Using 𝑝-ary encodings (starting with the least significant

digit) it is not difficult to construct automata recognising

equality, addition and |𝑝 .
Secondly, for 𝑝 ∈ N we consider the tree structure

Tree(𝑝) := ({0, . . . , 𝑝 − 1}∗, (𝜎𝑖 )𝑖<𝑝 , ⪯, el)
with the successor functions 𝜎𝑖 (𝑥) := 𝑥𝑖 , the prefix order ⪯,
and the equal level predicate el(𝑥,𝑦) which holds if |𝑥 | = |𝑦 |.
Obviously, this structure is automatic as well.

Decidability and complexity. The standard models of

finite automata on finite or infinite words or trees are ef-

fectively closed under first-order operations and have a de-

cidable emptiness problem. This implies that the first-order

theory Th(𝔄) of every automatic structure 𝔄 is decidable,

and that given an automatic presentation of 𝔅 and a first-

order formula 𝜑 (𝑥1, . . . , 𝑥𝑘 ) one can effectively construct an

automaton respresenting the relation 𝜑𝔄
:= {𝑎 ∈ 𝐴𝑘

: 𝔄 |=
𝜑 (𝑎)} defined by 𝜑 on 𝔄.

In general the theory of an automatic structure, while de-

cidable, may have non-elementary complexity, i.e. the time

complexity may exceed any fixed number of iterations of

the exponential function 𝑛 ↦→ 2
𝑛
. In particular, this is the

case for the structures𝔑𝑝 and Tree(𝑝) [24]. There have been
detailed studies of the complexity of model checking and

query evaluation problems for fragments of first-order logic,

and for specific classes of automatic structures, for instance

in [4, 11, 42, 48, 49]. In particular, the (structure complex-

ity of) model checking and query evaluation problems for

fixed quantifier-free, existential, and Σ2-formulae on general

word-automatic structures (presented by deterministic au-

tomata) have been classified into complexity levels between

Logspace and Pspace. On any fixed automatic structure

(possibly with functions), quantifier-free formulae can be

evaluated in quadratic time [11]. In particular, this gener-

alises the quadratic time solution for the word problem on

automatic groups, which can be formulated via term equa-

tions on automatic Cayley graphs (see Sect. 5). Further, it

was shown in [42] that for any 𝑛, there exists formulae in

the Σ𝑛+1-prefix class of FO, whose class of automatic mod-

els (presented by automata) is complete for 𝑛-Exspace, and

there exists a fixed automatic structure such that, for all 𝑛, its

Σ𝑛+1-theory is complete for 𝑛-Exspace. In other words, both

the structure and expression complexity of Σ𝑛+1-formulae

are 𝑛-Exspace complete for automatic structures. Kuske and

Lohrey [48, 49] have proved that first-order model check-

ing on word- and tree-automatic structures with Gaifman

graphs of bounded degree have elementary complexity, and

it is shown in [4] that for every natural number 𝑛, there exist

automatic structures whose first-order theory is placed in

the 𝑛-th level of the exponential space hierarchy.

The question arises to what extent the decidability results

for the theories of automatic structures can be generalised

beyond first-order logic. Positive results have been obtained

in a series of papers [10, 32, 39, 46] for extensions by count-
ing quantifiers of the form “there are infinitely many ele-
ments”, “there are 𝑘 mod𝑚 many elements”, “there are at most
countably many elements” and “there are uncountably many
elements” (which are relevant for 𝜔-automatic structures).

Let FOC denote the extension of first-order logic by these

counting quantifiers.

Theorem 3.2. Given an 𝜔-automatic presentation of a struc-
ture 𝔄 and an FOC-formula 𝜑 one can effectively extend the
presentation of 𝔄 to one of the expanded structure (𝔄, 𝜑𝔄). In
particular, the FOC-theory of every 𝜔-automatic structure is
decidable.

Another example for a quantifier that is regularity pre-

serving, at least for word-automatic structures, and thus

also preserves decidability is the Ramsey quantifier. For

any 𝑘 ≥ 1, the k-Ramsey quantifier ∃k-ram
is defined by

𝔄 |= ∃k-ram𝑥𝜑 (𝑥, 𝑐) if, and only if, there is an infinite 𝑋 ⊆
𝐴 so that 𝔄 |= 𝜑 (𝑎1, . . . , 𝑎𝑘 , 𝑐) for all pairwise different

𝑎1, . . . , 𝑎𝑘 ∈ 𝑋 . A similar observation applies to quantifiers

saying “there exists an infinite set 𝑋 satisfying 𝜑” provided
that 𝑋 appears only negatively in 𝜑 , i.e. 𝜑 describes a prop-

erty of sets that is closed under taking subsets. As a conse-

quence, it has been proved by Kuske and Lohrey [47] that

there exist problems which are highly undecidable on recur-

sive graphs but decidable on automatic ones. In particular, it

is decidable whether a given automatic graph contains an

infinite clique, and if it does, a regular set of representatives

of such a clique can be computed.

On the other side, it has already been observed in [37]

that any Turing machine𝑀 has an automatic computation

graph: the nodes are the configurations of 𝑀 , and there is

an edge from 𝐶 to 𝐶 ′
if𝑀 reaches 𝐶 ′

from 𝐶 in one step. By

the undecidability of the halting problem, this implies that

the model checking problem is undecidable on automatic

structures for any logic that is powerful enough to express

graph reachability, such as for instance transitive closure

logics, fixed point logics, or monadic second-order logic.

The isomorphism problem. The fact that computation

graphs of Turing machines are automatic implies many fur-

ther undecidability results on automatic structures, such

as, for instance, the connectivity problem for directed or

undirected automatic graphs. A further fundamental and

extensively studied issue is the isomorphism problem: given
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two automatic presentations, decide whether the structures

they present are isomorphic. Already in [11], it has been

proved that the isomorphism problem for automatic struc-

tures is undecidable, and it has then been shown in [53], that

this holds in a very strong sense: it is in fact Σ1

1
-complete,

i.e., placed outside the arithmetical hierarchy, and on the

first level of the analytical hierarchy. It had been known

before that the isomorphism problem is Σ1

1
-complete also

for the much richer class of recursive structures. Further, Σ1

1
-

completeness also holds for a number of interesting specific

classes of recursive structures, such as linear orders, trees,

undirected graphs, Boolean algebras, Abelian p-groups, and

it has been argued that the Σ1

1
-completeness of the isomor-

phism problem for a class of recursive structures implies

that there is no good classification for that class from the

point of view of computability theory [15]. This has mo-

tivated a considerable amount of research classifying the

complexity of the isomorphism problem for specific classes

of automatic structures [38, 40, 44, 50, 53]: While isomor-

phism is decidable for automatic ordinals and automatic

Boolean algebras, it is still Σ1

1
-complete for automatic order

trees, automatic directed and undirected graphs, automatic

commutative monoids, automatic linear orders, automatic

lattices of height 4, and automatic unary functions. Classes

with intermediate complexity of the isomorphism problem,

in specific levels of the arithmetical hierarchy, are automatic

equivalence relations (Π0

1
), locally- finite automatic graphs

(Π0

3
), and automatic trees of height 𝑛 ≥ 2 (Π0

2𝑛−3
).

Structures that are not word-automatic. In general, it

is not easy to prove that a structure 𝔄 (assuming that it

is countable and has a decidable first-order theory) does

not admit an automatic presentation over words. A recent

recursion-theoretic result to this effect [8] shows that it is a

Σ1

1
-complete problem to decide, whether a given recursive

structure (presented by Turingmachines) is in fact automatic,

so there is no good recursion-theoretic characterisation of

the automatic structures within the recursive ones.

One reason for the difficulty to prove that an individual

structure is not automatic is that, a priori, the elements could

be named in any way by words from a regular language. In

situations where this is not the case, such as for automatic

groups, there are more methods available such as the fellow-

traveller property (see Sect. 5). However, from some standard

and classical results in automata theory, such as the Pumping

Lemma and the Theorem by Elgot and Mezei on locally finite

regular relations, one can derive counting arguments that

give limitations on definable functions and relations in any

word-automatic structure. Consider any injective automatic

presentation of a structure 𝔄, with the associated bijection

𝜈 : 𝐿 → 𝐴 from a regular language 𝐿 to the universe 𝐴. For

a finite set F of first-order definable functions on 𝔄 and

a definable set 𝐸 = {𝑒0, 𝑒1, 𝑒2, . . . } of elements, ordered by

the length of their representations in 𝐿, the generations of 𝐸

(with respect to F ) are defined [37] by setting

𝐺0 (𝐸) := {𝑒0},

𝐺𝑛+1 (𝐸) := {𝑒𝑛+1} ∪𝐺𝑛 (𝐸) ∪
⋃
𝑓 ∈F

𝑓 (𝐺𝑛 (𝐸) × · · · ×𝐺𝑛 (𝐸))

It can then be shown that |𝜈−1 (𝑎) | = 𝑂 (𝑛) for all 𝑎 ∈ 𝐺𝑛 (𝐸),
so in particular |𝐺𝑛 | = 2

𝑂 (𝑛)
. This can be applied to show

some interesting non-automaticity results [11]:

Theorem 3.3. None of the following structures has a word-
automatic presentation:

(i) The free semigroup on𝑚 ≥ 2 generators.
(ii) Any structure 𝔄 in which a pairing function, i.e. a

bijection 𝑓 : 𝐴 ×𝐴 → 𝐴, can be defined.
(iii) The divisibility poset (N, |).
(iv) Skolem arithmetic (N, ·).
Since it is not difficult to see that (N, ·) admits a tree-

automatic presentation, this implies that the tree-automatic

structures are a strictly richer class than the word-automatic

ones.

Somewhat more sophisticated techniques, with a more

model-theoretic flavour, have been developed and used in

[19] and also in [38]. Given an automatic presentation of 𝔄,

with 𝜈 : 𝐿 → 𝐴 as above, for a regular language 𝐿 ⊆ Σ∗
,

the subset 𝐶𝑛 := 𝜈 (𝐿 ∩ Σ≤𝑛) ⊆ 𝐴 of elements named by

words of 𝐿 of length at most 𝑛, can only be linearly shattered
by formulae with a parameter: For a formula 𝜑 (𝑥,𝑦), let
𝜑𝔄,𝑏 ∩ 𝐶𝑛 := {𝑎 ∈ 𝐶𝑛 : 𝔄 |= 𝜑 (𝑎, 𝑏)} be the subset of 𝐶𝑛

defined by 𝜑 with parameter 𝑏.

Proposition 3.4. For any automatic presentation of a struc-
ture 𝔄 and any first-order formula 𝜑 (𝑥,𝑦), the number of
different sets 𝜑𝔄,𝑏 ∩𝐶𝑛 , as the parameter 𝑏 ranges over 𝐴, is
linearly bounded in |𝐶𝑛 |.

In particular, this readily implies that the random graph is

not automatic [19]. Indeed the random graph is characterised

by the extension axioms saying that for any finite set 𝑋 of

vertices and any subset𝑈 ⊆ 𝑋 there exists a node 𝑏 with an

edge to all nodes in𝑈 and to none in𝑋 \𝑈 . Thus, any finite set

𝑋 of nodes is fully shattered by the adjacency relation 𝐸𝑥𝑦,

so that the random graph cannot have any word-automatic

presentation. By similar arguments, it follows that also the

random partial order and the random 𝐾𝑛-free graph are not

automatic.

A standard example for word-automatic structures are the

ordinals 𝛼 < 𝜔𝜔
. An automatic presentation of 𝜔𝑛

is based

on the regular language (0∗1)𝑛 with the lexicographic order

<lex, and the function 𝜈 : (0∗1)𝑛 → 𝜔𝑛
, that represents the

ordinal 𝑖𝑛−1𝜔
𝑛−1+· · ·+𝑖1𝜔+𝑖0 by the word 0

𝑖𝑛−1
1 · · · 0𝑛1

10
𝑛0

1.

Using the methods just explained, Delhommé [19] proved

that that the ordinal𝜔𝜔
itself and all larger ones do not admit

a word-automatic presentation.

Proposition 3.5. The word-automatic ordinals are precisely
those below 𝜔𝜔 .
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For the tree-automatic ordinals the corresponding bound

is 𝜔𝜔𝜔

[19].

Finally, an even more sophisticated result, due to Tsankov

[59], is based on the study of arithmetic progressions and

Freiman’s Theorem:

Theorem3.6. The additive group of rational numbers, (Q, +),
is not (word-)automatic.

Translations among automatic presentations. In gen-

eral, an automatic structure may admit different automatic

presentations. Methods for comparing these have been de-

veloped by Bárány [5, 6].

Definition 3.7. Consider two automatic presentations of a

structure𝔄, based on regular languages 𝐿1, 𝐿2 and associated

functions 𝜈1 : 𝐿1 → 𝐴 and 𝜈2 : 𝐿2 → 𝐴. We say that the two

presentations are equivalent if, for any 𝑅 ⊆ 𝐴𝑘
, the relation

𝜈−1

1
(𝑅) is regular if, and only if, the relation 𝜈−1

2
(𝑅) is.

A characterisation of the equivalence of (word-)automatic

presentations can be given in terms of semi-synchronous
transducers, which are automata operating on pairs of words,

processing the first in blocks of 𝑘 letters, and the second in

blocks of ℓ letters, for certain fixed 𝑘, ℓ ∈ N.

Theorem 3.8. Two (word-)automatic presentations (𝐿1, 𝜈1)
and (𝐿2, 𝜈2) are equivalent if, and only if, the translation 𝑇 =

{(𝑥,𝑦) ∈ 𝐿1 × 𝐿2 : 𝜈1 (𝑥) = 𝜈2 (𝑦)} is recognisable by a semi-
synchronous transducer.

Bárány also proved that the universal automatic structures

Tree(𝑝) and 𝔑𝑝 are rigid, in the sense that they admit only

one automatic presentation, up to equivalence. Automatic

structures that are not universal, such as (N, +), permit more

flexibility in choosing automatic presentations. Recall that

two natural numbers 𝑝, 𝑞 are called multiplicatively indepen-

dent if they have no common power 𝑝𝑘 = 𝑞ℓ , for 𝑘, ℓ ≥ 1. A

celebrated result due to Cobham and Semenov says that a

relation 𝑅 ⊆ N𝑘 , which is regular in base 𝑝 , is also regular

in base 𝑞 if, and only if, either 𝑝 and 𝑞 are multiplicatively

dependent, or 𝑅 is in fact first-order definable in (N, +). To
put it differently, relations that are not definable in (N, +)
but, say, in (N, + |𝑝 ), are not definable in (N, +, |𝑞) if 𝑞 is

multiplicatively independent from 𝑝 . An intriguing notion

in this context is intrinsic regularity [6, 39].

Definition 3.9. A relation 𝑅 ⊆ 𝐴𝑘
is intrinsically regular in

an automatic structure 𝔄, if 𝜈−1 (𝑅) is regular for all auto-
matic presentations (𝐿, 𝜈) of 𝔄.

Clearly, all relations that are FOC-definable in 𝔄 are in-

trinsically regular. The Cobham-Semenov Theorem implies

that the intrinsically regular relations in (N, +) are precisely
the first-order definable ones, and FOC collapses to FO on

(N, +). A complete logical characterisation of the intrinsi-

cally regular relations in automatic structures has not yet

been found, but it is known that FOC-definability is not suffi-

cient. This is witnessed for instance by the relations that are

order-invariant first-order definable, i.e. definable by a for-

mula that makes use of a linear order, but whose semantics is

independent from the particular order that is chosen. These

are intrinsically regular, but not necessarily FOC-definable.

In fact, no extension of FOwith unary generalised quantifiers

is capable of capturing intrinsic regularity over all automatic

structures [6].

4 Characterisation by interpretations
To explain why the structures𝔑𝑝 and Tree(𝑝) are, in a sense,

the most general automatic structures, we recall the notion

of a first-order interpretation. Interpretations constitute an

important tool in mathematical logic, used to define a copy of

a structure inside another one. They thus permit us to trans-

fer definability, decidability, and complexity results among

theories.

Definition 4.1. Let 𝔄 = (𝐴, 𝑅0, . . . , 𝑅𝑛) and𝔅 be relational

structures. A (𝑘-dimensional, first-order) interpretation of 𝔄

in 𝔅 is a sequence

I =
〈
𝛿 (𝑥), 𝜀 (𝑥,𝑦), 𝜑𝑅0

(𝑥1, . . . , 𝑥𝑟 ), . . . , 𝜑𝑅𝑛 (𝑥1, . . . , 𝑥𝑠 )
〉

of first-order formulae in the vocabulary of 𝔅 (where each

tuple 𝑥 , 𝑦, 𝑥𝑖 consists of 𝑘 variables), such that

𝔄 � I(𝔅) :=
(
𝛿𝔅, 𝜑𝔅

𝑅0

, . . . , 𝜑𝔅
𝑅𝑛

) /
𝜀𝔅 .

Notice that this requires that 𝜀𝔅 is a congruence relation

on the structure

(
𝛿𝔅, 𝜑𝔅

𝑅0

, . . . , 𝜑𝔅
𝑅𝑛

)
. The map 𝛿𝔅 → 𝐴 wit-

nessing that 𝔄 � I(𝔅) is called coordinate map and is also

denoted by I. An interpretation I is injective if its coordi-
nate map is injective, i.e., if 𝜀 (𝑥,𝑦) ≡ 𝑥 = 𝑦. We denote the

fact that I is an interpretation of 𝔄 in 𝔅 by I : 𝔄 ≤FO 𝔅.

If 𝔄 ≤FO 𝔅 and 𝔅 ≤FO 𝔄 we say 𝔄 and 𝔅 are mutually
interpretable.

If I : 𝔄 ≤FO 𝔅 then every first-order formula 𝜑 over the

vocabulary of 𝔄 can be translated to a formula 𝜑I
over the

vocabulary of 𝔅 by replacing every relation symbol 𝑅 by its

definition 𝜑𝑅 , by relativising every quantifier to 𝛿 , and by

replacing equalities by 𝜀.

Lemma 4.2 (Interpretation Lemma). If I : 𝔄 ≤FO 𝔅 then

𝔄 |= 𝜑 (I( ¯𝑏)) ↔ 𝔅 |= 𝜑I ( ¯𝑏)
for all 𝜑 ∈ FO and ¯𝑏 ⊆ 𝛿𝔅.

By the standard closure properties of languages and rela-

tions definable by automata, it readily follows that automatic

structures are closed under first-order interpretations.

Proposition 4.3. If 𝔄 ≤FO 𝔅 and 𝔅 is automatic, then so
is 𝔄.

Corollary 4.4. The class of automatic structures is closed
under (i) extensions by definable relations, (ii) factorisations
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by definable congruences, (iii) substructures with definable
universe, and (iv) finite powers.

It is not difficult to see that the structures 𝔑𝑝 and Tree(𝑝)
are mutually interpretable, for each 𝑝 ≥ 2 (see e.g. [24]). The

same is true if we replace the divisibility predicate |𝑝 by the

function 𝑉𝑝 : N→ N that maps each number to the largest

power of 𝑝 dividing it. Indeed we can define the statement

𝑥 = 𝑉𝑝 (𝑦) in (N, +, |𝑝 ) by the formula 𝑥 |𝑝 𝑦 ∧ ∀𝑧 (𝑧 |𝑝 𝑦 →
𝑧 |𝑝 𝑥). In the other direction,𝑉𝑝 (𝑥) = 𝑥 ∧∃𝑧 (𝑥 +𝑧 = 𝑉𝑝 (𝑦))
is a definition of 𝑥 |𝑝 𝑦. By the Büchi-Bruyère Theorem (see

[12]), a relation 𝑅 ⊆ N𝑘 is first-order definable in (N, +,𝑉𝑝 )
if, and only if, the set of 𝑝-ary encodings of the tuples in 𝑅

is a regular relation over {0, . . . , 𝑝 − 1}∗.
Putting this all together, it follows that the class of au-

tomatic structures can be characterised via first-order in-

terpretations into the universal structures 𝔑𝑝 or Tree(𝑝)
[10].

Theorem 4.5. For every structure 𝔄, the following are equiv-
alent :

(i) 𝔄 is automatic.
(ii) 𝔄 ≤FO 𝔑𝑝 for some (and hence all) 𝑝 ≥ 2.
(iii) 𝔄 ≤FO Tree(𝑝) for some (and hence all) 𝑝 ≥ 2.

There are many variations of such results. First of all, also

the structures presented by automata over infinite words, or

over finite or infinite trees can be characterised via first-order

interpretations into certain universal structures. Examples of

universal 𝜔-automatic structures are the expansions ℜ𝑝 :=

(R, +, ≤, |𝑝 , 1) of the additive group of reals by the relation

𝑥 |𝑝 𝑦 : iff ∃𝑛, 𝑘 ∈ Z : 𝑥 = 𝑝𝑛 and 𝑦 = 𝑘𝑥.

and the extensions of the tree structures Tree(𝑝) to
Tree

𝜔 (𝑝) := ({0, . . . , 𝑝 − 1}≤𝜔 , (𝜎𝑎)𝑎∈𝜎 , ⪯, el)
that contain both finite and infinite words. Universal tree-

automatic or 𝜔-tree automatic structures instead are struc-

tures whose elements are finite or infinite trees. For details,
see [7, 11].

A further interesting variation has been obtained by Col-

combet and Löding [17, 18], on the basis of set interpretations.
These are defined in the same way as first-order interpre-

tations, but they consist of formulae from monadic second-

order logic (MSO) whose free variables are set variables. We

write 𝔄 ≤set 𝔅 if 𝔄 is interpretable in 𝔅 via a set interpre-

tation. Similarly we write 𝔄 ≤fset 𝔅 to denote that there is

a finite set interpretation of 𝔄 in 𝔅, which means that the

set variables (free or bound) in the interpreting formulae

range over finite sets only. A standard example is the finite

set interpretation of (N, +) in (N, suc).
It turns out that a structure is 𝜔-automatic if, and only if,

it is set-interpretable in (N, suc), and it is (word)-automatic

if it is finite set-interpretable in (N, suc). Analogous results
hold for tree automatic and 𝜔-tree automatic structures and

(finite) set interpretations into the infinite binary tree. From

these characterisations one can get back universality via first-

order interpretations by taking the subset envelope P(𝔄)
and the finite subset envelope P𝑓 (𝔄) of relational structures
𝔄 = (𝐴, 𝑅1, . . . , 𝑅𝑚). The universe of P(𝔄) is the powerset
of 𝐴, partially ordered by the subset relation ⊆, and with

the relations 𝑅′
𝑖 = {({𝑎1}, . . . , {𝑎𝑟 }) : (𝑎1, . . . , 𝑎𝑟 ) ∈ 𝑅𝑖 }. The

finite subset envelope P𝑓 (𝔄) is the substructure of P(𝔄)
induced by the finite subsets of 𝐴. It is not difficult to see

that 𝔄 ≤set 𝔅 if, and only if, 𝔄 ≤FO P(𝔅) and 𝔄 ≤fset 𝔅 if,

and only if, 𝔄 ≤FO P𝑓 (𝔅). As a consequence, the structures
P𝑓 (N, suc) and P(N, suc) are universal for automatic and

𝜔-automatic structures, respectively, via first-order interpre-

tations, and the (finite) subset envelopes of the complete

binary tree are universal for tree automatic and 𝜔-tree auto-

matic structures.

Beyond these results and beyond specific classes of auto-

matic structures, interpretations provide a general and pow-

erful method to obtain classes of finitely presented structures

with a set of desired properties. One fixes some structure 𝔅

having these properties and chooses a kind of interpretation

that preserves them. Then one considers the class of all struc-

tures which can be interpreted in𝔅. Each structure 𝔄 of this

class can be represented by an interpretation I : 𝔄 ≤FO 𝔅

which is a finite object, and model checking and query evalu-

ation for such structures can be reduced to the corresponding

problem for 𝔅. If I : 𝔄 ≤FO 𝔅 then Lemma 4.2 implies that

𝜑𝔄 = {𝑎 : 𝔄 |= 𝜑 (𝑎)} = {I( ¯𝑏) : 𝔅 |= 𝜑I ( ¯𝑏)}.

Hence, the desired representation of 𝜑𝔄
can be constructed

by extending the interpretatio to ⟨I, 𝜑I⟩ : (𝔄, 𝜑𝔄) ≤FO 𝔅.

5 Automatic groups
Consider a group (𝐺, ·) with a finite set 𝑆 = {𝑠1, . . . , 𝑠𝑚} ⊆ 𝐺
of semigroup generators, so that each group element 𝑔 ∈ 𝐺
can be written as a product 𝑠𝑖1· · · 𝑠𝑖𝑟 of elements of 𝑆 and

hence the canonical homomorphism 𝜈 : 𝑆∗ → 𝐺 is surjective.

The Cayley graph Γ(𝐺, 𝑆) of 𝐺 with respect to 𝑆 is the edge-

labelled graph (𝐺, 𝑆1, . . . , 𝑆𝑚) whose vertices are the group
elements and where 𝑆𝑖 is the set of pairs (𝑔, ℎ) such that 𝑔𝑠𝑖 =
ℎ. In computational group theory, a group (𝐺, ·) is called
an automatic group, if there is a finite set 𝑆 of semigroup

generators and a regular language 𝐿𝛿 ⊆ 𝑆∗ such that the

restriction of 𝜈 to 𝐿𝛿 is surjective and provides an automatic

presentation of Γ(𝐺, 𝑆). In other words, the inverse image of

equality,

𝐿𝜖 = {(𝑤,𝑤 ′) ∈ 𝐿𝛿 × 𝐿𝛿 : 𝜈𝑤 = 𝜈𝑤 ′},
and the binary relations 𝜈−1 (𝑆𝑖 ), for 𝑖 = 1, . . . ,𝑚, are regular.

We emphasise that it is not the group structure (𝐺, ·) it-
self that is automatic in the sense of Definition 3.1, but the

Cayley graph Γ(𝐺, 𝑆). Automatic groups have been studied

very intensively in computational group theory. There are

many natural examples of automatic groups (see [21, 22])

such as Euclidean groups and finitely generated Coxeter
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groups. The importance of this notion for computational

group theory comes from the fact that an automatic presen-

tation of a group yields efficient algorithmic solutions for

computational problems that are undecidable in the general

case. In particular, the word problem for an automatic group

is solvable in quadratic time, and for any word in 𝑆∗ one can
find in quadratic time a representative in 𝐿𝛿 .

Automatic groups can also be characterised via the fellow
traveller property. For two words 𝑢, 𝑣 ∈ 𝑆∗, let 𝑑 (𝑢, 𝑣) be their
natural distance in the Cayley graph Γ(𝐺, 𝑆). Further, let 𝑢 |𝑖
be the prefix of 𝑢 with length 𝑖 , for 𝑖 ≤ |𝑢 |, and 𝑢 |𝑖 = 𝑢,

for 𝑖 > |𝑢 |. Suppose now that (𝐺, ·) is an automatic group,

with an automatic presentation based on a regular language

𝐿𝛿 ⊆ 𝑆∗. Then there exists some 𝑘 ∈ N such that 𝜈 : 𝐿𝛿 → 𝐺

satisfies the 𝑘-fellow traveller property: for any two elements

𝑢, 𝑣 ∈ 𝐿𝛿 with 𝑑 (𝑢, 𝑣) ≤ 1, we have that 𝑑 (𝑢 |𝑖 , 𝑣 |𝑖 ) ≤ 𝑘 , for

all 𝑖 ≤ max( |𝑢 |, |𝑣 |). Indeed, since the pair (𝑢, 𝑣) is accepted
by one of the synchronously operating automata in the auto-

matic presentation of Γ(𝐺, 𝑆), a simple pumping argument

shows that the prefixes of common length of 𝑢 and 𝑣 cannot

have large distance in the Cayley graph. It turns out that

conversely, the regularity of 𝐿𝛿 and the 𝑘-fellow traveller

property are in fact sufficient for (𝐺, ·) being an automatic

group [22].

Theorem 5.1. A group (𝐺, ·) is automatic if, and only if, for
some finite 𝑆 ⊆ 𝐺 and some 𝑘 ∈ N, there exists a regular
language 𝐿𝛿 ⊆ 𝑆∗ such that the canonical map 𝜈 : 𝐿𝛿 → 𝐺 is
surjective and satisfies the 𝑘-fellow traveller property.

The definition of an automatic group requires that the

function 𝜈 : 𝐿𝛿 → 𝐺 is the restriction of the canonical ho-

momorphism from 𝑆∗ to 𝐺 , so we are not free to change the

coordinate map. This has several important consequences,

compared to to the general notion of automatic structures.

In particular the arguments in Sect. 4 give us a characterisa-

tion of automatic groups in terms of definability rather than

interpretability [11].

Theorem 5.2. (𝐺, ·) is an automatic group if and only if
there exists a finite set 𝑆 ⊆ 𝐺 of semigroup generators such
that Γ(𝐺, 𝑆) is FO-definable in Tree(𝑆).

By definition, if 𝐺 is an automatic group, then for some

set 𝑆 of semigroup generators, the Cayley graph Γ(𝐺, 𝑆) is
an automatic structure. The converse does not hold [11, 35]:

Proposition 5.3. There exist groups 𝐺 with a set of semi-
group generators 𝑆 such that the Cayley graph Γ(𝐺, 𝑆) is an
automatic structure without 𝐺 being an automatic group.

There are many such examples including the Heisenberg

groups H𝑛 (Z) for 𝑛 ≥ 3, as well as many nilpotent and

metabelian groups. This naturally leads to the more general

notion of a Cayley graph automatic group, defined by Khar-

lampovich, Khoussainov, and Miasnikov [35], as the set of

finitely generated groups with an automatic Cayley graph

Γ(𝐺, 𝑆). This notion is robust in the sense that if Γ(𝐺, 𝑆) is an
automatic graph for some generating set 𝑆 , then Γ(𝐺, 𝑆 ′) is
automatic for all generating sets 𝑆 ′. On the positive side, the

decidability of the first-order theory of Γ(𝐺, 𝑆) implies (and

is in fact equivalent to) the decidability of the word problem

for (𝐺, 𝑆) and, just as for automatic groups, the word prob-

lem can be solved in quadratic time also for Cayley graph

automatic groups. On the negative side, there is no known

characterisation of the Cayley graph automatic groups by an

analogue of the fellow traveller property. For further results

and open problems, we refer to [35].

6 𝜔-automatic structures and injective
presentations

Wenext discuss the case of𝜔-automatic structures, presented

by automata on infinite words. An important difference to

word-automatic structures is that the distinction between in-

jective and non-injective presentations becomes relevant. In-

jective presentations are much easier to work with, since we

do not need an automaton to determine whether two words

encode the same element. In the case of word-automatic

structures it had already been pointed out in [37] that all

such structures admit an injective automatic presentation.

However, it had been open for some time whether this is the

case for 𝜔-automatic structure, until Hjorth, Khoussainov,

Montalbán and Nies [25] described an𝜔-automatic structure

that does not even permit an injective Borel presentation

(which is a much more general notion than an injective

𝜔-automatic presentation). Nevertheless, many interesting

𝜔-automatic structures do admit injective presentations such

as, for instance, the reducts (R, +) and (R, ·) of the field of

reals.

A central tool in the analysis of𝜔-automatic presentations

is the notion of end-equivalence ∼𝑒 of infinite words: 𝑥 ∼𝑒 𝑦

if 𝑥 and𝑦 are equal from some position onwards. Making this

position𝑚 explicit we get refined equivalence relations ∼𝑚
𝑒 .

Clearly, ∼𝑒 is an 𝜔-regular relation, but it does not permit

an 𝜔-regular set of representatives, so unlike the finite-word

case, injectivity cannot generally be achieved by selecting a

regular set of representatives from a given presentation.

However, every 𝜔-regular equivalence relation having

only countablymany classes does allow to select an𝜔-regular

set of unique representants. Therefore, every countable 𝜔-

automatic structure does have an injective presentation. Fur-

ther, an injective 𝜔-automatic presentation of a countable

structure can be“packed” into one over finitewords. It follows

that for countable structures, 𝜔-automatic presentations are

not more powerful than automatic presentations on finite

words [32]:

Theorem 6.1. Let 𝔄 be a countable structure. Then the fol-
lowing statements are equivalent.

• 𝔄 is 𝜔-automatic.
• 𝔄 has an injective 𝜔-automatic presentation.
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• 𝔄 is finite word automatic.

In particular, the results mentioned above that countable

structures such as (N, · ), the random graph, the additive

group of the rationals, and others are not word-automatic

immediately imply that they are not 𝜔-automatic either.

For the analysis of uncountable𝜔-automatic structures, ad-

vanced techniques have been developed in [2, 43, 46] which,

as in the case of word-automatic structures, establish limits

of the properties of definable functions. However, they are

based on more sophisticated mathematical notions and argu-

ments, including the end-equivalence relation ∼𝑒 mentioned

above, 𝜔-semigroups and Wilke algebras [51, 60], and Ram-

sey’s Theorem. Some key results concern limitations on the

minimal image size of a definable function [2].

Definition 6.2. For every function 𝑓 : 𝐴𝑘 → 𝐴 over an

infinite set 𝐴, the minimal image size MIS𝑓 : N → N is

defined by MIS𝑓 (𝑛) = min{|𝑓 (𝑋𝑘 ) | : 𝑋 ⊆ 𝐴, |𝑋 | = 𝑛}.
Proposition 6.3. Let 𝔄 be a structure with an 𝜔-automatic
presentation such that there exists an infinite set of elements
that are represented by words in the same ∼𝑒 -class. Then ev-
ery FOC-definable function 𝑓 on 𝔄 has the property that
MIS𝑓 (𝑛) = O(𝑛).

A simple automata-theoretic argument shows that, for any

𝑚, one can control the action of a definable function 𝑓 on

∼𝑚
𝑒 -equivalent elements. More precisely, the image of every

∼𝑚
𝑒 -equivalent set 𝐵 of tuples in 𝐴 can be partitioned into a

fixed number of ∼𝑚
𝑒 -equivalent sets, and this number only

depends on the underlying structure and on 𝑓 , but not on 𝐵.

The argument then relies on a analysis of the size of maximal

sets of ∼𝑚
𝑒 -equivalent elements and their images under 𝑓 ,

which leads the assumption that MIS𝑓 grows super-linearly

for some definable 𝑓 to a contradiction. See [2] for details.

The assumption that there exists an infinite collection of

end-equivalent elements is clearly satisfied in every structure

with an injective𝜔-automatic presentation, because every𝜔-

regular language has an infinite ∼𝑒 -class. This easily follows

from the fact that we can write any 𝜔-regular language as a

finite union of sets 𝑈𝑉𝜔
where 𝑈 ,𝑉 are regular languages

of finite words [58].

In non-injectively presented 𝜔-automatic structures, in-

finite ∼𝑒-equivalent sets need not exist. Indeed, ∼𝑒 is an

𝜔-automatic equivalence and thus the presentation might

indeed identify all end-equivalent words. However, this can-

not happen for 𝜔-automatic presentations of uncountable

structures with a definable linear order. In an interesting

analysis of Ramsey theory for 𝜔-automatic graphs, Kuske

[43] has shown that any 𝜔-automatic presentation of an un-

countable linear order can be restricted to a presentation of

({0, 1}𝜔 , <lex) � (R, <). This restriction is not 𝜔-automatic,

but its domain is the complement of a language

⋃
𝑖≤𝑛𝑉𝑖𝑈

𝜔
𝑖

where the𝑉𝑖 are context free and the𝑈𝑖 are regular. In particu-

lar his presentation does not contain any two ∼𝑒 -equivalent

words. A strengthening of Kuske’s result, based on tech-

niques from [32], has been obtained in [2].

Proposition 6.4. Every automatic presentation of an un-
countable linear order contains an injective automatic pre-
sentation of ({0, 1}𝜔 , <lex).

Given a presentation of an uncountable linear order over

an 𝜔-regular language 𝐿, one can find finite words 𝑢, 𝑣0, 𝑣1

such that |𝑣0 | = |𝑣1 |, 𝑢{𝑣0, 𝑣1}𝜔 ⊆ 𝐿 and for any two words

𝛼, 𝛽 ∈ {0, 1}𝜔 it holds that

𝑢𝑣𝛼 [0]𝑣𝛼 [1]𝑣𝛼 [2] . . . < 𝑢𝑣𝛽 [0]𝑣𝛽 [1]𝑣𝛽 [2] . . .

if, and only if, 𝛼 <lex 𝛽 . In other words this shows that if one

indentifies 𝑣0 with 0 and 𝑣1 with 1, then the natural encoding

of {0, 1}𝜔 by the language 𝑢{𝑣0, 𝑣1}𝜔 is compatible with the

lexicographical ordering <lex. The construction makes use of

the characterization of 𝜔-regular languages by morphisms

to 𝜔-semigroups and Ramsey’s Theorem. Finally, the alge-

braic structure of the underlying 𝜔-semigroups ensures that

the elements encoded by the newly constructed words are

ordered as claimed. For details, we again refer to [2].

As a consequence, we can infer that Proposition 6.3 applies

also to any 𝜔-automatic structures with a definable linear

order. A particular application concerns the definability of

pairing functions, i.e. bijective functions 𝑓 : 𝐵 × 𝐵 → 𝐵, for

an infinite set 𝐵. Indeed, MIS𝑓 (𝑛) = 𝑛2
for any such 𝑓 .

Corollary 6.5. No 𝜔-automatic structure with a definable
linear order or an injective 𝜔-automatic presentation admits
an FOC-definable pairing function.

Kuske’s result that the real line can be embedded into

any uncountable linear order also implies that there are

no uncountable 𝜔-automatic ordinals [43]. Hence the 𝜔-

automatic ordinals coincide with the automatic ones which,

as mentioned above, are those < 𝜔𝜔
.

The isomorphism problem. While for many important

problems, in particular for the decidability of their FOC-

theories, 𝜔-automatic structures have similar algorithmic

properties as the (word-)automatic ones, this is not the case

for the isomorphism problem. For (word-)automatic struc-

tures, the isomorphism problem is Σ1

1
-complete, but Hjorth

et al. [25] constructed two 𝜔-automatic structures for which

the existence of an isomorphism depends on the axioms of

set theory and inferred that isomorphism of 𝜔-automatic

structures does not belong to Σ1

2
(the second level of the an-

alytical hierarchy). Kuske, Liu, and Lohrey [45] then proved

that the isomorphism problem for𝜔-automatic trees of finite

height is not even analytical, i.e., is not contained in any

of the levels Σ1

𝑛 . More specifically, the isomorphism prob-

lem for 𝜔-automatic trees of height 𝑛 ≥ 4 is hard for both

Σ1

𝑛−3
and Π1

𝑛−3
. A more precise analysis reveals at which

height the complexity jump occurs: For both automatic and

𝜔-automatic trees of height 2, the isomorphism problem is
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co-r.e.; for automatic trees of height 3 isomorphism is Π0

3
-

complete, but for 𝜔-automatic trees of height 3 it is hard

for Π1

1
(and therefore outside of the arithmetical hierarchy).

The lower bounds for 𝜔-automatic trees also hold for those

admitting an injective 𝜔-automatic presentation. Further,

it has been shown in [23] that the isomorphism problem

for 𝜔-tree-automatic Boolean algebras, partial orders, rings,

non-commutative groups, and nilpotent groups presented

by automata over infinite trees is neither in Σ1

2
nor Π1

2
.

7 Is there an automatic presentation of the
field of reals?

Arguably, the two most important and best-studied math-

ematical structures with a decidable first-order theory are

(N, +) and the field of reals, (R, +, · ). For both theories, the

decidability has originally been showed by quantifier elim-

ination. However, while Büchi’s automata based decision

procedure for WS1S carries over to Presburger arithmetic,

and the automaticity of (N, +) is obvious, the field of reals

has so-far resisted all automata based approaches. Clearly,

being uncountable, the field of reals can neither be (word)-

automatic nor tree-automatic. However, it could a priori be

automatic in a more general sense, based on automata on

infinite words or trees, and the question whether this is the

case has been explicitly raised already by Rabin [52].

It is quite easy to see that both reducts (R, +) and (R, · ) of
the field of reals admit automatic presentations, in fact even

on infinite words, so one might hope that such presentations

could be combined to one of the entire field. Today, it is

still open whether the field of reals admits an automatic

presentation based on automata on infinite trees (or possibly

even more general objects), but it has been shown [2] that

it is not 𝜔-automatic. This is a consequence of a general

analysis of the model-theoretic properties of 𝜔-automatic

structures, which implies a number of further limitations of

this concept. Indeed one can indicate structural restrictions

on the complexity of 𝜔-automatic relations to prove that

certain classes of structures (such as infinite fields, or even

integral domains) do not have any 𝜔-automatic models.

For a more detailed explanation, we make use of the fact

[2] that there is no uncountable 𝜔-automatic structure with

FOC-definable parameterized functions of unbounded arity

such that all pairs of different functions agree on at most

countably many arguments.

Lemma 7.1. Let 𝔄 = (𝐴, 𝑅1, . . . , 𝑅𝑛) be an uncountable 𝜔-
automatic structure. Then there is a 𝑘 ∈ N such that for every
definable (𝑘 + 1)-ary function 𝑓 (𝑥,𝑦) there exist uncountable
sets 𝑀 ⊆ 𝐴𝑘 and 𝑁 ⊆ 𝐴 with 𝑓 (𝑎, 𝑏) = 𝑓 (𝑎′, 𝑏) for all
𝑎, 𝑎′ ∈ 𝑀,𝑏 ∈ 𝑁 . In particular, 𝑀 × 𝑁 is an uncountable set
on which 𝑓 is constant.

It has been shown in [38] that the word-automatic inte-

gral domains are exactly the finite ones. This implies that

there exist no countably infinite 𝜔-automatic integral do-

mains. Suppose now that 𝔄 = (𝐴, +, ·) is an uncountable

𝜔-automatic integral domain. Fix a presentation of 𝔄 and

let 𝑘 be the constant from Lemma 7.1 with respect to this

presentation. Consider the family of polynomials of degree

𝑘 − 1, i.e. the family of functions of the form 𝑥 ↦→ ∑𝑘
𝑖=0
𝑎𝑖𝑥

𝑖

with 𝑘 coefficients 𝑎0, . . . , 𝑎𝑘−1 ∈ 𝐴 and input 𝑥 . It is obvious

that this family of functions can be defined in FOC by using

the 𝑘 coefficients 𝑎0, . . . , 𝑎𝑘−1 as parameters.

On one hand, it is a well-known fact from algebra that, on

an integral domain, two different polynomials of degree at

most 𝑘 − 1 agree on at most 𝑘 − 1 inputs. On the other hand,

𝔄 is uncountable and therefore Lemma 7.1 implies that there

are 𝑎 ≠ 𝑏 ∈ 𝐴𝑘
such that

∑𝑘−1

𝑖=0
𝑎𝑖𝑥

𝑖 =
∑𝑘−1

𝑖=0
𝑏𝑖𝑥

𝑖
for even

uncountably many 𝑥 ∈ 𝐴. This proves the following result.

Theorem7.2. An integral domain is𝜔-automatic if, and only
if, it is finite. In particular, the field of reals is not 𝜔-automatic.

8 Model checking games
For infinite structures, the standard construction of model

checking games leads to infinitely branching game graphs.

Thus, the question arises, how a finite presentation via au-

tomata can be exploited to construct model checking games

with finite game graphs. This problem has been solved by

Lukasz Kaiser [31] based onmodel checking games with hier-

archically organised imperfect information. These cover not

only first-order logic, but also more expressive formalisms.

Game quantifiers are a classical notion from infinitary

model theory. While infinite sequences of quantifiers of the

same kind, ∃𝑥0∃𝑥1∃𝑥2 . . . or ∀𝑦0∀𝑦1∀𝑦2 . . . , do not provide

conceptual difficulties, as they can be viewed as a single quan-

tifiers over infinite sequences, it is much more challenging to

handle infinite expressions of form ∃𝑥0∀𝑦0∃𝑥1∀𝑦1 . . .𝜓 (𝑥,𝑦)
where existential and universal quantifiers alternate. At-

tempts to make precise the sense of such an expression natu-

rally lead to infinite two-person games (Gale-Stewart games)

and to the statement that the existential player should have a

strategy to guarantee, by appropriate choices of the values for

the 𝑥𝑖 , that the proposition𝜓 (𝑥,𝑦) will hold, independently
of how the opponent plays. The closure of such expressions

under negation is intimately related to the determinacy of

the associated games, i.e., with the question whether it is

always the case that one of the two players has a winning

strategy.

Kaiser considered the extension FO[⅁] of first-order logic
by regular game quantifiers, and investigated decidability,

determinacy of the associated games, and the expressive

power of this logic on automatic structures. Using alternat-

ing automata he proved that FO[⅁] on 𝜔-automatic struc-

tures is decidable, and that all regular relations are definable

by means of the game quantifer ⅁ on the basis of just the

successor relations. Game quantifiers thus provide a highly

interesting and extremely powerful operator for automatic
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structures. The domain of regular relations is preserved, but

all regular relations are definable with minimal prerequisites.

This can be exploited for the construction of model check-

ing games for FO[⅁], and hence also for FO, which is based

on the general notion of hierarchical infinite games. These
are zero-sum games between two coalitions, organised in

a strictly hierarchical way, so that each player can observe

only the moves of those players (in both coalitions) that

are below her in the hierarchy. Besides the applications to

logic there are also purely game-theoretic reasons for or-

ganising the imperfect information in a game in this way;

indeed other kinds of imperfect information lead to unde-

cidable problems even for very simple winning conditions

(such as reachability conditions in games with three players).

The order in which players have to move turns out to be a

fundamental criterion for such games. Without restrictions

on the interaction patterns between players, already Büchi

winning conditions (a ‘good’ state should be seen infinitely

often) can lead to nondetermined hierarchical games. On the

other side, alternating hierarchical games (where player take

turns in a fixed order) are determined for all Muller winning

conditions. The proof shows that winning regions for hierar-

chical alternating games are definable in FO[⅁]. Conversely
the evaluation of an arbitrary FO[⅁] formula on an auto-

matically presented infinite structure can be presented as

an alternating hierarchical Muller game. This proves that

such games are indeed model checking games for FO[⅁] on
automatic structures.

9 Automatic structures with advice and
uniformly automatic classes

Solving a long-standing open problem, Tsankov [59] has

proved that the additive group of the rational numbers (Q, +)
is not automatic. However, it is “almost" automatic, in the

sense that there is a presentation in which addition is au-

tomatic but the domain is not a regular set [50]. Further,

as shown in [41], also the domain can be recognized by

an automaton, provided that it has access to a specific infi-

nite advice string. This advice string itself has a decidable

monadic second-order theory, which is sufficient to give an

automata-based decision procedure for the first-order theory

of (Q, +).
This motivated the study of advice automatic structures,

which admit automatic presentations of the same kind as

(Q, +) does: they can be presented by automata that have

access to some fixed advice. This setting had appeared occa-

sionally in the literature [18, 34] but a systematic investiga-

tion has only been done in [1, 3]. Advice automatic structures

generalise the domain of automatic structures while preserv-

ing their good algorithmic and model-theoretic properties,

in particular the decidability of their first-order theories. But

there is a further very interesting twist: Automata with ad-

vice permit us to lift the notion of an automatic presentation

from single structures to classes of structures that can be rep-

resented by a single presentation, but with a set of different

advices, which leads to the concept of uniformly automatic
classes of structures.
There are in fact several variants of this concept. Not all

advice sets give classes of structures with a decidable theory

since one can easily encode undecidable problems inside

the advice set, or even in a single advice. But any class of

structures that admits an automatic presentation with an

advice set that has a decidable monadic second-order theory

does indeed have an automata-based decision procedure for

its first-order theory, and even for the extension of first-

order logic by different variants of cardinality quantifiers

and by Ramsey quantifiers. This result shows that automatic

presentations with advice provide relevant generalisations

of the concept of automata-based representations of infinite

structures, and that the algorithmic properties, which make

automatic structures suitable for applications, survive under

these generalisations.

We can identify classes of structures, such as trees and

Abelian groups, where automatic presentations with ad-

vice are capable of presenting significantly more complex

structures than ordinary automatic presentations. For in-

stance there exists uniformly 𝜔-automatic presentation of

the torsion-free Abelian groups of rank one and a uniformly

𝜔-tree automatic presentation for the class of all countable

divisible Abelian groups and the class of all Abelian groups

up to elementary equivalence. On the other side, there are

also limitations of this concept. For Boolean algebras, for in-

stance, we do not gain anything essential from the access to

an advice, and every uniformly 𝜔-automatic class of count-

able Abelian groups must have bounded rank. Further, it

turns out that an advice does not help for representing some

particularly relevant examples of structures with decidable

theories, most notably for the field of reals.

We extend the semantics of classical models of finite au-

tomata to define languages that are regular with advice.

Definition 9.1. A parameterised (Büchi-)automaton over Σ
is an automaton A over an extended alphabet Σ × Γ. In the

standard sense, A recognizes a language 𝐿(A) ⊆ (Σ × Γ)𝜔 .
We say that A recognises 𝐿 ⊆ Σ𝜔 with advice 𝛼 ∈ Γ𝜔 if

𝐿 = {𝛽 ∈ Σ𝜔 : 𝛽 ⊗ 𝛼 ∈ 𝐿(A)}. A language 𝐿 is called 𝜔-
regular with advice 𝛼 if there is a parameterised automaton

A recognizing 𝐿 with advice 𝛼 . Parameterised automata on

finite words and finite or infinite trees are defined analo-

gously.

This leads, in the obvious way, to the notion of an 𝜔-
automatic presentation with advice 𝛼 of a structure 𝔄, and

we say that a structure 𝔄 is 𝜔-automatic with advice if there
is a parameterised 𝜔-automatic presentation 𝔡, that presents

𝔄 with advice 𝛼 , in short 𝔄 = 𝔡[𝛼], for some parameter

𝛼 . By changing the automata model we obtain analogous
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notions of structures that are, for instance, word-automatic

with advice or tree-automatic with advice.

Examples of structures that are automatic with advice, but

not automatic in the classical sense, include certain general-

isations of the tree structures Tree(𝑝), the structure (Q, +)
and more generally, all torsion-free Abelian groups of rank

one, i.e., all subgroups of (Q, +) [3]. This relies on the en-

coding of rationals as digit sequences (𝑑𝑖 )𝑖 of their factorial
base representation. Every rational number 𝑟 ∈ [0, 1) can be

written as 𝑟 =
∑𝑛

𝑖=2

𝑑𝑖
𝑖!
with 𝑑𝑖 < 𝑖 .

Automata with advice further admit to generalise auto-

matic presentations from single structures to notions of uni-
formly automatic classes of structures.

Definition 9.2. A class of C of 𝜏-structures is uniformly
𝜔-automatic if there is a parameterised 𝜔-automatic presen-

tation 𝔡 of vocabulary 𝜏 , and a set 𝑃 ⊆ Γ𝜔 of parameters, so

that C = {𝔡[𝛼]) : 𝛼 ∈ 𝑃}, up to isomorphism. If 𝑃 has a decid-

ableMSO-theorywe say that C is strongly𝜔-automatic. If 𝑃 is
even regular, then we say that C is regularly 𝜔-automatic. In
this case we call a tuple (𝔡,A𝑝 ) of automata with 𝐿(A𝑝 ) = 𝑃
a regularly 𝜔-automatic presentation of C.

We outline how to obtain an effective decision procedure

for the first-order theory of a strongly automatic class. The

decision procedure works by recursively building the union,

complement or projection automaton from automata that

recognise the relations defined by subformulae. Since ad-

vice automata are basically ordinary synchronous multi-tape

automata with a designated advice tape, advice regular re-

lations are also effectively closed under union, complement

and projection.

Proposition 9.3. There is an algorithm which, given a pa-
rameterised 𝜔-automatic presentation 𝔡 and a first-order for-
mula𝜑 (𝑥) constructs an automatonA𝜑 with 𝐿(A𝜑 ) = {𝑎⊗𝛼 :

𝔡[𝛼]) |= 𝜑 (𝑎)}.

Given a sentence 𝜑 the algorithm constructs an automaton

with 𝐿(A𝜑 ) = {𝛼 : 𝔡[𝛼]) |= 𝜑}. Deciding whether 𝜑 is

in the FO-theory of the class presented by 𝔡 and 𝑃 thus

reduces to deciding the inclusion problem 𝑃 ⊆ 𝐿(A𝜑 ). The
well-known correspondence theorems between MSO and

regular languages imply that there is a MSO-sentence𝜓 with

𝛼 |= 𝜓 if, and only if, 𝛼 ∈ 𝐿(A𝜑 ). Thus the inclusion problem
reduces to checking whether𝜓 holds in every 𝛼 ∈ 𝑃 , which
proves claims 2 and 3 of the following corollary. Claims 1

and 4 follow from Proposition 9.3 analogously to the case of

automatic structures.

Corollary 9.4. 1. The 𝜔-automatic structures with ad-
vice 𝛼 are effectively closed under FO-interpretations.

2. The FO-theory of a structure that is 𝜔-automatic with
advice 𝛼 is decidable if the MSO-theory of 𝛼 is decidable.

3. The FO-theory of a strongly 𝜔-automatic class is decid-
able.

4. If C is FO-interpretable in a uniformly 𝜔-automatic
class D then C is also uniformly 𝜔-automatic.

The analogous automatic, tree- and 𝜔-tree-automatic ver-
sions of these statements are true as well.

Analogous versions of Proposition 9.3 further hold for ex-

tensions of FO by regularity preserving quantifiers, such as

counting or Ramsey quantifiers, i.e., the evaluation of a for-

mula with regularity preserving quantifiers in an automatic

structure yields effectively a regular relation again.

Also the result that every countable 𝜔-automatic struc-

ture is automatic [32] generalises to uniformly 𝜔-automatic

classes of countable structures [3].We say that an𝜔-automatic

presentation is a presentation over finite words if the ele-

ments of the domain(s) of the structure(s) are encoded in a

subset of Σ∗{□}𝜔 . When a finite words presentation is given

we will for brevity often write𝑤 for𝑤□𝜔 .

Theorem 9.5. A class C of countable structures has a pa-
rameterised 𝜔-automatic presentation with parameter set 𝑃 ,
if, and only if, it has an injective parameterised 𝜔-automatic
presentation over finite words with the same parameter set
𝑃 . Moreover the transformation to an injective presentation is
effective.

We mentioned above that each individual torsion-free

Abelian group of rank 1 is automatic with advice. This can

be extended to an automaticity result for the entire class of

such groups [3].

The torsion-free Abelian groups of rank ≤ 𝑛 coincide, up

to isomorphism, with the subgroups of (Q𝑛, +). For rank
one, a classification of the subgroups of (Q, +) is given by

sequences 𝑐 B (𝑐𝑝 )𝑝∈P of numbers 𝑐𝑝 ∈ N ∪ {∞} indexed
by primes 𝑝 ∈ P. Each such sequence defines a subgroup

(Q𝑐 , +) ⊆ (Q, +) with
Q𝑐 B {𝑧/(𝑝𝑑1

1
· · · 𝑝𝑑𝑘

𝑘
) | 𝑧 ∈ Z, 𝑝𝑖 ∈ P, 𝑑𝑖 ∈ N, 𝑑𝑖 ≤ 𝑐𝑝𝑖 }

and every subgroup of (Q, +) is isomorphic to a group (Q𝑐 , +)
for some 𝑐 . One can generalise the factorial base represen-

tation of rational numbers so that precisely the elements of

a subgroup (Q𝑐 , +) have a representation in a generalised

factorial base which depends on 𝑐 . This is used to construct a

parametrised automatic presentation, which given as advice

a sequence of (binary representations of) natural numbers,

presents a structure (Q𝑐 , +, <,Z), and each such structure

can be obtained by some advice. For details, see [3].

Theorem9.6. The class of torsion-free Abelian groups of rank
1 is regularly 𝜔-automatic.

On the other side, it is also the case that every uniformly

𝜔-automatic class of Abelian groups has bounded rank, and

hence every Abelian group that is 𝜔-automatic with advice

automatic must have finite rank. This relies on combinato-

rial limitations of the properties of definable functions in

structures presentable by parametrised automata, similar to

the ones proved for automatic and 𝜔-automatic structures
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without advice. It follows further that none of the following

classes is uniformly automatic:

• The class {(Z𝑛, +) | 𝑛 ∈ 𝑁 } for any infinite set 𝑁 ⊆
N \ {0}.

• The class of all free abelian groups.

• The class {(N𝑛, +) | 𝑛 ∈ 𝑁 } for any infinite set 𝑁 ⊆
N \ {0}.

Moving to automata over infinite trees and uniformly 𝜔-

tree-automatic classes one can establish closure properties

of such classes under products and disjoint unions, and get

a number of interesting consequences. From the regularly

𝜔-automatic presentation of (Q𝑐 , +, <,Z) one can obtain a

regularly automatic presentation of the subgroups of Q/ Z
via a first-order interpretation. The class of countable divisi-

ble Abelian groups can be written as the product closure of

(Q, +) and the subgroups ofQ/Z generated by {𝑛−𝑘 : 𝑘 ∈ N}.
The closure under products of the strongly 𝜔-tree-automatic

classes then gives the following.

Proposition 9.7. The class of countable divisible Abelian
groups is strongly 𝜔-tree-automatic.

Even in cases when a class of structures does not admit

a regular presentation up to isomorphism (possibly already

due to cardinality reasons), a regular presentation up to

elementary equivalence may still be possible, and we can

thereby still get a decision procedure for the first-order the-

ory of the class. This is also possible for the class of all

Abelian groups itself, since every Abelian group is elemen-

tary equivalent to a Szmielew group and every Szmielew

group is isomorphic to a countably infinite direct sum of

subgroups of Q and Q/Z [26].

Corollary 9.8. There is a regularly 𝜔-tree-automatic pre-
sentation of the class of all Abelian groups up to elementary
equivalence.

In particular, this implies Szmielew’s decidability result

for the first-order theory of Abelian groups [55].

These results show that in certain domains, in particular

the domain of Abelian groups, the concepts of automatic

presentations with advice and unformly automatic classes

extend the power of presentations significantly. On the other

side, the combinatorial limitations for definable functions can

be used to show that, on some other domains, parametriza-

tions and advice do not provide significant additional power.

We summarize a few results to that effect from [1, 3]:

• The free semigroup with two generators is not a sub-

structure of any countable structure that is𝜔-automatic

with advice.

• (N, ·) is not a substructure of any countable structure

that is 𝜔-automatic with advice.

• Infinite integral domains do not admit any injective

𝜔-automatic presentations with advice.

• The field of reals is not 𝜔-automatic with advice.
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