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Chapter 1

Introduction

For many practical applications of logic-based methods there is a require-
ment to balance expressive power against computational tractability. The
aim can be to find the algorithmically least expensive framework that is able
to express a class of properties. An alternative approach is to find the —
ideally — most powerful logic with respect to syntactic flexibility and/or
semantic discerning power inside of given complexity classes. This search
can be conducted at various levels; where in one case PSPACE may already
be considered as too hard for practice, others will be even happy to establish
decidability.

Two traditional players found in fields like mathematical logic, database
theory or artificial intelligence are first-order predicate logic on the dark,
and modal logics on the sunny side of the decidability/undecidability bor-
der. Both identifying decidable sub-classes of first-order logic, and extending
modal logic to larger, but nevertheless efficiently solvable languages has been
a preeminent goal of research [9, 60, 27].

In particular the robust decidability of many modal style logics has spurred
a whole flock of results that attempt to isolate and transfer the nice algo-
rithmic properties of modal logics as high up the ladder as possible. One
candidate to explain this nice modal behaviour is the restriction to struc-
tures with only unary and binary relations. Another explanation stems
from the observation that large classes of modal logics can be embedded
into 2-variable first-order logic. However, neither approach could explain
for example why the powerful fixed-point extension to modal logics, the
modal µ-calculus, is decidable.

It was later conjectured by Vardi, that the tree model property is the main
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6 CHAPTER 1. INTRODUCTION

reason for the decidability of many modal style logics [60]. The guarded
fragment of first-order logic, introduced by Andréka, van Benthem, and
Németi [1], was a successful attempt to transfer this key property of modal,
temporal, and description logics to a larger fragment of predicate logic.
As pointed out in [24], a generalisation of the tree model property indeed
explains the similarly robust decidability of guarded logics. It can also be
seen as a strong indication that guarded logics are an extension to the modal
framework that retains the essence of modal logics. Besides decidability
this includes the finite model property, invariance under an appropriate
variant of bisimulation, and other nice model theoretic properties [1, 24].
This becomes even more evident when regarding the respective fixed-point
extensions, which turned out to be decidable too [25].

These and further results, in particular with respect to complexity, of recent
research into guarded logics indicate that the guarded fragment of first-
order logic, and its relatives, provide an interesting domain of logics, with
a good balance between expressive power and algorithmic manageability.
The complexity of the satisfiability problem for many guarded logics is not
higher than for mild extensions of basic modal logic, as long as the width of
the vocabulary is fixed.

From a model theoretic perspective, modal logics — in a broad sense —
are characterised by their invariance under bisimulation, i.e. they cannot
distinguish between bisimilar structures. Moreover, invariance under bisim-
ulation happens to be the root of the tree model property, which in turn
paves the way towards the use of automata theory. The eminent role that
bisimulation plays in the domain of modal logics is taken up by the sim-
ilar, but much more wide-ranging and finer notion of equivalence induced
by guarded bisimulation in the guarded domain. This correspondence has
enabled various results about modal logics to be transferred up into the
guarded world, including the characterisation of basic modal logic in terms
of bisimulation invariant first-order logic. Characterisation theorems of this
type have a strong tradition in the field. Besides bisimulation invariance,
there is the related notion of bisimulation safety that generalises the same
idea to the binary accessibility relations on labelled graphs.

The goal of this this work is to gain greater insight into the correspondence
between the modal world and the guarded world, but also the previously
less touted failure of this correspondence. Depending on the property under
scrutiny, the transfer can be anything between blatantly obvious, concep-
tually simple but technically involved, or absolutely impossible. However,
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many of the hard cases can be partially repaired by selectively abandon-
ing some of the additional features that guarded logic possesses over modal
logic. Indeed the existence of many variations of so-called action guarded
logics shows that guarded logics are not one, but a whole family of answers
to the question of how modal style logics can be generalised.

Chapter 2 fixes the terminology of this work and repeats basic definitions
and properties of predicate and modal logics, including the key notion of
bisimulation and the related unravelling of graph structures. The notions of
bisimulation invariance, and bisimulation safety are introduced. In Chap-
ter 3, the same is done for guarded logics. A selection of previously unknown
results about basic properties of guarded logics is shown along the way. The
guarded relational algebra is introduced in the context of characterising the
bisimulation safe fragment of first-order logic.

Theorem. Every first-order formula that is safe for guarded bisimulation
is equivalent to a guarded relational algebra term.

Guarded second-order logic is defined and discussed, in particular concerning
the relationship to monadic second-order logic on certain structures. Such a
candidate in the guarded world for the position that monadic second-order
logic occupies in the modal domain was previously unknown. Two other
natural second-order extensions to the guarded fragment are shown to be
equivalent to the guarded second-order logic, strengthening the claim on this
position.

Theorem. All variants of second-order logic with either or both of the first-
order or second-order quantifiers restricted to guarded objects are equivalent.

Chapter 4 makes precise the correspondence between modal and guarded
bisimulations. A first analysis makes the comparison over modal logic’s na-
tive structures, the class of transition systems, Kripke structures or labelled
graphs. The greater expressive power of guarded logics is measured against
modal bisimulation on so-called atomic expansions of graphs, that encode
binary atomic types in new edge relations.

Theorem. Guarded bisimulation on graphs is equivalent to modal bisimu-
lation on atomic expansions.

A game theoretic characterisation of guarded bisimulation through an ap-
propriately restricted form of the Ehrenfeucht-Fräıssé game, producing a
kind of guarded game, is given. This enables an encoding of arbitrary rela-
tional structures B as graphs K(B) and trees T(B). A bisimulation closed
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class of first-order definable trees T allows a converse transformation back
into relational structures D(T). The interesting property is that guarded
bisimulation equivalence on the original structures is retained in form of
modal bisimulation on the graph encodings, and vice versa. This method is
a powerful tool that will show up in several places, and in several more or
less extended or restricted guises.

Theorem. Two structures B and B′ are guarded bisimilar iff T(B) and
T(B′) are bisimilar.

Two consistent trees T and T′ are bisimilar iff D(T) and D(T′) are guarded
bisimilar.

Chapter 5 is centred around a tableau algorithm for the guarded fragment.
In modal logics, often in the form of description logics, tableau algorithms
constitute a well studied technique of finding decidability proofs that, fur-
thermore, are amiable to efficient implementation [46, 32, 18, 43, 42]. An
introduction is given in form of an algorithm for modal logic, and modal
logic with universal quantification. A more complex tableau algorithm for
the guarded fragment is developed. A recent implementation of the al-
gorithm suggests that the additional goal of finding a practically efficient
decision procedure was reached with the given tableau algorithm [37].

Theorem. The tableau algorithm is an effective (efficient) decision proce-
dure for the guarded fragment.

The tableau also serves as basis of an alternative, elementary proof of the
finite model property of the guarded fragment, which was originally es-
tablished building on strong model-theoretic results. Compared to infinite
graph encodings of relational structures, the finite case possesses certain
problems that are highlighted by the exhibited procedure and give a first
insight into why certain modal features do not (easily) generalise.

Theorem. The guarded fragment has the finite model property.

Chapter 6 gives an overview on one take of action guarded logics. Several
restrictive features of modal logics that were dropped by the guarded frag-
ment are made selectively available, namely the separation of the vocabulary
into action and state relations, and the directional nature and forgetfulness
of actions. The characterisation theorems that compare the bisimulation in-
variant fragment of first-order logic to the appropriate action guarded logic
are shown to hold true for a broad class of logics.
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Theorem. Every first-order formula that is invariant under a version of
action guarded bisimulation is equivalent to a formula in the corresponding
action guarded fragment.

However for bisimulation safety the characterisation results for bisimula-
tion invariant first-order logic break down due to the format of guarded
quantification significantly changing certain behaviours of the correspond-
ing bisimulation. The modal result can only be transferred to a severely
restricted form of action guarded logic. Appropriate versions of guarded
relational algebra and propositional dynamic logic are introduced.

Theorem. Every first-order formula that is safe for the weak action guarded
fragment with directed actions is equivalent to an iteration free program of
the guarded propositional dynamic logic.

Also considered is the decidability of extensions of guarded logics by means
of counting quantifiers and transitivity statements. In both cases the pre-
cise border of decidability between basic modal logic and the full guarded
fragment is established. The latter case implicitly takes up modal logics
augmented with so-called frame conditions, of which transitivity is a com-
mon case. The method used in the main proof modifies the graph encodings
of relational structures to include a larger class of guarded objects. Decid-
ability and the tree model property for the largest decidable class of action
guarded logics with transitive relations is established.

Theorem. The guarded fragment with transitive guard relations is decidable
and has the tree model property.

Chapter 7 takes up the manipulation of graph encodings of structures in
order to find canonical representatives for bisimulation classes of structures.
This method has several applications, e.g. in database systems or complex-
ity theory. Two successful versions of efficient canonisation algorithms are
developed. For one version of action guarded logic, the method used for
modal logic can be generalised by means of an appropriate graph encoding
of structures.

Theorem. Guarded logic on graphs and the weaker action guarded fragment
with directed actions allow efficient canonisation procedures.

For full guarded logics on graphs this is not feasible; although the structures
are restricted to width 2, the quantifier pattern requires an elaborate con-
struction of canonical models. For guarded bisimulation it is conjectured
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that there is no efficient canonisation procedure. More interesting than the
result are the surrounding detailed observations. The problems encountered
here are strongly related to the conceptual difficulties of recreating a finite
model from a finite tableau.

Chapter 8 finally continues where Chapter 4 left off. Equivalent transforma-
tions from guarded second-order logic over relational structures to monadic
second-order logic over their encodings, and in the other direction from the
modal µ-calculus to guarded fixed-point logic are given. The main result
is a lifting of the Janin-Walukiewicz theorem by means of a reduction of
the guarded equivalent. This is the main motivation for the introduction of
guarded second-order logic.

Theorem. Every guarded bisimulation invariant formula of guarded second-
order logic is equivalent to a formula of guarded fixed-point logic.

Of the known characterisation theorems of this type, only the characterisa-
tion of basic modal logic is known to survive as a theorem of finite model
theory too. We consider a variant of monadic second-order logic that speaks
about the unravellings of graphs. The Janin-Walukiewicz method is modi-
fied to give an automata-theoretic proof of the finite model theory version of
the bisimulation invariance characterisation theorem for this logic. Actually
the following stronger result is established.

Theorem. Every formula of monadic second-order logic that is bisimulation
invariant on the unravelling of finite graphs is already bisimulation invariant
on the unravellings of all graphs.

This first step is a motivation for further research into related questions
concerning larger classes of formulae. At this point, both whether this can
be extended to full monadic second-order, and if the guarded version can
then be deduced, must be left as open questions.



Chapter 2

Logical Background

The following recalls a basic set of definitions from predicate logic and model
theory. A couple of general results that will be required later on are cited in
the context of the corresponding definitions. This includes making explicit
a method of sorting atomic types, which is necessary to create deterministic
algorithms that would otherwise use arbitrary choice.

Several generally known notions are stated informally without further elab-
oration. The aim is to present the notational conventions used in this work,
so that the experienced reader may recognise familiar concepts, even if they
appear in a different than the habitual guise.

The remainder of this chapter recalls the basics of modal logics, including
transition systems, basic modal logic, modal fixed-point logic and modal
bisimulation. This includes numerous definitions and results whose general-
isation to the guarded world we are concerned with later.

2.1 First and Second-Order Logic

We use lower-case letters x, y, z, . . . for first-order variables and upper-case
X,Y, Z, . . . for second-order, or set variables. Tuples of variables, relations
or elements are denoted by bold-face letters x,y,a, b,X,Y , . . . .

For sets of relation symbols τ we interchangeably use the terms vocabulary,
language and signature. In this work only purely relational vocabularies are
considered and A, B will typically refer to relational τ -structures.

If L is a logic, we write L[τ ] to indicate the class of L-formulae that only

11



12 CHAPTER 2. LOGICAL BACKGROUND

use relation symbols from τ . If ϕ is a formula we denote by τ(ϕ) the set of
relations that syntactically occur in ϕ.

An atomic formula, short atom, is a formula of the form R(x) or x = y. If
R ∈ τ , then R(x) is also called a τ -atom. A literal is either an atom or a
negated atom.

Syntax of FO.

(i) Every atomic formula is in FO.

(ii) FO is closed under Boolean combinations.

(iii) If ϕ is a FO-formula, then so is ∃xϕ.

We write ϕ(x) to denote that the free variables of ϕ are among x, resp.
write free(ϕ) for the actual set of free variables of ϕ. In logics closed under
Boolean combinations the universal quantifier ∀ can be defined in terms of
the existential quantifier and the well-known duality ∀xϕ ≡ ¬∃x¬ϕ.

Syntax of SO.

(i) Every FO-formula is a SO-formula.

(ii) SO is closed under Boolean combinations.

(iii) If ϕ is a SO-formula, then ∃Xϕ and ∃xϕ are SO-formulae.

We will write ϕ(X,x) to denote that the free variables of ϕ are among X

and x. If ϕ is a SO-formula where all occurring second-order variables have
arity 1, then ϕ is also a monadic second-order formula .

In the context of bisimulation and bisimulation invariant properties we will
often deal with formulae with exactly one free first-order variable.

Note. We usually assume all formulae with — first or second-order —
variables to be well named , i.e. every single variable either occurs only free,
or it is bound exactly once. For example the first-order formula R(xy) ∧
∃x∀zE(zx) is not well named, because x occurs both free and bound. If the
number of available variables is unlimited, every formula can be transformed
into an equivalent well named version by renaming the bound variables.

Another normal form that is often convenient for algorithmic purposes im-
poses a restriction on where negation may occur in a formula.

Definition 2.1.1. A formula of any logic is in negation normal form, de-
noted NNF, if negation occurs only in front of atomic statements.

It is well known that every first or second-order formula is equivalent to a
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formula in negation normal form. In fact, all further logics considered in this
work allow application of De Morgan’s law and dualisation of quantifiers and
fixed-point operators, and hence allow equivalent transformation of formulae
into NNF.

2.2 Definitions and Conventions

We denote the power set of a set A by P(A), and write ar(R) for the arity
of a relation R.

Restrictions, mostly of functions, are expressed by the | syntax. If f : A → B

is a function with domain dom(f) = A and range B, and A′ ⊆ A, we write
f |A′ for the function f ′ : A′ → B defined by f ′(a) = f(a) for every a ∈ A′.

The arity of a tuple a is denoted by |a|. To express that a consists of
elements from a set A, we write a ∈ A for short instead of a ∈ A|a|. We
also use tuples a as sets and write a ∈ a to denote that, if a = (a1, . . . , an),
a = ai for some 1 ≤ i ≤ n, and, similarly, X ⊆ a if for all x ∈ X also x ∈ a.

If f : D → R is a function, we also use f as function f : P(D) → P(R)
and f : Dn → Rn, n ∈ defined in the canonical way as f({d1, . . . , dn}) =
{f(d1), . . . , f(dn)} and f((d1, . . . , dn)) = (f(d1), . . . , f(dn)), respectively.

For a formula ϕ of any logic we denote by cl(ϕ) the closure of ϕ, i.e. the set
consisting of ϕ and all (syntactic) subformulae of ϕ.

Definition 2.2.1. Let C be a class of structures. A global relation of arity
n on C is a function R that assigns every structure C ∈ C an n-ary relation
RC such that if for A,B ∈ C there is an isomorphism π : A → B, then
RB = π ◦RA.

Every n-ary formula ϕ(x) that belongs to a reasonable logic, in this case: a
logic that does not distinguish isomorphic structures, gives rise to an n-ary
global relation. The relation ϕA on A is simply defined as the set of all
tuples a that satisfy ϕ, i.e. ϕA = {a ∈ A : A |= ϕ(a)}.

Types and Theories

Definition 2.2.2. Let A be a τ -structure, a ∈ A and τ ′ ⊆ τ . The atomic
τ ′-type of a in A, denoted atpA,τ′(a), is the set of all τ ′-literals α(x) where
A |= α(a).
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If τ ′ = τ is clear from the context, we simply speak of an atomic type. The
equality type of a tuple only allows literals built with =.

The common definition of types in model theory allows arbitrarily large sets
of parameters. For our purpose we can restrict the definition to only allow
finite parameter tuples.

Definition 2.2.3. Let L be a logic. A set of formulae Φ ⊆ L is consistent
if Φ is satisfiable, i.e. if there is a structure A and tuple a ∈ A such that
A |= ϕ(a) for all ϕ ∈ Φ. Further, Φ is maximal consistent , if there is no
Ψ ⊆ L that properly contains Φ and is consistent.

Definition 2.2.4. An L-type is a maximal consistent set of L-formulae:

Let A be a τ -structure, a ∈ A and L a logic. The L-type of a in A, denoted
tpA(a), is the set of all L-formulae ϕ(x) where A |= ϕ(a).

If b ∈ A is a further tuple, the L-type with parameters b of a in A, denoted
tpA(a; b), is the set of all L-formulae ϕ(x,y) where A |= ϕ(a, b).

A structure A realises a type p, if there is a tuple a ∈ A with tpA(a) = p.

Definition 2.2.5. Let A be a τ -structure and L a logic. The L-theory of A

is the L-type of the empty tuple in A.

Two structures are L-equivalent if they satisfy the same set of L-formulae,
i.e. they share the same L-theories. In the line of the ubiquitous term of
elementary equivalence, that is equivalence for first-order logic, we recall the
following notion of an elementary extension.

Definition 2.2.6. Let A be a τ -structure. A τ -structure B ⊇ A is an
elementary extension of A, denoted A ≺ B, if A |= ϕ(a) ⇐⇒ B |= ϕ(a) for
every a ∈ A and every ϕ ∈ FO[τ ].

Note that the above definition includes all τ -sentences; in particular the first-
order theories of A and B are the same. We are interested in elementary
extensions that satisfy a specific model-theoretic richness condition.

Definition 2.2.7. A relational structure A is ω-saturated if every first-order
type with finitely many parameters that is consistent with the first-order
theory of A is realised in A.

For a proof of the following theorem that will be required later see e.g. [38].

Theorem 2.2.8. Every structure has an ω-saturated elementary extension.
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Orders on Atomic Types

Some of the constructive proofs in this work employ algorithms that can only
be made deterministic, which will be necessary in some cases, in the presence
of an order on types. This is a much weaker precondition than requiring
an order on the structures themselves — an order on the vocabulary τ is
sufficient to construct a possible required order on types.

At this point we handle the case of atomic types. Suppose that τ is finite
and ≺ is a linear order on τ , and that the variables occurring in atomic types
are from a fixed collection X = {x1, x2, x3, . . . }. Define the function val that
assigns every variable, every relation symbol, and the negation symbol ¬ an
integer as follows.

1. val(¬) = 0.

2. val(xi) = i.

3. val(R) = −k, if R is the k-th symbol in τ according to ≺.

We extend val to assign τ -atoms and literals a list of integers via

4. val(R(xi1 , . . . , xij )) = val(R), val(xi1), . . . , val(xij ),

5. val(¬R(xi1 , . . . , xij )) = val(¬), val(R), val(xi1), . . . , val(xij ).

For sets of literals Γ = {γ1, . . . , γk} we purport that if Γ speaks about
n elements, then the (free) variables of Γ are exactly x1, . . . , xn. If Γ is
displayed such that val(γi) < val(γj) for all i < j, then

6. val(Γ) = val(γ1), . . . , val(γk).

The natural order on integers extends to these tuples via the usual lexico-
graphical order, and yields the desired order on the set of all sets of τ -literals.

Note on (Finite) Model Theory

The model-theoretic properties considered in this work are mostly general
statements made before the background of the class of all structures. At
certain points we will be concerned with the corresponding statements in a
finite model theory setting. In the sense of finite model theory, all statements
are with respect to the class of finite models. Compared to the same result
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in classical model theory, a theorem in finite model theory has to get by with
weaker preconditions, that only hold on finite models, but in return only has
to prove that the statement holds on finite models too. This suggests that
there is no a priori relationship between the classical and the finite model
theory versions of the same theorem, however the finite case typically turns
out to be harder.

2.3 Transition Systems and Bisimulation

Transition systems, labelled graphs or Kripke structures are three desig-
nations for structures whose universe is a set of states, nodes or possible
worlds, labelled by unary predicates, and carrying binary labelled transition
relations, or actions. We typically write K = (V, (Ea)a∈A, (Pb)b∈B) for a
transition system with state set V based on a set B of atomic properties
and a set A of actions. If K |= Ea(v, w) for two nodes v, w ∈ V we say that w

is an Ea-successor, or short a-successor, of v, and likewise v is a predecessor
of w. We regard trees as special transition systems.

Definition 2.3.1. A transition system T = (V, (Ea)a∈A, (Pb)b∈B) is a tree if
the Ea are mutually disjoint and their union E =

⋃
a∈A Ea forms a directed

tree in the graph theoretic sense.

Every tree has a root node with no predecessors. This corresponds to the
definition used in computer science, whereas in mathematics a more liberal
version that covers all graphs without cycles is usual.

In many applications, transition systems formalise some kind of dynamic
behaviour. Considering only isomorphic or elementary equivalent transi-
tion systems as equivalent is therefore often too strict, since differing graphs
can exhibit the same possible behaviours, e.g. in form of labelled paths.
Several distinct attempts have been made in the past to capture an appro-
priately fine-grained notion of equivalence. Arguably the most important
role is played by what is called bisimulation equivalence. Bisimulation be-
tween transition systems not only captures the natural notion of behavioural
equivalence between processes, but also corresponds to the natural notion
of Ehrenfeucht-Fräıssé equivalence associated with modal quantification.

Definition 2.3.2. A bisimulation between two transition systems

K = (V, (Ea)a∈A, (Pb)b∈B) and K′ = (V ′, (E′
a)a∈A, (P ′

b)b∈B)
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is a non-empty relation Z ⊆ V × V ′, respecting the Pb in the sense that
v ∈ Pb iff v′ ∈ P ′

b, for all b ∈ B and (v, v′) ∈ Z, and satisfying the following
back and forth conditions.

Forth. For all (v, v′) ∈ Z, a ∈ A and every w such that (v, w) ∈ Ea, there
exists a w′ such that (v′, w′) ∈ E′

a and (w,w′) ∈ Z.

Back. For all (v, v′) ∈ Z, a ∈ A and every w′ such that (v′, w′) ∈ E′
a, there

exists a w such that (v, w) ∈ Ea and (w,w′) ∈ Z.

A total bisimulation covers all nodes of either graph.

Two transition systems K,K′ with distinguished nodes u ∈ K and u′ ∈ K′ are
bisimilar , denoted K, u ∼ K′, u′, if there is a bisimulation Z between them
with (u, u′) ∈ Z. We say that two trees are bisimilar if they are bisimilar at
their roots λ and λ′, and just write T ∼ T′ for T, λ ∼ T′, λ′.

Remark. A crucial model theoretic feature of modal logics is the tree model
property , the fact that every satisfiable formula is satisfiable in a tree. This
is a well known and straightforward consequence of bisimulation invariance,
since every transition system (K, u) has a canonical bisimilar companion that
is a tree.

This unravelling of K from node u, denoted T(K, u), is naturally induced on
the set of all edge-labelled paths from u in K with obvious interpretations
of atomic propositions and accessibility relations. Since T(K, u) is bisimilar
to (K, u), we can restrict attention to trees as long as bisimulation invariant
properties are concerned. The advantage for all algorithmic issues in partic-
ular lies with the possibility of using tree automata, a rich and well-studied
field, an example of which will be seen in Chapter 8.

Definition 2.3.3. The unravelling T(K, u) of a transition system K from
node u is the tree of all paths through K that start at u. More formally,
given K = (V, (Ea)a∈A, (Pb)b∈B) with u ∈ V , the unravelling is T(K, u) =
(V T, (ET

a )a∈A, (PT
b )b∈B), where

(i) V T is the set of all sequences v = v0a1v1a2 · · · vr−1arvr where vi ∈ V ,
ai ∈ A such that v0 = u and (vi−1, vi) ∈ Eai ;

(ii) PT
b contains the sequences v0a1v1a2 · · · vr−1arvr with vr ∈ Pb;

(iii) ET
a contains the pairs (v0a1v1 · · · vr−1, v0a1v1 · · · vr−1arvr) in V T×V T

where (vr−1, vr) ∈ Ear .

The natural projection π : T(K, u) → K, u sends v = v0a1v1a2 · · · vr−1arvr ∈
V T to its last node π(v) = vr ∈ V .
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Note that a canonical bisimulation between T(K, u) and K, u is induced by
the graph of the natural projection.

Trees are special as bisimilar companions to arbitrary transition systems also
because bisimulation equivalence between trees comes with an additional
feature. A two-way bisimulation is one that not only satisfies the back and
forth conditions for the transition relations Ea themselves, but also for their
inverses E−1

a = {(u, v) : (v, u) ∈ Ea}. In general, two-way bisimulation
is a much stronger notion than ordinary bisimulation. Not so, however,
for trees in the strict sense, i.e. trees considered as independent structures,
rather than substructures within a larger graph in which the root could have
predecessor nodes.

Lemma 2.3.4. Bisimilar trees are two-way bisimilar.

Proof. Let T and T′ be bisimilar trees with roots λ and λ′, respectively. We
inductively construct a two-way bisimulation Z =

⋃
n<ω Zn between T and

T′. The depth of a node is its distance from the root. Each Zn will associate
nodes of depth n in T with nodes of depth n in T′. Let Z0 = {(λ, λ′)}. For
n > 0, let (v, v′) ∈ Zn if v and v′ have depth n and

(1) T, v ∼ T′, v′ (with respect to usual (forward) bisimulation), and

(2) the edges to v and v′ from their parent nodes u and u′ have the same
label, and (u, u′) ∈ Zn−1.

Obviously Z is a two-way bisimulation. 2

A further property of arbitrary bisimulations is that if Z : K, v ∼ K′, v′ and
Z ′ : K, v ∼ K′, v′ are bisimulations between K, v and K′, v′, then the union is
a bisimulation (Z ∪ Z ′) : K, v ∼ K′, v′ too.

From a different angle, Z ⊆ V × V ′ can be seen as the graph of a (partial)
function Z : V → P(V ′), or vice versa Z−1 : V ′ → P(V ). When talk-
ing about the image and inverse image under Z, it is with respect to this
functional interpretation of Z.

2.4 Basic Modal Logic

We describe propositional (multi-)modal logic ML for several transition rela-
tions, i.e. for reasoning about transition systems K = (V, (Ea)a∈A, (Pb)b∈B)
where in general A may have more than one element. In the literature
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on modal logic, this system is sometimes called Kn (where n = |A| is the
number of actions or ‘modalities’).

Syntax of ML. The formulae of ML are defined by the following rules.

(i) Each atomic proposition Pb is a formula.

(ii) If ψ and ϕ are formulae of ML, then so are (ψ ∧ ϕ), (ψ ∨ ϕ) and ¬ψ.

(iii) If ψ is a formula of ML and a ∈ A is an action, then 〈a〉ψ and [a]ψ are
formulae of ML.

If there is only one transition relation, A = {a}, one simply writes 2 and 3

for [a] and 〈a〉, respectively.

Semantics of ML. Let ψ be a formula of ML, K = (V, (Ea)a∈A, (Pb)b∈B) a
transition system, and v ∈ V a state. We write K, v |= ψ to denote that ψ

holds in K at state v.

In the case of atomic propositions, ψ = Pb, we have K, v |= ϕ iff v ∈ Pb.
Boolean connectives are treated in the natural way. Finally for the semantics
of the modal operators we put

K, v |= 〈a〉ψ iff K, w |= ψ for some w such that (v, w) ∈ Ea,

K, v |= [a]ψ iff K, w |= ψ for all w such that (v, w) ∈ Ea.

The standard translation from modal to first order logic takes a formula
ϕ ∈ ML and yields a formula ϕ◦(x) ∈ FO with one free variable. By starting
with free variable x, and alternating between x and y in the translation of
the modal operators, one can verify that ML is contained in the two-variable
fragment FO2 of first-order logic. This is a much stronger restriction than
the fact that modal logics only deal with relational structures of width (at
most) two.

(Pb)◦(x) = Pb(x)

(¬ϕ)◦(x) = ¬(ϕ◦(x))

(ϕ1 ∧ ϕ2)◦(x) = ϕ◦1(x) ∧ ϕ◦2(x)

(〈a〉ϕ)◦(x) = ∃y(Eaxy ∧ ϕ◦(y))

The equivalence is straightforward. We also consider the extensions of
ML by an unrestricted universal quantification, and by backward edges. In
ML + ¥ there is an additional universal modality operator ¥ that can be
used in place of the usual 2 and 3. The semantics is intuitive,

K, v |= ¥ψ iff K, w |= ψ for all w ∈ K.
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The addition of backward edges effectively makes predecessor nodes acces-
sible as successors by adding, for every relation Ea, the inverse action E−

a

interpreted as {(v, w) : (w, v) ∈ Ea}. We denote by ML− the extension of
ML by the corresponding operations 〈a−〉 and [a−].

2.5 The Modal µ-calculus

The propositional µ-calculus Lµ is propositional modal logic augmented with
least and greatest fixed points. It was introduced in [45], and has in the
meanwhile been established as the fundamental modal fixed point logic,
subsuming almost all of the commonly used modal logics used in verification
and reasoning about programs, in particular the temporal logics LTL, CTL,
CTL∗, dynamic logic PDL [33], and also many logics used in other areas of
computer science, for instance description logics [17]. For more information
on the µ-calculus, we refer to [3, 11] and the references there.

Syntax of Lµ. The µ-calculus extends propositional modal logic ML, in-
cluding monadic relations, or propositional (second-order) variables X,Y, . . . ,
by the following rule for building fixed point formulae.

If ψ is a formula in Lµ and X is a propositional variable that does not
occur negatively in ψ, then µX.ψ and νX.ψ are Lµ formulae.

Semantics of Lµ. The semantics of the µ-calculus is given as follows.
A formula ψ(X) with propositional variable X defines on every transition
system K (with state set V , and with interpretations for other free second-
order variables that ψ may have besides X) an operator ψK : P(V ) → P(V )
assigning to every set X ⊆ V the set

ψK(X) = {v ∈ V : (K, X), v |= ψ}.

If X occurs only positively in ψ, ψK is monotone for every K, and therefore
has a least and a greatest fixed point. Now we put

K, v |= µX.ψ iff v is an element of the least fixed point of the operator ψK,
K, v |= νX.ψ iff v is an element of the greatest fixed point of ψK.

Remark. By the well known duality between least and greatest fixed points,
νX.ψ is equivalent to ¬µX.¬ψ[X/¬X]. Hence we could eliminate greatest
fixed points. However, it will sometimes be more convenient to keep least
and greatest fixed points and work with formulae in negation normal form,
cf. Definition 2.1.1.
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There is a variant of Lµ which admits systems of simultaneous fixed points.
These do not increase the expressive power but sometimes allow for more
straightforward formalisations. Here one associates with any tuple ψ =
(ψ1, . . . , ψk) of formulae ψi(X) = ψi(X1, . . . , Xk), all positive in the Xi, a
new formula that is a system of fixed-points

S = µX1, . . . , Xk.


ψ1(X1, . . . , Xk)

...
ψk(X1, . . . , Xk)

 .

The semantics of S is induced by the least fixed point of the monotone
operator SK mapping X to X ′ where X ′

i =
{
v ∈ V : (K,X), v |= ψi}.

By convention K, v |= S iff v is an element of the first component of the
least fixed point of the above operator. Similar conventions apply w.r.t.
simultaneous greatest fixed point.

It is well known that simultaneous fixed points can be uniformly eliminated
in favour of nested individual fixed points. This is based on a general fact
concerning fixed points of monotone operators which is sometimes called the
Bekic principle and which applies to least fixed point logics in general [3].
In its simplest form for the µ-calculus, it says that

µXY.

{
ψ(X, Y )
ϕ(X,Y )

}
= µX.ψ(X,µY.ϕ(X,Y )).

2.6 Invariance and Safety

In this section we present the notions of invariance and safety, two key play-
ers in the analysis of modal bisimulation. Informally, a formula, or a unary
global relation, is invariant for bisimulation, if it does not distinguish be-
tween bisimilar states. One area of interest is the question of which classes
of formulae can be used for invariant queries. The other take is that in-
variant relations can be added to a class of structures without changing the
bisimulation equivalence. This second viewpoint is also central to bisim-
ulation safety, which states that a binary global relation does not destroy
bisimilarity when added as additional accessibility relation.

Definition 2.6.1. A formula ψ is invariant for bisimulation if whenever
K, v ∼ K′, v′ and K, v |= ψ, then also K′, v′ |= ψ. A logic L is invariant for
bisimulation if all L-formulae are invariant for bisimulation.

It is well known that all formulae of ML and Lµ are invariant under bisim-
ulation (see e.g. [8, 3]). Furthermore there is a theorem by van Benthem
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that characterises the ML definable relations in terms of bisimulation in-
variant FO. Several standard proofs of this theorem can be found in the
literature [40]. We will exhibit one of them since all following invariance
characterisation theorems of this format for logics included in FO can be
shown in exactly the same way. Note that the compactness theorem for
first-order logic is used (implicitly) in various forms and generalising the
method beyond first-order logic requires a different approach [40].

Definition 2.6.2. A transition system K is ML-saturated if for every v ∈ K

and every modal type p:
If 〈a〉p0 is consistent with the ML-theory of v in K for every finite p0 ⊆ p,
then there is an a-successor w of v that realises p in K.

Clearly every ω-saturated transition system is ML-saturated — the require-
ment for all first-order types includes all modal types.

Lemma 2.6.3. Let K and K′ be ML-saturated transition systems. The modal
equivalence relation between K and K′ is a bisimulation.

Proof. Consider two nodes v ∈ K, v′ ∈ K′ such that v and v′ are modally
equivalent. Clearly this implies that they satisfy the same atomic properties.
For the forth condition, consider an a-successor w of v and let p be the
modal type of w. Since the modal theories of v and v′ coincide, and 〈a〉p is
necessarily consistent with (the theory of) v, by ML-saturation of K′ there is
an a-successor w′ of v′ that satisfies p. The back condition is shown similarly.

2

Lemma 2.6.4. A transition system K is ML-saturated iff there is a total
bisimulation between K and some ω-saturated K′.

Proof. Let K be ML-saturated and by Theorem 2.2.8 let K′ be an ω-
saturated elementary extension of K. By Lemma 2.6.3 the modal equivalence
relation is a bisimulation between K and K′. Since K can be elementarily
embedded into K′, this bisimulation is total.

Let K′ be ω-saturated and let Z : K ∼ K′ be a total bisimulation. Let v ∈ K

and let p be a modal type. Suppose that 〈a〉p is consistent with v. Then it is
also consistent with any v′ where (v, v′) ∈ Z. Since K′ is, in particular, ML-
saturated, there is an a-successor w′ of v′ that satisfies p. The bisimulation
Z then yields an a-successor w of v in K that satisfies p, too. 2

Theorem 2.6.5 (van Benthem). A unary global relation is ML definable
iff it is FO definable and invariant for bisimulation.
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Proof. Bisimulation invariance for ML-formulae, which by the standard
translation can be seen as FO-formulae, follows by straightforward induc-
tion.

For the converse direction, suppose that ϕ(x) ∈ FO is bisimulation invariant.
Let Ψ = {ψ ∈ ML : ϕ(x) |= ψ◦(x)}.
Let K, v |= Ψ and suppose that K was chosen ω-saturated. Let p be the
ML-type of v in K and note that p ∪ {ϕ} is consistent. For surely p is
consistent, and if the union is not, then ϕ |= ¬π1∨· · ·∨¬πn for some πi ∈ p.
Hence ¬π1 ∨ · · · ∨ ¬πn ∈ Ψ, which means that ¬π1 ∨ · · · ∨ ¬πn holds at v, a
contradiction to πi ∈ p, the modal type of v.

Since p ∪ {ϕ} is consistent, there is an ω-saturated K′, and a v′ ∈ K′ such
that p∪{ϕ} holds at v′. Now v and v′ both have the same modal type, and
both are nodes of ML-saturated structures, so v and v′ are bisimilar. Since
ϕ is bisimulation invariant, ϕ holds at v, too.

In other words, because ϕ is invariant for bisimulation, we have Ψ |= ϕ.
By compactness for FO there is a finite Ψ0 ⊂ Ψ such that Ψ0 |= ϕ(x), and
ϕ(x) ≡ ∧

Ψ0, i.e.
∧

Ψ0 is the desired ML-formula. 2

A similar and highly non-trivial analogous characterisation is also known
for the modal µ-calculus [44]. We do not repeat the proof, although certain
techniques will be re-used in Chapter 8.

Theorem 2.6.6 (Janin, Walukiewicz). A unary global relation is Lµ-
definable iff it is MSO-definable and invariant under bisimulation.

What bisimulation invariance is for unary global relations, bisimulation
safety is for binary relations. The definition is analogous in the sense that
adding a bisimulation safe, resp. invariant relation to a class of structures
does not change the bisimulation equivalence among them.

Definition 2.6.7. A global relation R is safe for bisimulation, if for all
transition systems K and K′, any bisimulation Z : K ∼ K′ is a bisimulation
Z : (K, RK) ∼ (K′, RK′), too.

In order to characterise e.g. the bisimulation safe fragment of first-order
logic, we first need a modal-style logic that is capable of defining binary
relations. One candidate is the propositional dynamic logic PDL. Every
PDL statement is either a formula, or a program, defining unary and binary
global relations, respectively. PDL adds to ML the capability to inductively
build new action relations using test, iteration, union and sequential com-
position. The iteration, a kind of Kleene star, is unbounded, and hence a
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very un-first-order construction. In the following we will mostly consider
variations of PDL that do not allow iteration; following the nomenclature
from regular languages we call the resulting fragments star-free.

Syntax of PDL.

(i) Every atomic proposition Pb is a formula.

(ii) The PDL-formulae are closed under Boolean combinations.

(iii) If π is a program, and ϕ is a formula, then 〈π〉ϕ is a formula.

(i) Every atomic action Ea is a program.

(ii) If ϕ is a formula, then ϕ? is a program.

(iii) If π is a program, then so is π∗.
(iv) If π and π′ are programs, then so are π ∪ π′ and π;π′.

The semantics of PDL is a straightforward extension of the semantics for
basic modal logic.

Theorem 2.6.8 (Hollenberg). A binary global relation is definable in
star-free PDL iff it is first-order definable and safe for bisimulation.

In Section 6.2.1 we will show how Hollenberg’s proof can be pushed up
to a certain action guarded logic, however in contrast to the invariance
characterisation theorems this approach falls significantly short of providing
a template that goes all the way up to full guarded bisimulation.

Although the notions of bisimulation invariance and bisimulation safety ap-
ply to — at least for modal-style bisimulation — relations of a different
format, there is of course a connection between the two notions.

Proposition 2.6.9. If ϕ(x, y) is safe for bisimulation and Pa is an atomic
proposition that does not occur in ϕ, then ∃y(ϕ(x, y) ∧ Pa(y)), which could
be written as 〈ϕ〉Pa, is invariant for bisimulation.



Chapter 3

Guarded Logics

This chapter is dedicated to the guarded world and gives definitions of
the numerous guarded objects, including guarded first-order logic, guarded
fixed-point logic, and introducing what we call guarded second-order logic.
Taking up the lead from the modal world, we establish a basic set of proper-
ties for guarded logics, centred around the guarded equivalent of bisimula-
tion equivalence. We motivate our version of guarded second-order logic by
showing that several canonical versions fall together, and that the express-
ibility can be naturally described in terms of monadic second order logic
on certain structures. We also propose a guarded variant of the relational
algebra, as known from database theory, that will be used to characterise
safe fragments of first-order logic here, and in Chapter 6.

3.1 Structures and Guards

Definition 3.1.1. Let B be a relational structure with universe B and
vocabulary τ .

(i) A set X ⊆ B is guarded in B if there exists a ground atom α(b1, . . . , bk)
such that B |= α(b1, . . . , bk) and X = {b1, . . . , bk}.

(ii) A τ -structure A, in particular a substructure A ⊆ B, is guarded if its
universe is a guarded set in A (in B).

(iii) A tuple (b1, . . . , bn) ∈ Bn is guarded in B if {b1, . . . , bn} ⊆ X for some
guarded set X ⊆ B.

(iv) A tuple (b1, . . . , bk) ∈ Bk is a guarded list in B if its components
are pairwise distinct and {b1, . . . , bk} is a guarded set. We admit the

25
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empty list ∅ as a guarded list.

(v) A relation X ⊆ Bn is guarded if it only consists of guarded tuples.

Note that a singleton set X = {b} is always guarded by the atom b = b.
Correspondingly, any monadic relation is a guarded relation according to
(v). The cardinality of guarded sets in B is bounded by the maximal arity
of the relations in τ , the width of τ . Guarded tuples, however, can have
any length. Guarded lists will be of technical interest later as succinct tuple
representations of guarded sets; note that unlike guarded tuples they list a
full guarded set, not just a subset of a guarded set.

Example 3.1.2. Let A be the structure with universe A = {1, 2, 3, 4} and
the ternary relation R = {(1, 2, 3), (4, 2, 3)}. The substructure of A induced
by {2, 3, 4} is a guarded structure, but A itself is not. The tuples (3, 2, 1)
and (2, 3, 4) are guarded tuples and guarded lists, (1, 1) and (4, 4, 3, 2) are
guarded tuples but not guarded lists and (4, 3, 2, 1) is neither.

In the context of a given structure A, we also distinguish tuples, lists, sub-
structures etc. that are maximal guarded . A tuple a ∈ A is maximal guarded
if no other guarded tuple b ∈ A is a superset of a when both are seen as
unordered sets of elements. The same idea applies to the other kinds of
guarded objects.

Sometimes it is necessary to specify the guarding relation more precisely.
Against the background of a vocabulary τ , a guarded object may be guarded
by any R ∈ τ . For every τ ′ ⊆ τ and R ∈ τ we use the terms τ ′-guarded and
R-guarded with the intuitive meaning that the guarding relation used in the
guard statements is either an element of τ ′, or the specified R, respectively.

3.2 The Guarded Fragment

The guarded fragment extends modal logic to a richer fragment of first-order
logic. Its characteristic feature is a relativised pattern of quantification,
which generalises modal quantification. The formulae of GF in vocabulary
τ are defined by the following rules.

Syntax of GF.

(i) All quantifier free first-order formulae are formulae of GF.

(ii) If ψ and ϕ are formulae of GF, then so are (ψ ∧ ϕ), (ψ ∨ ϕ) and ¬ψ.
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(iii) If ψ(x,y) is a formula of GF and α(x,y) is a τ -atom such that all free
variables of ψ do actually occur in α then ∃y(

α(x,y) ∧ ψ(x,y)
)

and
∀y(

α(x,y) → ψ(x,y)
)

are formulae of GF.

The atoms α relativising GF quantifications are called guards. We shall
often also use the more intuitive notation (∀y . α)ψ and (∃y . α)ψ as short-
hand for correspondingly relativised first-order quantification. When writing
α(x,y) for the guard and ψ(x,y) for the kernel that is being quantified, we
implicitly appeal to the convention that the free variables of ψ are among
those displayed and that all variables displayed in the atom α actually occur
in α.

Note that first-order quantification over a single free variable is always ad-
missible in GF, since singletons are guarded: ∃xϕ(x) ≡ ∃x(x = x ∧ ϕ(x)) is
in GF if free(ϕ) ⊆ {x}.
Semantics of GF. The guarded fragment is a syntactic fragment of first-
order logic, so the semantics of GF is the usual one for first-order formulae.

It is obvious that GF generalises ML. A typical modal formula ϕ = [1]〈2〉P ,
rendered in first-order terms as ϕ◦(x) = ∀y(

E1xy → ∃z(E2yz ∧ Pz)
)
, is

clearly in GF. The following are some simple examples of GF formulae that
are not in ML (even though in a language of transition systems).

η(x) = ∀y(E1yx → (E2xy ∧ y 6= x))

ψ = ∀x(
x = x → ∃y(Exy ∧ ¬Eyx)

)
The formula η(x) states that every E1-predecessor y of x also is an E2-
successor and distinct from x, and ψ globally ensures that every node x has
an E-successor that is not an E-predecessor too. The following technical
example will also be of use later.

Example 3.2.1. The set of all guarded k-tuples in structures of vocabulary
τ = {R1, . . . Rt} is defined by the formula

G(x1, . . . , xk) =
t∨

i=1

∃y
(
Riy ∧

k∧
`=1

∨
j

x` = yj

)
.

Note that this formula is not in GF since the variables x1, . . . , xk do not occur
in the atoms Ri(y). However it is not difficult to construct an equivalent
guarded formula. For any complete equality type on {x1, . . . , xk} specified
by a quantifier-free formula η(x) in the language of just = , let xη be a
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subtuple of x comprising precisely one variable from each =-class specified
by η. Let α(y,xη) be a τ -atom in which all variables from xη actually occur,
and the y are fresh, i.e. disjoint from x. Put ξηα(x) = η(x) ∧ ∃yα(y,xη).
For the degenerate case of η0, specifying the equality type of a singleton
tuple x1 = x2 = . . . = xk, we just put ξ0 = η0(x). It is easily checked that
the disjunction over all these formulae ξηα(x) is as desired.

Likewise, we note that quantifications of the form ∃x(G(x) ∧ ϕ(x)) and
∀x(G(x) → ϕ(x)), though not strictly in GF, may equivalently be expressed
in GF syntax. We shall sometimes use such liberalised formalisations for the
sake of clarity and convenience.

A related issue is the question of whether the global relation defined by a
formula is necessarily guarded. We formalise this notion as follows.

Definition 3.2.2. We say that a formula ϕ(x) is variable-guarded if it
implies guardedness of the tuple x of free variables, i.e., if ϕ(x) is logically
equivalent to ϕ(x) ∧G(x).

As GF imposes no restrictions at the quantifier free level, or on Boolean com-
binations, formulae of GF are not in general variable guarded. However, any
formula of GF is equivalent to a Boolean combination of variable-guarded
GF formulae. To see this, note that any GF formula is a Boolean combina-
tion of atomic statements, which are trivially variable-guarded, and formula
whose top-level syntactic element is a guarded quantification – thereby pro-
viding guards for their respective free variables.

3.3 Guarded Fixed Point Logic

Guarded fixed point logic µGF as introduced in [31] is the natural extension
of GF by means of least and greatest fixed points (or corresponding systems
of simultaneous fixed points).

Syntax of µGF. Starting from GF, with second-order variables X,Y, Z, . . .

that are treated like predicates in τ but may not be used in guards, we
augment the syntax by the following rule for building fixed point formulae.

Let X be a k-ary relation variable and let x = x1, . . . , xk be a k-tuple
of distinct variables. Further, let ψ(X,x) be a formula in µGF with
only positive occurrences of X, where X is not used in guards and
where all free variables of ψ are among these xi. Then [lfp Xx . ψ](x)
and [gfp Xx . ψ](x) are formulae of µGF too.
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Semantics of µGF. The semantics of [lfp Xx . ψ](x) is the natural one
associated with the least fixed point of the monotone operator ψB sending
X ⊆ Bk to

{
b ∈ Bk : B |= ψ(X, b)

}
. More precisely,

B |= [lfp Xx . ψ](b) iff b is an element of the least fixed point of the
operator ψB.
Similarly for [gfp Xx . ψ](x) and the greatest fixed point of ψB.

One may also admit simultaneous least and greatest fixed points in µGF.
Given formulae ψ1(X1, . . . , Xk,x1), . . . , ψk(X1, . . . , Xk,xk), with only posi-
tive occurrences of the relation variables X1, . . . , Xk and where the xi con-
tain all free first-order variables in ψi and match the arity of the Xi,

S =


X1x1 = ψ1(X1, . . . , Xk,x1)

...
Xkxk = ψk(X1, . . . , Xk,xk)


is a system of fixed point equations, and [lfp Xi . S](xi) and [gfp Xi . S](xi)
are formulae of µGF.

On every structure A, the system S defines a monotone operator SA on
k-tuples of relations, with least fixed point lfp(SA) = (Xµ

1 , . . . , Xµ
k ) and

greatest fixed point gfp(SA) = (Xν
1 , . . . , Xν

k ). Now A |= [lfp Xi . S](a) iff
a ∈ Xµ

i and A |= [gfp Xi . S](a) iff a ∈ Xν
i .

Again, the Bekic principle implies that simultaneous fixed points can be
eliminated in µGF.

It should be stressed that the presence of extra first-order parameters in fixed
point operations as well as the use of second-order variables and fixed points
as guards is disallowed in µGF. These restrictions are essential for keeping
the semantics invariant under guarded bisimulation, cf. Definition 3.4.1. For
instance, with the use of a first-order parameter (here x), one can define the
transitive closure of a binary relation E by the formula

ϕ(x, y) = [lfp Xy .E(xy) ∨ (∃z.E(zy))X(z)](y).

However, the transitive closure query is not invariant under guarded bisim-
ulation and it is known that adding transitive closure to GF produces an
undecidable logic [24]. Allowing fixed-point variables in guards would make
full first-order quantification available. For instance,

∃yϕ(x, y) ≡ [gfp Xxy . (∃y.X(xy))ϕ(x, y)](x, x).
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A seemingly more restrictive variant of guarded fixed point logic would only
allow least and greatest fixed points over variable-guarded formulae in the
sense of Definition 3.2.2 above, or fixed points like

[lfp Xx . ϕ(X, x) ∧G(x)](x).

We refer to these as strictly guarded fixed points. Strictly guarded least and
greatest fixed points can obviously only define guarded relations. A restric-
tion of µGF to strictly guarded fixed points, however, does not diminish
its expressive power. This claim is easily verified for sentences and variable-
guarded formulae, see [31]. Formulae with arbitrary tuples of free first-order
variables, however, require some extra attention.

Proposition 3.3.1. Any formula of µGF is logically equivalent to one in
which all fixed points are strictly guarded.

Proof. Consider a least fixed point formula ψ(x) = [lfp Xx . ϕ](x). Induc-
tively we assume that all fixed points within ϕ are in strictly guarded form.
Looking at X-atoms in ϕ(X,x), we distinguish the following:

(i) X-atoms in the scope of guarded first-order quantification.

(ii) X-atoms in the scope of least or greatest fixed point operators.

(iii) X-atoms at quantifier free level, X(z), z ⊆ x.

For occurrences of type (i) or (ii) we may replace X by its guarded part
throughout the fixed-point process. The guarded part of X is the subset of
X consisting of guarded tuples in X. For type (ii) occurrences that are not
of type (i), this relies on the inductive assumption that fixed points within ϕ

are strictly guarded. As far as guarded tuples are concerned, even an atom
of type (iii) can only evaluate to true for a guarded instantiation of x in
ϕ(x) if it would also evaluate to true for the guarded part of X, rather than
for the original X. Hence, inductively, we find that the guarded part ψg of
the fixed point [lfp Xx . ϕ] is definable as a strictly guarded fixed point, by

ψg(x) = [lfp Xx . ϕ(X,x) ∧G(x)](x).

Let ϕ(ψg, X,x) be the result of substituting this formula for all occurrences
of X in ϕ apart from those of type (iii). As ψ(x) implies ψg(x) and by
monotonicity, we clearly have

[lfp Xx . ϕ(X,x)](x) ≡ [lfp Xx . ϕ(ψg, X,x)](x).

Note that the only remaining free occurrences of X in ϕ(ψg, X,x) are at the
quantifier free level. It follows that the fixed point formula

[lfp Xx . ϕ(ψg, X,x)](x)
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is bounded. This means that the fixed point is attained within a uniformly
bounded finite number of iterations, since there are only finitely many quan-
tifier free types. By unravelling this finite number of iterations within GF
we find that ψ is GF-definable from strictly guarded fixed points. 2

Let us now consider the hierarchy of µGF formulae as defined by the alter-
nation of greatest and least fixed point operators. This structural property
of formulae is important in many practical applications: The expression
complexity of the model-checking problem for µGF and Lµ formulae is ex-
ponential in this measure.

Several variants of a definition of alternation depth of a formula have been
considered in the literature. The simple version counts syntactic alternations
of least and greatest fixed-point operators. Further studies of Lµ have shown
that counting only interdependent alternations captures the complexity of
fixed-point alternation more precisely. The following informal definition of
alternation depth applies to µGF as well as Lµ, and many other reasonable
fixed-point logics.

Definition 3.3.2. Let ϕ be a fixed-point formula in NNF that is well named
with respect to second-order variables. For every second-order variable X

occurring in ϕ, find the smallest subformula Dϕ(X) in ϕ, the definition of
X in ϕ, where X is bound. The alternation level of X, al(X), is defined as
follows.

If Dϕ(X) has no free second-order variables, then al(X) = 1.

If Dϕ(X) has free second-order variables Y1, . . . , Yn, let k such that al(Yk) is
maximal among al(Y1), . . . , al(Yn). If X and Yk are both bound by the same
fixed-point operator, µ or ν, then al(X) = al(Yk). If the binding fixed-point
operators differ, then al(X) = al(Yk) + 1.

It can be shown that the above definition does not depend on the exact choice
of k. The binding fixed-point operator is the same for all Y ’s with maximal
alternation level. The alternation depth of a formula ϕ is the maximum of
the alternation levels of the second-order variables of ϕ, or zero if ϕ does
not contain any fixed-point operator.

For more precise definitions and proofs of the following results on the alter-
nation hierarchy for the modal µ-calculus we refer to [2, 10, 47].

Theorem 3.3.3 (Bradfield, Lenzi).
The Lµ alternation-depth hierarchy is strict.
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Theorem 3.3.4 (Arnold).
The Lµ alternation-depth hierarchy is strict on binary trees.

The proof given by Bradfield is much stronger and yields the following corol-
laries that are indifferent to which definition of alternation depth is used.
By L−µ we denote the modal µ-calculus augmented by backward quantifiers,
i.e. the fixed-point extension of ML−.

Corollary 3.3.5. The L−µ alternation-depth hierarchy is strict.

Corollary 3.3.6. The µGF alternation-depth hierarchy is strict.

The finite model property of Lµ implies that the Lµ alternation-depth hier-
archy is strict in the sense of finite model theory too. On the other hand it
is well known [19] that the LFP hierarchy collapses in the finite — at the
cost of increasing the arity of the fixed-point iterations. Since both L−µ and
µGF do not have the finite model property, but also lack the possibility of
increasing the width of fixed-point iterations, neither method can be used
to establish or refute whether the hierarchy is strict for L−µ or µGF when
restricted to finite models.

3.4 Guarded Bisimulation

A fundamental tool for analysing guarded logics are guarded bisimulations,
introduced in [1].

Definition 3.4.1. A guarded bisimulation between two τ -structures A and
B is a non-empty set I of finite partial isomorphisms f : X → Y from A to
B, such that the following back and forth conditions are satisfied.

Forth. For every f : X → Y in I and for every guarded set X ′ ⊆ A, there
exists a partial isomorphism g : X ′ → Y ′ in I such that f and g agree on
X ∩X ′.

Back. For every f : X → Y in I and for every guarded set Y ′ ⊆ B, there
exists a partial isomorphism g : X ′ → Y ′ in I such that f−1 and g−1 agree
on Y ∩ Y ′.

Two τ -structures A and B are guarded bisimilar, also written as A ∼g B, if
there exists a guarded bisimulation between them. Two τ -structures with
parameter tuples A,a and B, b are guarded bisimilar (A,a ∼g B, b), if
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there is a guarded bisimulation I between A and B containing the partial
isomorphism f : a 7→ b.

Note that, with the possible exception of the one partial isomorphism dealing
with a given pair of parameter tuples, one may restrict attention to systems
of partial isomorphisms whose domain and range are guarded sets in A and
B, respectively. However it does not hurt if a guarded bisimulation contains
additional partial isomorphisms with non-guarded domains and ranges.

We refer to the relation ∼g as guarded bisimulation equivalence.

Example 3.4.2. Let A and B be two structures as depicted in Figure 3.1,
with two ternary relations M and N and one binary relation o (all assumed
to be symmetric, as in hypergraph theory).

Structure A

a M

b

cN

d

o

Structure B

aM

b

cN

d

c’ N

b’

a’ M

d’

o

o

Figure 3.1: Sketches of A and B.

A guarded bisimulation I : A ∼g B is given by I = {fM : abd 7→ abd, f ′M :
abd 7→ a′b′d′ fN : cbd 7→ cbd, f ′N : cbd 7→ c′b′d′, fo : ac 7→ ac′, f ′o : ac 7→ a′c},
plus all subfunctions of the ones listed.

The reader is encouraged to check the details to get more familiar with the
definition.

For guarded logics over arbitrary relational vocabularies there is obviously
no way that the tree model property as found in modal logics will hold
too. However there is a more general notion of tree-like structures that is
perfectly matched to the guarded world.

Definition 3.4.3. A structure A has tree width k − 1 if there exists a tree
T = (V,E) and a function F : V → B≤k such that

(i) For every guarded set X ⊆ B there is a v ∈ V such that X ⊆ F (v).
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(ii) For every element b ∈ B the set {v ∈ V : b ∈ F (v)} is connected in
T .

In Section 4.5 we will see that every structure of vocabulary τ is guarded
bisimilar to a structure of tree-width m− 1, if m is the width of τ .

Definition 3.4.4. A logic L has the generalised tree model property iff there
is a recursive function f : L → such that for every ϕ ∈ L, ϕ is satisfiable
iff ϕ has a model of tree width at most f(ϕ).

3.5 Invariance and Safety

Definition 3.5.1. A global relation R is invariant under guarded bisimu-
lation if, whenever A,a ∼g B, b and a ∈ RA, then also b ∈ RB. A logic L
is invariant under guarded bisimulation if all L-formulae are invariant under
guarded bisimulation.

It suffices to look at variable-guarded formulae when checking a logic like
GF or µGF for invariance under guarded bisimulation, as any formula is
equivalent to a Boolean combination of variable-guarded formulae. The
following is easily proved by syntactic induction, cf. also [1, 26].

Proposition 3.5.2. GF and µGF are invariant under guarded bisimulation.

Furthermore, the following characterisation of the bisimulation invariant
fragment of FO in terms of GF has been obtained, matching the equivalent
modal Theorem 2.6.5.

Theorem 3.5.3 (Andréka, van Benthem, Németi). A property of re-
lational structures is definable in the guarded fragment GF if, and only if, it
is first-order definable and invariant under guarded bisimulation.

The guarded version of Theorem 2.6.6, the characterisation theorem for
fixed-point logics, is shown in Chapter 8. Next on our introductory agenda
is safety in the guarded world.

Definition 3.5.4. A global relation R is safe for guarded bisimulation iff for
all structures A and B, any guarded bisimulation I : A ∼g B is a guarded
bisimulation I : (A, RA) ∼g (B, RB), too.

For GF the notions of safety and invariance nearly fall together. If, as some
people may argue, the interpretation of guarded formulae is restricted to
guarded tuples, then the two notions fully coincide.
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Theorem 3.5.5. A global relation R is safe for guarded bisimulation iff it
is guarded and invariant for guarded bisimulation.

Proof. Let A be a relational structure and consider RA. If R is safe for
guarded bisimulation, then RA is a guarded relation. For assume to the
contrary that RA contains some non-guarded tuple a. Let B ∼g A and
consider a guarded bisimulation I : B ∼g A where the domain and range
of each f ∈ I is guarded. Then I does not satisfy the forth condition for
(A, RA) and (B, RB), independent of RB: If we take the set Xa = a, which
is guarded in (A, RA), there is no f ∈ I with domain Xa.

Now since R is guarded, R is safe for guarded bisimulation iff for all A and
B, every guarded bisimulation I : A ∼g B also is a guarded bisimulation
I : (A, RA) ∼g (B, RB), which is the case iff for all A, B, and all I : A ∼g B

and f : a 7→ b ∈ I, we have a ∈ RA ⇐⇒ b ∈ RB, which is the same as to
say that R is invariant for guarded bisimulation. 2

Corollary 3.5.6. A FO formula is safe for guarded bisimulation iff it is
equivalent to a variable-guarded GF formula.

As we have seen above, every safe relation is guarded. This can be inter-
preted as strength of guarded bisimulation, in the sense of high expressivity,
or strong discerning capabilities — safety immediately breaks down for non-
guarded relations. We can also highlight this property from a different angle.

Definition 3.5.7. If R is a global relation let τ ′ = τ ∪ {R′} for some new
relation symbol R′. If A is a τ -structure then the R-expansion of A, denoted
AR, is the τ ′-expansion of A where R′ is interpreted as RA.

We denote by GFm
∞,ω the m-variable guarded fragment of infinitary first-

order logic. The following recapitulates guarded bisimulation safety from a
different angle.

Lemma 3.5.8. A global relation R is safe for guarded bisimulation iff all
guarded GFm

∞ω formulae in vocabulary τ ′ are guarded τ -bisimulation invari-
ant on the class of all R-expansions.

Proof. If R is safe for guarded bisimulation, then R is guarded and any
guarded τ -bisimulation for A,B is a guarded τ ′-bisimulation for the R-
expansions AR,BR. Also GFm∞ω[τ ′] is invariant for guarded τ ′-bisimulation.

Let R not be safe for guarded bisimulation. Then there are τ -structures
A,B, a guarded τ -bisimulation I : A ∼g B and an f : a 7→ b ∈ I such



36 CHAPTER 3. GUARDED LOGICS

that a ∈ RA and b 6∈ RB. Let Φ =
∧{ϕ(x) ∈ GF[τ ] : A |= ϕ(a)}. Then

(Φ → R)(x) is not guarded τ -bisimulation invariant on the R-expansions.
2

The definition of safety is rather strict, so the question arises whether an
alternative definition can give greater freedom for, and in particular allow
non-guarded tuples in, the construction of safe relations. Although it is not
required, guarded bisimulations may in general contain partial isomorphisms
for non-guarded tuples. This suggests the following more liberal definition.

A global relation R is safe for guarded bisimulation iff for all structures A and
B there is a guarded bisimulation I : A ∼g B that is a guarded bisimulation
I : (A, RA) ∼g (B, RB), too.

This can be equivalently phrased by requiring that the maximal guarded
bisimulation between A and B, the union of all guarded bisimulations, also
be a bisimulation for the expansions. However allowing safe relations of
this kind in guards immediately gives undecidability, e.g. by axiomatising
transitivity of a binary relation, which was shown to yield an undecidable
fragment in [24]. See also Section 6.4 for further discussions on guarded
logics with transitive relations.

Lemma 3.5.9. Let ρ(x) be a variable-guarded GF[τ ] formula. Then for all
ϕ ∈ GF[τ ′] there is a ϕρ ∈ GF[τ ] such that A, ρA |= ϕ ⇐⇒ A |= ϕρ for all
τ -structures A.

Proof. Since ρ is variable-guarded, ρ is equivalent to Gτ (x) ∧ ρ(x). We
transform all subformulae of ϕ of the form

∃y(R′(z,y) ∧ χ(z,y)),

where R′ is used as guard, by inserting the definition of ρ for R′ and obtain

∃y(Gτ (z,y) ∧ ρ(z, y) ∧ χ(z,y)).

All R′ at non-guard position can be directly replaced by ρ. Eliminating all
occurrences of R′ yields a formula that is equivalent to a GF[τ ] formula ϕρ.
Obviously ϕρ has the desired properties. 2

Corollary 3.5.10. Let ρ(x) be a variable-guarded µGF[τ ] formula. Then
for all ϕ ∈ µGF[τ ′] there is a ϕρ ∈ µGF[τ ] such that A, ρA |= ϕ ⇐⇒ A |= ϕρ

for all τ -structures A.

The proof for GF goes through in verbatim for µGF.
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3.6 Guarded Relational Algebra

In relational database systems, first-order logic is often encountered in the
more procedural form of relational algebra. We consider a slightly modified
version of the standard relational algebra that is tuned to capture precisely
the variable-guarded guarded fragment definable relations. All relations
that are safe for guarded bisimulation and first-order definable are thus
expressible in what we call the guarded relational algebra GRA.

Syntax of GRA.

1. U is a term of width 1.

2. Every R ∈ τ is a term of width r = width(R).

3. If M,N are terms of width k, then so are M \N , M ∪N and M ∩N .

4. If M is a term of width k and i, j ≤ k, then so is σi=j(M).

5. If M is a term of width k and n1, . . . , nj ≤ k,
then πn1,...,nj (M) is a term of width j.

6. If M has width k, N width ` and S has width k + `,
then M ×S N is a term of width k + `.

The semantics is defined straightforwardly following the lead from standard
relational algebra. Given a τ -structure A, the interpretation NA of a GRA
term N in A is obtained inductively according to the following rules.

Semantics of GRA.

1. UA is the universe A.

2. RA is interpreted as itself.

3. The set-theoretic operations \, ∩ and ∪ are interpreted as usual.

4. σi=j(M)A = {a ∈ MA : ai = aj}.

5. πn1,...,nj (M) = {(an1 , . . . , anj ) : a ∈ MA}.

6. (M ×S N)A = (MA×NA) ∩ SA.
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Analogous to the formula G(x), for every k there is a GRA term Gk that
defines the set of all guarded tuples of width k. For k = 1, let Gk = U , and
for k > 1

Gk =
⋃
{πn(R) : n ∈ {(n1, . . . , nk) : 1 < ni < ar(R), 1 < i < k}, R ∈ τ}.

Lemma 3.6.1. A global relation R is definable by a GRA term iff it is
definable by a variable-guarded GF formula.

Proof. We give inductive translations from GF to GRA, and back. Proving
correctness is a simple exercise in chasing definitions.

Claim. For every variable-guarded GF formula ϕ there is an equivalent
GRA term Nϕ.

• If ϕ(x1, . . . , xk) = (xi = xj), then Nϕ = σi=j(Gk).

• If ϕ(x1, . . . , xk) = R(xi1 , . . . , xir), then Nϕ = πj1,...,jk
(R×G U)

where ja = b for ib = a and ja = r + 1 otherwise.

• If ϕ(x1, . . . , xk) = α(x1, . . . , xk) ∨ β(x1, . . . , xk), then Nϕ = Nα ∪Nβ.

• If ϕ(x1, . . . , xk) = ¬α(x1, . . . , xk), then Nϕ = Gk \Nα.

• If ϕ(x1, . . . , xk) = ∃xk+1(R(x1, . . . , xk+1) ∧ χ(x1, . . . , xk+1)),
then Nϕ = π1,...,k(R ∩Nχ).

Claim. For every GRA term N there is an equivalent variable-guarded GF
formula ψN .

1. ψU (x) = (x = x).

2. ψR(x) = R(x1, . . . , xr) for R ∈ τ .

3. ψ(M\N)(x) = ψM (x) ∧ ¬ψN (x).

4. ψ(M∪N)(x) = ψM (x) ∨ ψN (x).

5. ψ(M∩N)(x) = ψM (x) ∧ ψN (x).

6. ψσi=j(M)(x) = ψM (x) ∧ xi = xj .

7. ψπn1,...,nj (M)(x1, . . . , xj) = ∃y1 · · · ∃ym (ψM (y1, . . . , ym) ∧∧{xi = yni : i ≤ j}).

8. ψM×SN (x,y) = ψS(x,y) ∧ ψM (x) ∧ ψN (y).
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Note that the formula in 7. is not syntactically a guarded formula, however
it can be transformed into a guarded formula similarly to how the assertion
G(x) was turned into a guarded formula in Example 3.2.1. 2

Corollary 3.6.2. A first-order definable global relation is safe for guarded
bisimulation iff it is definable by a GRA term.

3.7 Guarded Second-Order Logic

We now introduce a guarded variant of second-order logic, denoted GSO.
In our preferred definition of GSO we simply use the syntax of ordinary
second-order logic, but restrict it semantically by the stipulation that all
second-order quantifiers range just over guarded relations in the sense of
Definition 3.1.1 (v), rather than over arbitrary relations. Two other possible
variants turn out to be semantically equivalent.

Definition 3.7.1. Guarded second-order logic GSO is second-order logic
with guarded semantics for the second-order quantifiers: all second order
quantifiers range over guarded relations (i.e., collections of guarded tuples).

The definition is motivated by the idea that GSO should relate to GF and
µGF in the same way as MSO relates to ML and Lµ. Since µGF has fixed-
point definitions (i.e. second-order constructs) for relations of any arity,
MSO itself is clearly not the right logic. On the other side, full second-order
logic is far too powerful — no matter whether we consider invariance under
bisimulation or under guarded bisimulation.

Proposition 3.7.2. There exist second-order sentences that are invariant
under guarded bisimulation and not equivalent to any sentence in µGF or
GSO. Further, the satisfiability problem for (guarded) bisimulation-invariant
second-order logic is undecidable.

Proof. We first observe that bisimilarity is a second-order property. For
each finite vocabulary, there exists second-order formulae σ(x, y) and σg(x, y)
such that A |= σ(a, a′) iff A, a ∼ A, a′, and A |= σg(a, a′) iff A, a ∼g A, a′.
The formula σ(x, y) requires that there is a binary equivalence relation B

that contains (x, y) and satisfies the definition of a bisimulation. The same
atomic propositions are true at the elements of every pair in B, and the
back and forth property holds:
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∃B[
B(xy) ∧ ∀xy(B(xx) ∧B(xy) → B(yx) ∧ ∀z(Bxz ∧Bzy → Bxy))

∧
∧
b∈B

∀xy(B(xy) → (Pb(x) ↔ Pb(y)))

∧
∧
a∈A

∀xyx′(B(xy) ∧ Ea(xx′) → ∃y′(Ea(yy′) ∧B(x′y′)))

∧
∧
a∈A

∀xyy′(B(xy) ∧ Ea(yy′) → ∃x′(Ea(xx′) ∧B(x′y′)))
]

Similarly one obtains σg(x, y) by checking the existence of a guarded bisim-
ulation. We omit the details, and refer to Section 4.1 which shows how
guarded bisimulation on graphs can be reduced to modal bisimulation.

Let ψ be the following second-order sentence on the vocabulary {E, red} of
coloured graphs

ψ = ∀x∀y(
red(x) ∧ red(y) → σg(x, y)

)
,

stating that every pair of red nodes is guarded bisimilar. Indeed ψ is in-
variant under guarded bisimulation. Suppose that A |= ψ and A ∼g B. Let
b, b′ be red nodes in B. By the back-condition of guarded bisimulations,
there exist red nodes a, a′ in A such that A, a ∼g B, b and A, a′ ∼g B, b′. As
A, a ∼ A, a′ it follows that B, b ∼g B, b′. Hence B |= ψ. On trees, ψ is even
invariant under bisimulation.

To show that ψ is not equivalent to any GSO-sentence it suffices to consider
ψ on T = (V,E, red) where (V, E) is the complete binary tree. Clearly,
T |= ψ if, and only if, all red nodes in T are on the same level. But on trees
GSO and MSO coincide, see Section 3.7.1 below for a more general result,
and it is well-known that the equal level predicate on the binary tree is not
MSO-definable [58].

For the second claim we assume that the reader is familiar with the method
of proving undecidability via domino problems [9]. With each domino system
D one associates a formula which is satisfiable if and only if D admits a tiling
of the infinite grid ( × , N,E). Here we have to do this in second-order
logic in a way that respects bisimilarity. A domino system D is a triple
(D,V,H) where D is the set of domino types, and V and H are the vertical
and horizontal compatibility relations for D. We use σg(x, y) to construct
a second-order sentence ψD in vocabulary {N,E,D}, N for “North”, E

for “East”, and unary relations D = (PD)D∈D, one for each domino, that
expresses the domino condition,
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• every point has an N -successor and an E-successor,

• if x ∼g y then all N -successors of x are bisimilar to all N -successors
of y; and similarly for E.

• for each point x, its N -E-successors are bisimilar to its E-N -successors,

• each point carries precisely one tile, and the horizontal and vertical
adjacency conditions imposed by D are respected.

Then the formula ψD formalises the above as follows.

∀x∃yN(xy) ∧ ∀x∃yE(xy)

∧ ∀xy(σg(x, y) → ∀zz′(N(xz) ∧N(yz′) → σg(z, z′)))

∧ ∀xy(σg(x, y) → ∀zz′(E(xz) ∧ E(yz′) → σg(z, z′)))

∧ ∀xyzy′z′(N(xy) ∧ E(xz) ∧ E(xy′) ∧N(y′z′) → σg(z, z′))

∧ ∀x(∨
d∈D

Pd(x) ∧
∧
d∈D

Pd(x) →
∧

d′ 6=d∈D

¬Pd′(x)
)

∧ ∀xy
(
E(xy) →

∧
{¬(Pd(x) ∧ Pd′(y)) : d, d′ ∈ D, (d, d′) 6∈ H})

∧ ∀xy
(
N(xy) →

∧
{¬(Pd(x) ∧ Pd′(y)) : d, d′ ∈ D, (d, d′) 6∈ V })

The models of ψD are precisely the transition systems that are bisimilar to
an admissible tiling ( × , N,E,D) of the infinite grid by D. In particular
ψD is invariant under bisimulation, and so the satisfiability problem for the
class of these sentences is undecidable. 2

We will show that the expressive power of GSO is between MSO and SO, and
that GSO has the desired properties. Further, GSO defines a very robust
level of expressiveness which is invariant under a number of changes in the
actual formalisation and syntax. Indeed, we shall show that three natural
candidates for a second-order guarded logic all have the same expressive
power.

It should be stressed that for all considerations, guardedness (of sets, tuples,
or relations) always refers to guardedness w.r.t. the underlying vocabulary;
at no point will second-order variables be admitted as guards.

Theorem 3.7.3. The following fragments of second-order logic are equally
expressive:

(1) The extension of GF by full second-order quantification.
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(2) The extension of GF by second-order quantification with guarded se-
mantics.

(3) Guarded second-order logic GSO.

Proof. Since (2) is more restrictive than either (1) or (3), it suffices to
argue for translations from (1) and (3) into (2).

From (1) to (2). We show how to replace any second-order quantifier that
ranges over arbitrary relations by second-order quantifiers that range over
guarded relations. Let ψ(X,x) be a formula according to (1), in which X is
a k-ary second-order variable that does not occur as a guard, and consider
the formula ∃Xψ(X,x) in the sense of ordinary unconstrained semantics for
the second-order quantification. Let the free first-order variables of ψ be
x = (x1, . . . , xn). We will modify ψ in a way that each atomic statement
X(y) is either eliminated or replaced by X(y) ∧G(y).

For any atom X(y) in ψ within the scope of a first-order quantifier the def-
inition of GF ensures that the variables y are included in the guard state-
ment of that quantification1. These occurrences can therefore be replaced
by X(y) ∧G(y) without changing the semantics of ψ.

On the other hand the quantifier-free (w.r.t. first-order quantification) part
of ψ may depend on truth values of X for unguarded tuples, but with the
restriction that the elements of these tuples are among the valuation of x.
This gives us a fixed finite number of unguarded tuples relevant to ψ. The
truth value of X for these tuples can be explicitly enumerated. We formalise
this as follows. Let H = H(X,x) be the set of all {X}-structures with
universe x. Replace ∃Xψ(X,x) by ∃X ∨

H∈H ψH, where ψH is obtained
from ψ by replacing all atoms X(y) where y ⊆ x with (G(y) ∧ X(y)) ∨
¬G(y), if H |= X(y), and (G(y)∧X(y)), otherwise. Remember the general
assumption that all formulae are well named, whereby the free variables
x are not quantified over in ψ(x). Therefore the above replacement only
covers atoms where all variables are free. The mixed cases are uncritical,
since they are guarded.

The modified formula only contains occurrences of X that depend on the
guarded part of X. They are guarded either explicitly through conjunction
with G(·), or implicitly, because they are in the scope of a guarded quantifi-
cation. Any unrestricted valuation for X that satisfies ψ(X,x) gives rise to
an X ′ which is the guarded part of X, and an H that coincides with X on

1More precisely, at least the guard statement of the innermost quantification above

X(y) includes all y.
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all atomic statements built with elements from x, in a way that X ′ satisfies
ψH(X ′,x), and vice versa.

From (3) to (2). It suffices to show that unrestricted first-order quantifica-
tion can be simulated by guarded (in fact: monadic) second-order quantifi-
cation over GF. To this end, each element variable x is replaced by a set
variable X, and we use the following rules for translating formulae ϕ ∈ GSO
to equivalent formulae ϕ(2) as required in (2). The transformation commutes
with the Booleans and

(x = y)(2) = ∀x(X(x) ↔ Y (x))

(Rx)(2) = (∃x . R(x))
∧

i
Xixi

(Zx)(2) = (∃x . G(x))
∧

i
Xi(xi) ∧ Z(x)

(∃xϕ(x,y))(2) = ∃X(
ϕ(X,y) ∧ singleton(X)

)
where singleton(X) is a formula stating that X contains exactly one element,

∃xX(x) ∧ ∀Y (
(∀x(Y (x) → X(x)) → (∀x ¬Y (x) ∨ (∀x Y (x) ↔ X(x)))

)
.

Note that these translations, and in particular singleton(X), are in GF, since
first-order quantification over a single free first-order variable x is always
guarded (by x = x). 2

The semantic restriction of second-order quantification in GSO may alter-
natively be captured purely syntactically, for instance by only allowing oc-
currences of atoms X(x) in conjunction with the GF-formula G(x), which
says that x is a guarded tuple, thus effectively restricting X to its guarded
part.

GSO includes full first-order logic. Hence GSO is undecidable and, unlike
GF and µGF, not invariant under guarded bisimulation. Also note that, as
singletons are always guarded, the monadic version of guarded second-order
logic coincides with full MSO. Consequently, since MSO is strictly more
expressive than FO, the same is true for GSO. Furthermore, we shall see in
Lemma 3.7.5 below that GSO collapses to MSO over words.

Example 3.7.4. Hamiltonicity of graphs is GSO-definable as follows.

∃H (∀x∀y(H(xy) → E(xy)) ∧ ∀x (∃=1y H(xy) ∧ ∃=1y H(yx)) ∧
∀X [(∃xX(x) ∧ ∀x∀y(H(xy) ∧X(x) → X(y))

) → ∀xX(x)
])

Evaluated on a graph G = (V,E) the formula says that there exists an H ⊆
E with unique successors and predecessors such that (V,H) is connected.
This means that G has a Hamilton cycle.



44 CHAPTER 3. GUARDED LOGICS

As Hamiltonicity is known not to be expressible in MSO (see [19]), the
example shows that GSO is more expressive than MSO. In fact, GSO lies
strictly between MSO and SO.

Lemma 3.7.5. GSO collapses to MSO over words.

Proof. As usual we represent words w = w0 · · ·wn−1 ∈ B∗ by word struc-
tures

({0, . . . , n − 1}, S, (Pb)b∈B

)
where S = {(i, i + 1) : i < n − 1} and

Pb is the set of positions in the word carrying the letter b, i.e., Pb = {i <

n : wi = b}. The predicate of maximal arity in a word structure is the
successor relation, so a guarded set is either a singleton or a set {i, i + 1}.
A guarded n-ary relation therefore contains only n-tuples (a1, . . . , an) such
that {a1, . . . , an} ⊆ {i, i + 1} for some i and can therefore be encoded by
a sequence of monadic relations. For instance a guarded k-ary relation X

can be represented by {Xu : u ∈ {0, 1}k}, where for each u = u0 . . . uk−1,
Xu = {i < k − 1 : (i + u0, . . . , i + uk−1) ∈ X}. Hence GSO is no more
expressive than MSO over words, i.e. able to define exactly the regular lan-
guages. On the other hand full second-order logic is known to capture the
polynomial-time hierarchy, which is of course much larger than the class of
regular languages. 2

Corollary 3.7.6. SO is strictly more expressive than GSO.

To summarise, we have the following hierarchy of logics.

Proposition 3.7.7. ML ( GF ( FO ( MSO ( GSO ( SO.

Relationships between GSO and MSO are further explored in Section 3.7.1
below. In particular we shall see that a collapse, as exhibited over words
in the proof of the previous Lemma, occurs over some important classes of
graphs.

Unlike MSO, GSO is sufficiently expressive to capture µGF. By Proposi-
tion 3.3.1, we may w.l.o.g. consider µGF formulae whose fixed point applica-
tions are strictly guarded so that these fixed points are themselves guarded
relations. It is clear that such fixed points are definable within GSO by
means of the usual second-order characterisation of least and greatest fixed
points: [lfp Xx . ϕ(X,x)](y) ≡ ∀X[(

(∀x. G(x))(ϕ(X,x) → Xx)
) → Xy

]
.

It is also clear that GSO is strictly more powerful than µGF. For instance,
as GSO includes all of MSO, it is neither decidable nor invariant under
guarded bisimulation.

Proposition 3.7.8. µGF ( GSO.
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3.7.1 GSO versus MSO

We have seen that GSO is a strictly more expressive logic than MSO. How-
ever, GSO may nevertheless be viewed as a monadic logic, but over a dif-
ferent presentation of structures, the incidence graphs. We first explain the
notion of the incidence graph of a relational structure and then prove the
following natural characterisation result.

Theorem 3.7.9. A property of relational structures is definable in GSO iff
the corresponding property of their incidence graphs is definable in MSO.

Incidence Graphs. Let τ = {R1, . . . , Rm} be any finite relational vocabu-
lary. With each τ -structure A = (A,R1, . . . , Rm) we associate a many-sorted
structure A∗ with universe A∗ = (A ∪̇R1 ∪̇ . . . ∪̇Rm). To put it differently,
A∗ contains for every R ∈ τ and for every tuple a ∈ R a new element
e[Ra]. The relations of A∗ are binary incidence relations IncR,j for R ∈ τ ,
1 ≤ j ≤ ar(R), recording identities between components of relational edges
and base elements. More formally,

A∗ =
(
A∗, (IncR,j)R∈τ,1≤j≤ar(R)

)
,

where A∗ = A ∪̇ ⋃̇
R∈τ{e[Ra] : a ∈ R},

IncR,j =
{
(e, a) ∈ R×A : the j-th component of e is a

}
.

The vocabulary of A∗ is denoted τ∗.

First-order logic, monadic second-order logic, etc., on incidence graphs are
assumed to be typed, that is, element variables and set variables always
range over a particular sort. Hence quantifiers are of the form (∃x∈A) or
(∃ z ∈ Ri) for element variables and (∃X ⊆ A) or (∃Y ⊆ Ri) for monadic
second-order variables.

Let now X ⊆ Ak be any guarded relation on A. We represent X by a tuple
X of monadic predicates XR,ρ on A∗ where R ∈ τ and ρ : {1, . . . , k} →
{1, . . . , ar(R)}, and

XR,ρ = {e ∈ R : e = (e1, . . . , es) such that (eρ(1), . . . , eρ(k)) ∈ X}.

Conversely, every tuple X of monadic relations XR,ρ ⊆ R on A∗ represents
a guarded k-ary relation

g(X) =
⋃
R,ρ

{(aρ(1), . . . , aρ(k)) ∈ Ak : a ∈ XR,ρ}
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on A. Note that here we impose no consistency conditions on multiply
represented tuples. We say that X is a representation of X if g(X) = X.
Every guarded relation on A has a representation, but not necessarily a
unique one.

The Translation. The following provides the proof for Theorem 3.7.9.

Proposition 3.7.10. (i) For every formula ψ(y) ∈ GSO(τ) there exists
a formula ψ∗(y) ∈ MSO(τ∗) such that for every τ -structure A and
every guarded tuple a in A

A |= ψ(a) ⇐⇒ A∗ |= ψ∗(a).

(ii) Conversely, for every formula ψ(y) ∈ MSO(τ∗), with variables y rang-
ing over the universe-sort, there exists a formula ψ#(y) ∈ GSO(τ)
such that for every τ -structure A and every guarded tuple a in A

A∗ |= ψ(a) ⇐⇒ A |= ψ#(a).

Proof. We first describe the translation from GSO(τ) to MSO(τ∗) required
in (i).

(1) (Ry)∗ = (∃ z∈R)
∧

i IncR,i(z, yi).

(2) (x = y)∗ = (x = y).

(3) (Xy)∗ =
∨

R,ρ(∃ z∈XR,ρ)
∧

i IncR,ρ(i)(z, yi).

(4) (¬ϕ)∗ = ¬ϕ∗ and (ϕ ∧ ϑ)∗ = ϕ∗ ∧ ϑ∗.

(5) (∃yϕ)∗ = (∃ y∈A)ϕ∗.

(6) (∃Xϕ)∗ = (∃X .
∧

R,ρ XR,ρ ⊆ R)ϕ∗.

The converse translation from MSO(τ∗) to GSO(τ), as required for (ii), is
defined as follows. Each variable z that ranges over a relational sort R

(where R is k-ary) is replaced by a k-tuple z of variables. Similarly, each
set variable X ⊆ R is replaced by a k-ary relation symbol X(k).

(1) For ϕ = IncR,j(z, x), let ϕ# = Rz ∧ zj = x.

(2) For a monadic second-order variable X ⊆ A, the atom Xy remains
unchanged, whereas for X ⊆ R, Xz is replaced by X(k)z.

(3) Boolean combinations are translated in the obvious way.
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(4) First-order quantification: (∃x∈A)ϕ is translated into ∃xϕ#, whereas
(∃ z ∈ R)ϕ goes to ∃z(Rz ∧ ϕ#).

(5) Second-order quantification: (∃X ⊆ A)ϕ corresponds with ∃Xϕ#,
whereas (∃X⊆R)ϕ (with k-ary R) is replaced by a relativised quan-
tification over the k-ary relation X(k), namely

∃X(k)(∀y(X(k)y → Ry) ∧ ϕ#).

The correctness of both translations is again shown by straightforward in-
duction. 2

Incidence Graphs and Query Evaluation. The performance of a num-
ber of algorithms related to monadic second-order logic or to guarded logics
depends strongly on the tree width of the input structure. Therefore it may
often be interesting to work with incidence graphs rather than the usual
relational structures. Indeed the tree width of A∗ is at most the tree width
of A plus one. On the other side, A∗ can have much smaller tree width than
A in cases where A consists of ‘tree-like’ relations of high arity.

GSO on Graphs. Besides the usual variant of monadic second-order logic
on graphs, Courcelle has studied a more powerful variant, called MSO2,
allowing quantification not only over sets of vertices but also over sets of
edges (see e.g. [13] and the references there). It is not difficult to see that
MSO2 is actually equivalent to GSO on graphs. Courcelle’s results show
that, despite GSO being more expressive than MSO in general, there are a
number of classes of graphs where the two logics are equivalent. This collapse
occurs in particular over graphs of bounded degree, graphs of bounded tree
width, planar graphs and graphs with an excluded minor. A general result
covering and generalising all these graph classes has recently been proved in
[14].

Theorem 3.7.11 (Courcelle). GSO collapses to MSO on every class C
of graphs that is closed under taking subgraphs and contains only k-sparse
graphs, for some k ∈ , (i.e. |E| ≤ k|V | for every graph G = (V,E) ∈ C).
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SO

GSO

MSO

FO

µGF

GF

Lµ

ML

strict
inclusion

strict inclusion and
fixed-point extension

strict inclusion and
(guarded) bisimulation
invariant fragment

LFP

Figure 3.2: Inclusion map of the major logics considered in this work.



Chapter 4

Structures, Games and

Graphs

Guarded bisimulation is for the guarded world what bisimulation is for the
modal setting. This correspondence is put on a precise footing in a frame-
work of model theoretic translations.

We associate relational structures with transition systems and vice versa,
in such a way that guarded bisimulation classes of relational structures
correspond to bisimulation classes of graphs, and often trees. This will
pave the way to go back and forth between the guarded world (relational
structures, guarded bisimulation equivalence, guarded logics) and the modal
world (transition systems and trees, bisimulation, modal logics).

The relevant back and forth translations from structures to trees and back
from trees to structures will first be presented here and in Section 8.1 for
the parameter free case which will support the proof of this theorem for
sentences. This case is conceptually and notationally easier. As we shall
indicate in Section 8.2, the treatment given here extends easily to cover also
the case of variable-guarded formulae.

4.1 Guarded Logics on Graphs

Guarded logics extend modal logics to a general relational setting. Never-
theless the question arises whether, and to what extent, guarded logics are
also more powerful on the structures on which modal logics operate, i.e. on
transition systems or, equivalently, vertex and edge labelled graphs. Since

49
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ML, Lµ, and, more generally, standard modal bisimulation equivalence can
only “see” the connected component of the regarded node(s), we restrict
attention to connected graphs.

Atomic Expansions of Graphs. Consider graphs given in our usual form
G = (V, (Ea)a∈A, (Pb)b∈B) in a vocabulary τ consisting of binary relations
Ea and unary relations Pb. Let

Φ = {(¬)Eaxy : a ∈ A} ∪ {(¬)Eayx : a ∈ A}.

The set T of edge types consists of all maximal consistent subsets of Φ that
contain at least one positive literal. Note that the purely negative type of
non-connected nodes is explicitly excluded. The edge type realised by a
guarded pair of nodes u, v, u 6= v of G is

t(u, v) = {ϕ(x, y) ∈ Φ : G |= ϕ(u, v)}.

Definition 4.1.1. The atomic expansion G+ of the graph G is the expansion
of G by new edge relations Ft for every edge type t ∈ T and new unary
relations Qa for each a ∈ A. These are interpreted as

Ft = {(u, v) : u 6= v and (u, v) realises t},
Qa = {u : G |= Eauu}.

Recall that we call a relational structure connected if its Gaifman graph
is. That is G = (V, (Ea)a∈A, (Pb)b∈B) is connected if the undirected graph
(V, E) with E =

⋃
a∈A(Ea ∪ E−1

a ) is connected in the usual sense. We
first observe that guarded bisimulation on connected graphs is equivalent to
ordinary bisimulation on the corresponding atomic expansions.

Proposition 4.1.2. Let G,H be connected graphs with nodes g ∈ G,H ∈ H.
The following are equivalent.

(i) G, g ∼g H, h.

(ii) G+, g ∼g H+, h.

(iii) G+, g ∼ H+, h.

Proof. (i) ⇔ (ii). Note that a set is guarded in a graph G iff it is guarded
in the atomic expansion G+. It is immediate that any partial bijection
f : G → H is a partial isomorphism for G and H iff it is one for G+ and
H+. Consequently, a set of partial isomorphisms I is a guarded bisimulation
between G and H iff it is one for G+ and H+.
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(iii) ⇒ (ii). Let Z : G+ ∼ H+ be a bisimulation with (g, h) ∈ Z. Since G+

and H+ are connected, Z is in fact a total bisimulation.

Let I be the following collection of partial bijections (of sizes 1 or 2) from G+

to H+: f = {(x1, y1)} ∈ I for all (x1, y1) ∈ Z; f = {(x1, y1), (x2, y2)} ∈ I for
all (x1, y1), (x2, y2) ∈ Z such that (x1, x2), (y1, y2) ∈ Ft for the same t ∈ T .

It is easily checked that these maps are in fact partial isomorphisms between
G+ and H+. By assumption we also have {(g, h)} ∈ I.

Claim. I is a guarded bisimulation between G+ and H+.

We have to show that I satisfies the back and forth conditions. By symmetry
it suffices to consider the forth property.

Let f : X → Y ∈ I. We distinguish cases, according to whether the newly
chosen guarded set X ′ has size one or two, and whether X and X ′ are
disjoint. The case X = X ′ is trivial.

Suppose X ′ = {x′} is a singleton. We need to find an appropriate y′ ∈ H+

such that f ′ : x′ 7→ y′ is a partial isomorphism in I, compatible with f .
If x′ 6∈ X, we find a y′ such that (x′, y′) ∈ Z, by totality of Z. Then
f ′ = {(x′, y′)} ∈ I is as desired. If x′ ∈ X we let f ′ be the restriction of f

to X ′.

Now let X ′ = {x′1, x′2} contain two elements, of which one could occur in X

too. We assume x′1 to be that element (if any), and let X ′′ = {x′1}. As above
we argue that there is a y′1 such that f ′′ = {(x′1, y′1)} ∈ I. X ′ is guarded
in G+, so there is a t ∈ T such that (x′1, x′2) ∈ Ft. The forth property of
the bisimulation Z yields a y′2 that is connected to y′1 via an Ft edge and
(x′2, y′2) ∈ Z. It follows that f = {(x′1, y′1), (x′2, y′2)} ∈ I is as required.

Note that for any pair of adjacent vertices x 6= y there is a unique t ∈ T such
that (x, y) ∈ Ft. Clearly this t also determines the unique t−1 ∈ T for which
(y, x) ∈ Ft−1 . The chosen format is such that it is sufficient to consider only
one of the edges involved, Ft or Ft−1 , between x and y without missing any
atomic information.

(ii) ⇒ (iii). Let I : G ∼g H be a guarded bisimulation connecting g to h.
Define Z as the union of all graphs of the functions in I.

Claim. Z is a total bisimulation and (g, h) ∈ Z.

It is immediate that Z is total, that (g, h) ∈ Z and that the atomic types
of any (x, y) ∈ Z match as required. We show that Z satisfies the back and
forth conditions.



52 CHAPTER 4. STRUCTURES, GAMES AND GRAPHS

Let (x, y) ∈ Z and let (x, x′) ∈ Ft for some t ∈ T . Since (x, y) ∈ Z, the
function sending x to y already was a partial isomorphism in I. Further, as
(x, x′) is guarded there is an f ∈ I with domain {x, x′} that also sends x

to y. For the image of y under f , denoted y′, we have that (y, y′) ∈ Z by
definition.

The case of Ea edges and the back condition are shown similarly. 2

Note that the assumption that G and H are connected can be dropped if we
require the modal bisimulation to be total. The proof of Proposition 4.1.2
then effectively establishes the following.

Corollary 4.1.3. Let G,H be graphs. The following are equivalent.

(i) G ∼g H.

(ii) G+ ∼g H+.

(iii) G+ ∼ H+ via some total bisimulation.

We next show that guarded logics on connected graphs essentially reduce to
modal logics on the corresponding atomic expansions. This gives the answer
to the question mentioned at the beginning of this section. On graphs,
guarded logics extend modal logic precisely by the power to use all quantifier-
free definable guarded binary predicates. For GF, the corresponding modal
logic is not ML itself, but ML with the universal modality, i.e. ML + ¥ as
introduced in Section 2.4. For µGF we show the analogous statement for
the fragment that allows only monadic fixed points, which we denote by
µGFmon. The question of whether this can be generalised to full µGF is
open.

The following Lemma is a direct consequence of the syntax of µGFmon for-
mulae.

Lemma 4.1.4. Every formula ϕ(x, y) ∈ µGFmon is (on graphs) equivalent
to a Boolean combination of quantifier free formulae and formulae in at most
one free variable.

We will present formulae with two free variables in a disjunctive normal
form

ϕ(x, y) =
∨
i

(
ϕx

i (x) ∧ ϕy
i (y) ∧ ϕxy

i (x, y)
)

where ϕxy
i contains only atoms whose free variables are exactly x and y, and

ϕxy
i |= x 6= y.
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Proposition 4.1.5. A monadic query on connected graphs is definable in
GF if, and only if, it is definable in ML + ¥ over the corresponding atomic
expansions. Similarly, a monadic query on connected graphs is definable
in µGFmon if, and only if, it is definable in the modal µ-calculus on the
corresponding atomic expansions.

Proof. Let ϕ(x) ∈ GF[τ ] resp. ϕ(x) ∈ µGFmon.

Note that any subformula of ϕ with two free variables necessarily occurs
in the scope of a quantifier. This observation and Lemma 4.1.4 enable an
explicit transformation.

Both translations require the following inductive rules. The modal quan-
tifiers [t] and 〈t〉 w.r.t. the new edge relations Ft are sufficient to simulate
local guarded quantification1.

(¬ψ)+ = ¬(ψ+)

(ψ1 ∧ ψ2)+ = ψ+
1 ∧ ψ+

2

(ψ1 ∨ ψ2)+ = ψ+
1 ∨ ψ+

2

(Pb(y))+ = Pb

(Ea(y, y))+ = Qa

(∀y.ψ(xy))+ =
∨
i

(
(ψx

i (x))+ ∧∧
{t∈T : t |=ψxy

i }
(
[t](ψy

i (y))+
))

We do not assume negation normal form and assume that the ¬ operator is
used to convert between ∃ and ∀. The translation from GF into ML + ¥ is
completed with the following rules.

(∀x.ψ(x))+ = ¥((ψ(x))+)

(∀xy.ψ(xy))+ = ¥(∀y.ψ(xy))+

The translation from µGF into Lµ uses a fixed-point iteration to quantify
over all nodes. Connectedness of the given graphs is necessary for capturing
the universal modality in Lµ.

(X(x))+ = X

([lfp Xx .ψ](x))+ = µX.(ψ(X,x)+)

(∃x.ψ(x))+ = µX.
(
ψ(x)+ ∨∨

t∈T 〈t〉X
)

(∃xy.ψ(xy))+ = µX.
(
(∀y.ψ(xy))+ ∨∨

t∈T 〈t〉X
)

1We abbreviate guarded quantifications (∃y.α(xy))ϕ(xy) as ∃y.ψ(xy), i.e. ψ(xy) =

α(xy) ∧ ϕ(xy), etc.
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By a straightforward induction one shows that for all τ -graphs G and all
nodes g, G |= ϕ(g) iff G+, g |= ϕ+. For the other direction it is immediate
that any monadic query in ML + ¥ resp. Lµ on atomic expansions of graphs
can be converted into a GF resp. µGFmon query on the original graphs. 2

4.2 A Normal Form for Guarded Quantification

It will be convenient for our intended translation from the guarded world
into the modal world to adopt a normalisation for guarded quantification
resembling the first-order transcription of modal quantification that uses
only two first-order variables, x and y. Recall that the crucial feature of
that translation is how x and y are used in alternating fashion to capture
the semantics of nested modal quantification, as in

[232P ](x) = ∀y(
Exy → ∃x(

Eyx ∧ ∀y(Exy → Py)
))

.

Corresponding to the state variables x or y in ML we essentially want to
use variable tuples for guarded lists x and y in GF. Corresponding to
the transition relations Exy between states we record the overlap between
components of y and components of x in the form of identities yi = xj .

Let X = {x1, x2, . . .} and Y = {y1, y2, . . .} be two disjoint sets of variables.

Definition 4.2.1. Let GFX and GFY be inductively defined as follows.

(i) Every relational atomic formula α with free(α) ⊆ X belongs to GFX ;
every relational atomic formula α with free(α) ⊆ Y belongs to GFY .

(ii) A Boolean combination of formulae in GFX also belongs to GFX ;
similarly for GFY .

(iii) Let m,n ∈ , y = (y1, . . . , yn), and let ρ be any partial 1-1 map from
{1, . . . , n} into {1, . . . ,m}. Then, for every guard α(y1, . . . , yn) and
ϕ(y1, . . . , yn) ∈ GFY the following formula is in GFX :(∃y.

∧
ρ(i)=j yi = xj ∧

∧
i6=j yi 6= yj ∧ α(y)

)
ϕ(y).

Interchanging the roles of X- and Y -variables we obtain formulae in GFY .
Let GF0 = GFX ∪̇GFY and let GSO0 be the extension of GF0 by second-
order quantification over guarded relations.

In the sequel, we let ∃6=y . . . be an abbreviation for ∃y(∧
i6=j yi 6= yj ∧ . . .

)
and denote relativised quantifications of the type

(∃y.
∧

ρ(i)=j

yi = xj ∧
∧
i6=j

yi 6= yj ∧ α(y))ϕ(y)
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as used in GF0 as

(∃6=y . ρ(x,y) ∧ α(y))ϕ(y).

Note that (∃6=y . ρ(x,y) ∧ α(y))ϕ(y) says that we can pass from a current
tuple instantiating x to a guarded list y = (y1, . . . , yn) which extends the
subtuple (xρ(i)) = (yi) in such a manner that the y satisfy the guard α(y)
and the formula ϕ(y).

It should be noted that the formulae in GFX and GFY are syntactically not
in GF. It is clear, however, that these formulae are logically equivalent to
guarded ones.

Proposition 4.2.2. Every sentence in GF is equivalent to a sentence in
GF0.

Proof. For an inductive argument, we consider formulae of GF and show
the following.

Let ϕ(z) be any formula in GF with free variables among z. Let η(z) be
any complete quantifier free equality type on z, and let zη be an n-tuple
of variables from z such that every =-class of η is represented exactly once.
Then there is a formula ϕη

X(x) ∈ GFX such that

η(z) ∧ x = zη |= ϕ(z) ↔ ϕη
X(x),

and, similarly, a corresponding ϕη
Y (y) ∈ GFY .

The atomic and Boolean cases are trivial and it just remains to deal with
guarded quantification. So let ϕ(z) be of the form

ϕ(z) =
(∃w.α(z,w)

)
ψ(z,w).

For the given equality type η = η(z), consider all equality types η′(z,w) that
are compatible with the given η. Clearly, ϕ∧η is equivalent to a disjunction
over all such η′ of the form

ϕ(z) ∧ η(z) =
∨

η′⊇η

(∃w.α(z,w)
)(

η′(z,w) ∧ ψ(z,w)
)
.

We may therefore consider just one such disjunct, for a fixed η′(z,w). Let
(z,w)η′ = (u1, . . . , um) = u be a tuple of representatives according to η′,
and let y = (y1, . . . , ym).

According to the inductive hypothesis, there is some formula ψη′
Y (y1, . . . , ym)

in GFY such that η′(z,w) ∧ y = u |= ψ(z,w) ↔ ψη′
Y (y).
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Let α′(y) be obtained from α(z,w) by replacing by yi each variable in
α(z,w) that is identified with ui by η′. If z = (z1, . . . , zk), let ρ be the
partial 1-1 map defined by ρ(i) = j if η′ identifies ui with zj . Then(∃w.α(z,w)

)(
η′(z,w) ∧ ψ(z,w)

) ≡ (∃y.
∧

ρ(i)=j yi = zj ∧ α′(y)
)
ψη′

Y (y).

It follows that, after substituting X-variables for z, the formula

(∃6=y.ρ(z,y) ∧ α′)ψη′
Y (y)

is in GFX and satisfies the inductive claim. 2

Recall that GSO0 is the extension of GF0 by second-order quantification
over guarded relations. The proof of the proposition clearly extends to
cover GSO0, and most other conceivable guarded logics.

Corollary 4.2.3. Every sentence in GSO is equivalent to a sentence in
GSO0.

4.3 The Guarded Ehrenfeucht-Fräıssé Game

Guarded bisimulation equivalence may be described in terms of a natural
Ehrenfeucht-Fräıssé game associated with GF. We indicate the characteris-
tic features of the guarded game, as outlined in [1], and introduce a restricted
or standardised version of the game that is closely related to the GF0 normal
form of Section 4.2.

The standard game for GF and guarded bisimulation equivalence is analo-
gous to the usual pebble games for bounded-variable logics. The purpose
of the finite `-round game is to determine whether two structures A and B

are indistinguishable in GF up to guarded quantifications of depth `. The
infinite game, which we are mainly interested in, allows us to determine
whether A and B are guarded bisimulation equivalent, or indistinguishable
in the infinitary variant of GF.

There are two players, Adam and Eve. Adam tries to show that A and B

are inequivalent, while Eve attempts to show that they are equivalent. The
task for Eve is to mimic moves that Adam makes in one of the structures
with corresponding moves in the opposite structure.

During the game, pebbles can be placed on elements of the respective struc-
tures. The crucial restriction for the guarded game is that the currently
marked elements in either structure must form a guarded set. After each
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round of the game both structures will carry pebbles with corresponding
labels, so that the pebble placement induces a correspondence a 7→ b, where
a ∈ A is associated to b ∈ B if a and b are the positions of corresponding
pebbles. Initially, i.e., before the first round, neither A nor B carry pebbles.

In each new round, Adam chooses one of the structures, possibly removes
some of the pebbles, and then places some pebbles (from among those just
removed or those not on the structure at the start of this round) on elements
of this structure. The only constraint for Adam is that after this move all
pebbles on this structure again form a guarded set. Eve answers by remov-
ing, from the other structure, precisely those pebbles corresponding to those
first taken off in Adam’s move, and then placing pebbles corresponding to
those placed by Adam. Eve is required to make her choices such that the
new correspondence a 7→ b between pebbled elements is a partial isomor-
phism. Note that in particular this also forces her to place her pebbles so
that they form a guarded set. If no such move is available, then Eve loses
and the game is over.

The whole game can be played with a fixed finite number of rounds, or as
an infinite game. In the `-round game, Eve wins a play if she was able
to respond through all ` rounds; Adam only wins if Eve got stuck before
completion of the last round. In the infinite game, an infinite play in which
Eve can always respond to the next move of Adam, is won by Eve; Adam
only wins if Eve gets stuck after some finite number of rounds.

The classical results on Ehrenfeucht-Fräıssé games (and their proofs) ob-
viously translate to this guarded setting. Eve has a winning strategy in
the `-round game if A and B cannot be distinguished by any sentence of
GF with nesting depth ` for guarded quantification; and Eve has a winning
strategy in the infinite game if A and B cannot be distinguished by any
sentence of GF∞, infinitary guarded logic, or the guarded fragment of L∞ω.
The latter, of course, is also equivalent to A ∼g B. We shall here only use
this characterisation of guarded bisimulation equivalence by means of the
infinite game.

Proposition 4.3.1. Eve has a winning strategy in the infinite guarded
Ehrenfeucht-Fräıssé game on A and B iff A ∼g B.

This equivalence is straightforward, but becomes even more immediate if we
look at a slight variation of the game. This variation – although equivalent
to the standard version described above – is a closer analogy to the quan-
tification pattern of GF0, whereas the standard game is modelled after the
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standard quantification pattern in GF.

Let m be the width of the vocabulary τ , i.e., the maximal arity of relations
in τ , which is also a bound on the size of guarded sets in τ -structures. It
is not hard to see that the number of pebbles in each structure can w.l.o.g.
be restricted to m. In fact, the constraint in terms of guarded sets means
that whenever more than m pebbles are in the game some elements must
be multiply pebbled. Whenever several pebbles are placed on the same
elements, the multiplicities and pebbles concerned must be the same in both
structures since the pebbles induce a partial isomorphism. It is then clear
that we could w.l.o.g. force Adam to avoid multiple pebbling. One verifies
inductively that if Adam can force a win in the old game then this is still true
under this additional constraint. Together with the constraint that the set
of pebbled elements always be a guarded set, this precisely means that we
require the pebbled tuples to be guarded lists in the sense of Definition 3.1.1.

The analogy with quantification in GF0 is now obvious:

– Quantification is over tuples that are guarded lists (with explicit men-
tion of the ground atom that guards the component set); this corre-
sponds to a new pebble placement.

– Constraints in terms of identities between newly quantified elements
(quantified variables) and the previous elements (free variables) are de-
scribed by a partial 1-1 map; this corresponds to the choice of pebbles
that remain fixed in place during Adam’s move.

With regard to the second correspondence it should be pointed out that
both in the game and in GF0 quantification nothing prevents Eve to put
other pebbles back into positions that were just previously pebbled; in that
sense Adam and GF can explicitly force some identifications, but not forbid
others.

We thus obtain the following restricted version of the guarded game, which,
as we have argued, is equivalent to the more liberal standard version.

Let A and B be τ -structures, τ finite and relational of width m. The re-
stricted guarded game on A and B is played by two players, Adam and Eve,
who take turns to position and relocate pebbles from two sets of m pebbles
labelled 1, . . . ,m, one set for each structure. The rules of the game are such
that after each round the groups of pebbles positioned in A and B, respec-
tively, label guarded lists a and b in such a way that the correspondence
a 7→ b is a partial isomorphism. In each round, Adam has the choice in
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which of the two structures to play. In the chosen structure, Adam may
remove some of the pebbles currently placed on that structure; Eve removes
the corresponding pebbles in the opposite structure. Then Adam may place
any number of pebbles back onto elements of the chosen structure in such
a way that the overall tuple of pebbled positions again forms a guarded
list; Eve must place corresponding pebbles onto elements of the opposite
structure in such a way that the induced correspondence between the peb-
bled elements in A and B is a partial isomorphism. Eve loses if no such
response is available. The game is infinite unless Eve loses in this way. Eve
wins a play if she never gets stuck. We obtain the following correspondence
between games and bisimulations.

Proposition 4.3.2. Eve has a winning strategy in the restricted guarded
game on A and B iff A ∼g B.

Proof. A guarded bisimulation in the sense of Definition 3.4.1 is nothing
other than a formalisation of a (non-deterministic) winning strategy for Eve,
and a winning strategy gives rise to a collection of partial isomorphisms that
is a guarded bisimulation.

More explicitly, suppose that Eve has a winning strategy. Let I be the
collection of all partial isomorphisms f : a → b obtained as

• b ∈ B is Eve’s answer to Adam placing the pebbles on the guarded
a ∈ A,

• and the same for reversed roles of A,a and B, b,

where Eve plays according to the given winning strategy. Using the def-
initions it is easy to see that the requirement for Eve to answer Adam’s
moves corresponds precisely to the back and forth condition of a guarded
bisimulation. For example, let f : a → b ∈ I and suppose that a′c ∈ A is
guarded and a′ ⊆ a, c ∩ a = ∅. We set up the game on A and B with cur-
rently pebbled elements a and b. Pretend that Adam removed the pebbles
corresponding to a \a′ from A, and placed some pebbles on the elements of
c. The winning strategy for Eve yields a tuple d ∈ B such that a′c 7→ d is
a partial isomorphism f ′ that, since the pebbles corresponding to a′ on B

were not touched, coincides with f on a′, as desired.

Similarly, a guarded bisimulation I gives rise to a strategy for Eve. 2

We now use the intuition behind the game to introduce the following two
structural transformations. One which abstracts from a given τ -structure
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B a tree representation T(B), which fully describes, as a transition system,
the behaviour of B in the guarded game, and thus characterises B up to
guarded bisimulation equivalence. Another one which, conversely, associates
with a tree T a τ -structure D(T), such that the game behaviour specified
by T is realised in the guarded game on D(T).

The guiding idea behind these transformations is that guarded bisimulations
at the level of the τ -structures lift to ordinary bisimulations at the level
of the abstracted transition systems. In particular, B∗ = D(T(B)) ∼g

B will be a tree-like variant of B, a structure of bounded tree width as
per Definition 3.4.3. This intuitively corresponds to a generalisation of the
modal unravelling shown in Definition 2.3.3 to a guarded unravelling of B,
as considered e.g. in [1] and [26].

4.4 From Structures to Trees

Recall from Definition 3.1.1 that a guarded list in B is a tuple (b1, . . . , bk)
of distinct elements such that {b1, . . . , bk} is a guarded set. We regard such
guarded lists as descriptions of positions over B in the restricted guarded
game. The behaviour of B w.r.t. the game can firstly be described as a
game graph in the form of a transition system K(B). The states of the game
graph are the game positions formalised as guarded lists over B. Guarded
lists are really used as enumerations of guarded sets, and every guarded
set of size k can thus be represented by k! many different guarded lists.
As there is in general no canonical way to single out any particular choice,
we symmetrise the description of the game positions so as to include all
these variant descriptions of the same guarded set, which are related by
permutations that correspond to relabellings of the pebbles.

One could introduce a kind of ε-move in the restricted guarded game in which
the current pebbles are permuted, according to some choice of a permutation
made by Adam, which then has to be copied identically by Eve. Of course
such moves would be a vacuous addition to the game, as far as winning or
losing the game is concerned. For the resulting game graph, however, they
allow for a locally more symmetric description.

The information to be recorded in each node v = (b1, . . . , bk) of the game
graph is precisely the isomorphism type of the guarded substructure induced
on {b1, . . . , bk} (cf. Definition 3.1.1 (ii)). The transition relations of the game
graph describe possible moves and record the constraints imposed on a move
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from c = (c1, . . . , cl) to d = (d1, . . . , dk) by some choice of elements that have
to remain fixed (according to Adam’s choice).

With the finite relational vocabulary τ of width m, associate the following
vocabulary τ̃ for the associated transition systems and trees. Let S be the
set of all guarded τ -structures A with universes {1, . . . , k}, 1 ≤ k ≤ m, plus
the empty structure A = ∅ for k = 0. Let F be the set of all partial 1-1
maps ρ from {1, . . . ,m} to {1, . . . ,m}. The associated vocabulary τ̃ has
predicates

PA (monadic) for A ∈ S,

Eρ (binary) for ρ ∈ F.

If B is a τ -structure, we write G(B) for the set of guarded lists over B,

G(B) =
{
b : b a guarded list in B

}
,

where we recall from Definition 3.1.1 that this includes the empty list ∅.
Definition 4.4.1. The transition system K(B) is the following τ̃ -structure

K(B) =
(
G(B), (Eρ)ρ∈F , (PA)A∈S

)
Eρ =

{
((c1, . . . , cl), (d1, . . . , dk)) : dj = cρ(j) for all j ∈ dom(ρ)

}
PA =

{
(b1, . . . , bk) : B|{b1,...,bk} ' A via bi 7→ i

}
.

Note that we have multiple transitions between nodes; in particular Eρ′ ⊆ Eρ

for all ρ ⊆ ρ′.

The transition relations of K(B) reflect possible moves over B in the re-
stricted guarded game. The choice of the Eρ and the PA is such that bisim-
ulations between two transition systems K(B) and K(B′) capture winning
strategies for Eve in the restricted game on B and B′. To see this, con-
sider a game position with pebbles placed on b in B and on b′ in B′. If
K(B), b ∼ K(B′), b′, then b 7→ b′ must be a partial isomorphism since b and
b′ are labelled by the same PA.

Now consider a move in the game in which Adam plays in B say, from
some position c = (c1, . . . , cl) to a new position d = (d1, . . . , dk) over B.
Up to possible permutations in the enumeration of these guarded lists, or
a consistent relabelling of pebbles over both structures, this relocation can
have been effected by leaving put any subset of pebbles that mark elements
in {c1, . . . , cl} ∩ {d1, . . . , dk}.
Suppose Adam left put pebbles on positions c0 ⊆ c. Then there is some
partial 1-1 map ρ from {1, . . . , k} to {1, . . . , l} such that c0 = (dρ(j))j∈dom(ρ).
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It follows that (c,d) ∈ Eρ in K(B). If now K(B), c ∼ K(B′), c′, then
an application of the forth property yields a position d′ over B′ for which
(c′,d′) ∈ Eρ in K(B′) and K(B),d ∼ K(B′),d′. It follows that Eve can make
a move to d′ in B′, which satisfies both the constraints regarding pebbles
that were fixed by I, and the requirement that the resulting correspondence
d 7→ d′ is again a partial isomorphism. Inductively we thus obtain the
following.

Lemma 4.4.2. For τ -structures B and B′: B ∼g B′ iff K(B) ∼ K(B′).

The desired tree representation T(B) of (the game on) B is now obtained
as an unravelling of the transition system K(B) from the empty list. Note
that the empty list ∅ ∈ G(B) corresponds to the start position of the game,
with no pebbles placed. Compare Definition 2.3.3 for unravellings.

The set V of nodes of T(B) is the set of all sequences g0ρ1g1ρ2g2 . . . gn where
all gi ∈ G(B), with g0 = ∅ (the empty guarded list) and for all giρi+1gi+1

we have

(i) ρi+1 ⊆ {1, . . . , |gi+1|} × {1, . . . , |gi|},
(ii) for all j ∈ dom(ρ): the j-th element at gi+1 is the same as the ρ(j)-th

element at gi.

According to Definition 2.3.3, the natural projection π : T(B) → K(B) maps
a node v = g0 . . . gn to the guarded list gn = (b1, . . . , bk) in B in which the
sequence v terminates.

We associate some relevant information in π(v) with v itself. In particular
we let |v| = |π(v)| = k (the size of v) and, if π(v) = (b1, . . . , bk), we denote
as Av the unique A ∈ S that is isomorphic with B|{b1,...,bk} via i 7→ bi.

Definition 4.4.3. For a τ -structure B we let T(B) be the unravelling of
the transition system K(B) from the empty list.

T(B) =
(
V, (PA)A∈S, (Eρ)ρ∈F

)
PA =

{
v ∈ V : Av = A

}
Eρ =

{
(u, v) ∈ V 2 : v = uρg

}
Example. Let B be as in Figure 3.1. We intuitively describe K(B) and
T(B). For illustrative purposes we use the elements of B in the universes
of the Av, instead of initial segments of the natural numbers as required in
the definition.
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K(B) is an (edge and node labelled) graph that contains one node for each
guarded list in B. This includes (a, b, d), (b, d, a) and (a, c′), but not (a, c).
Any two (not necessarily distinct) nodes are connected by an E∅-edge, i.e.
an Eρ-edge for the empty ρ. If the intersection of the universes of the two
nodes is non-empty, there are further connecting edges for corresponding
non-empty ρ. E.g. from (a, c) to (c, a) there is an Eρ-edge for all ρ that are
a subset of {2 7→ 1, 1 7→ 2}, and from (a, b, d) to (d, c, b) when ρ is a subset
of {1 7→ 3, 3 7→ 2} (the first element at the destination node (d, c, b) is the
same as the third element at the source node (a, b, d) and the third element
at the destination node is the same as the second one at the source node).

T(B) is the unravelling of K(B). The structure Aλ represented at the root is
the empty structure. Inductively, the set of successors of each node contains
(possibly several) copies of each non-empty guarded list of B, i.e. (possibly
several) copies of each node of K(B). Several successors obtained from the
same guarded list are used to disentangle multiple edges as occur in K(B).
E.g. a node v in T(B) with Av = (a, b, d) has one successor node with
universe (d, c, b) for each ρ that is a subset of {1 7→ 3, 3 7→ 2} (the same set
as above) and each of these successors is connected via exactly one of the
Eρ.

A major difference between how K(B) and T(B) represent B is that in
K(B) each element of B only occurs once. That is, for any two guarded lists
that share an element, say b, there is an Eρ-edge between them such that
ρ explicitly connects the two b’s. T(B) behaves very differently. Consider
a node v where the universe of the structure represented at v is (a, c′) and
its successors v′ with (a′, c) and v′′ with (a, c′). Since the universes of v

and v′, resp. v′ and v′′ do not share common elements (of B), there are
only E∅-edges from v to v′ and v′ to v′′. After the normalisation step, that
makes every Av have universe {1, . . . , |Av|}, the information that the a at v

and the a at v′′ were actually the same element, is lost. This means that
each element of B will have multiple copies in the τ -structure that is in turn
obtained from T(B), as explained in the following section.

The following is then a direct consequence of Lemma 4.4.2, and the fact that
unravellings are bisimilar companions.

Corollary 4.4.4. For τ -structures B and B′: B ∼g B′ iff T(B) ∼ T(B′).
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4.5 From Trees to Structures

Conversely, we would like to associate with a tree T of type τ̃ a τ -structure
D for which T(D) ∼ T. This is clearly not possible for arbitrary T. We
collect some suitable conditions, which are obviously satisfied by every tree
T(B), in the following definition.

Definition 4.5.1. Let T be any τ̃ -tree. We call T consistent if the following
are satisfied.

(a) For each node v there is a unique A ∈ S such that T |= PA(v), denoted
Av; Aλ = ∅, and Au 6= ∅ for all u 6= λ.

(b) If (u, v) ∈ Eρ then ρ is a partial isomorphism between Av and Au.

(c) If (u, v) ∈ Eρ, then for every isomorphic embedding π : A → Av from
some structure A ∈ S to Av there exists a node w such that Aw = A

and (u, w) ∈ Eρ◦π.

The local richness conditions expressed in (c) is technically useful as it en-
sures that all enumerations of every guarded (sub)set are locally available
as guarded lists. Note that the T(B) satisfy much stronger homogeneity
properties. For any two nodes v, w in T(B) there is a canonical isomorphism
between the two forests consisting of the trees rooted at the successor nodes
of v and w, respectively. This property cannot be captured in MSO. MSO-
definability and closure under bisimulation of the underlying class will be
technically essential in the sequel. The conditions (a)—(c) are of course
first-order expressible.

Lemma 4.5.2. Within the class of τ̃ -trees, the class of consistent trees is
bisimulation invariant and first-order definable.

This is obvious from the definition. The important fact, however, is that
these simple first-order expressible consistency conditions are sufficiently
restrictive to allow us to (re)construct from every consistent τ̃ -tree an asso-
ciated τ -structure. And in the special case that the τ̃ -tree comes as T(B)
for some τ -structure B, whose guarded behaviour is described in T(B), we
actually recover this behaviour: the resulting τ -structure will be guarded
bisimulation equivalent to the original one.

The idea is to start from the Av that are represented in the nodes v of T, and
to patch these local isomorphism types together in such a way that the moves
in the guarded bisimulation game recorded in T are realised in the resulting
structure. To this end we need to identify elements in neighbouring Au and
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Av, attached to nodes u and v, that are linked by Eρ, in accordance with the
partial isomorphism ρ. In other words, we let Au and Av overlap according
to identifications prescribed in Eρ. Technically we take the disjoint union of
the Av and form the quotient w.r.t. equalities imposed by overlaps according
to the Eρ. We describe this process more formally in the following.

Let T = (V, (PA)A∈S, (Eρ)ρ∈F ) be a consistent τ̃ -tree. We find the associated
τ -structure D(T) as follows. Let U = {(v, i) : v ∈ V, i ∈ Av} be the disjoint
union of the Av.

Let ≈ be the reflexive, symmetric transitive closure of the following relation
≈0 on U :

(v, i) ≈0 (w, j) ⇔ (v, w) ∈ Eρ and ρ(j) = i for some ρ ∈ F.

The universe of D(T) is D = U/≈, the set of ≈-equivalence classes [v, i] in
U . We say that an equivalence class d = [v, i] lives at node u, or that d is
represented in that node u, if [v, i] = [u, j] for some j.

Note that ≈0 describes the local identification pattern imposed by single
Eρ-edges. Intuitively, it is necessary to take its transitive closure because
paths along consecutive different Eρ-edges in T can lead to identifications
involving one and the same element, if this element happens to be passed
through the successive overlaps along that path. It is important to note that
we are thus dealing with non-local phenomena, insofar as nodes that are far
apart in T may represent the same element. It is clear from the definition of
≈0, however, that the set of nodes of T that represent some fixed equivalence
class d form a connected subgraph, i.e., a subtree. If an equivalence class d

lives at nodes u and v in T then it must also live at every node along the
(unique) shortest path connecting u to v in T.

It follows from consistency condition (b), that we may consistently interpret
every k-ary predicate R in τ over D by putting d = ([v, i1], . . . , [v, ik]) ∈ R

if Av |= R(i1, . . . , ik).

For further reference we sum up the construction in the following definition.

Definition 4.5.3. For any τ̃ -tree T = (V, (PA)A∈S, (Eρ)ρ∈F ) satisfying
the consistency conditions (a) and (b) from Definition 4.5.1 let D(T) =
(D, (R)R∈τ ) be the τ -structure on universe D = U/ ≈, where

U =
⋃̇

v∈V
Av =

{
(v, i) : v ∈ V, i ∈ Av

}
and ≈ is as defined above, with interpretations of R ∈ τ according to

RD(T) =
{
d = ([v, i1], . . . , [v, ik]) : (i1, . . . , ik) ∈ RAv

}
.
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Note that d = (d1, . . . , dk) is a guarded list in D(T) if, and only if, d =
([v, 1], . . . , [v, k]) for some node v ∈ T of size |v| = k. In this case we say
that v represents the guarded list d. Note that the components of this list
can be represented at other nodes too, including all nodes that represent per-
mutations of the same guarded list, and possibly also at nodes representing
guarded super-lists.

Lemma 4.5.4. For all τ -structures B: D(T(B)) ∼g B.

Proof. Let T = T(B), K = K(B) and D = D(T). Recall that T is the
unravelling of K, and that the natural projection π : T → K associates to
any node v of T the node π(v) in K, which is the last node in the path that
gives rise to v. Further recall that π(v), being a node in K, is by definition
a guarded list in B, π(v) ∈ G(B).

Let d = (d1, . . . , dk) be a guarded list in D, v any node of T representing
this guarded list, d = ([v, 1], . . . , [v, k]). Let π(v) = (b1, . . . , bk) ∈ G(B). We
let fd,v be the partial 1-1 map from D to B that maps d to the guarded list
π(v) in B:

fd,v : di 7→ bi, i = 1, . . . , k.

Note that as a map fd,v only depends on the guarded set {d1, . . . , dk} and
not on the order of components or on the chosen representative v. If v

and v′ represent lists that enumerate the same guarded set in D, they are
linked in T by a path along which all components always live together.
The corresponding path in K similarly links π(v) to π(v′), with matching
permutations along that path.

We claim that the set of all these fd,v is a guarded bisimulation between
D and B. It is obvious from the construction that the fd,v are partial
isomorphisms whose domains are guarded sets. Consider fd,v : d 7→ π(v).
Its domain is enumerated by the guarded list d = (d1, . . . , dl), represented
at some node v in T; its image is enumerated by the guarded list π(v) =
(b1, . . . , bl) of B. It remains to check the back and forth conditions.

For the forth property consider any other guarded set in D, enumerated as
a guarded list d′ in D, which is represented by some node v′ in T. Let c be
the tuple of common components in d and d′. The tuple c lives along the
unique shortest path from v to v′ in T. Projecting this path down to K and
B we see that fd′,v′ and fd,v agree on their common domain.

For the back property consider any other guarded set in B, enumerated as a
guarded list b′ = (b′1, . . . , b′k). Consider both b′ and b = π(v) = (b1, . . . , bk)
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as nodes of K and note that T, v ∼ K, b. Let ρ = {(i, j) : b′i = bj}. It follows
that (b, b′) ∈ Eρ. As T, v ∼ K, b, there is a node v′ in T such that (v, v′) ∈ Eρ

and T, v′ ∼ K, b′. This node v′ represents a guarded list d′ of D such that
fd′,v′ : d′ 7→ b′. As Eρ induces an identification of elements between b′ and
b according to ρ, it is clear that the inverses of fd′,v′ and fd,v agree on their
common domain. 2

Remark. B∗ = D(T(B)) may be regarded as a guarded unravelling of
B, analogous to the standard unravelling of transition systems. Indeed, the
resulting guarded bisimilar structure B∗ is also tree-like in that it has a
tree decomposition of width m − 1, where m is the width of τ . The naked
tree T(B), stripped of its labels and regarded as a directed graph, together
with the natural association of a node v of T(B) with the guarded set it
represents in B∗, induces a tree decomposition of B∗ in the usual sense.
Tree unravellings, and the corresponding generalised tree model property
for GF and some of its relatives have been put to use e.g. in [1] and [26].

The following proposition extends the intuition that the bisimulation type
of T(B) captures the guarded bisimulation type of B to the setting of all
consistent trees. The proof is via a canonical lift of tree bisimulations.

Proposition 4.5.5. For any consistent τ̃ -trees T and T′:
If T ∼ T′, then D(T) ∼g D(T′).

Proof. Let Z ⊆ V × V ′ be a two-way bisimulation between T and T′

according to Lemma 2.3.4. Recall in this context that, according to our
convention in Definition 2.3.1, trees have unique edge labels.

For each pair (v, v′) ∈ Z let fvv′ be the function that maps the guarded list
represented by v to that represented by v′. Clearly, fvv′ is a partial isomor-
phism. This is immediate from Av = Av′ , which in turn is just a consequence
of bisimilarity between v and v′ at the level of basic propositions: v′ ∈ PA

iff v ∈ PA for all A ∈ S. Note also that for (u, v) ∈ Eρ and (u′, v′) ∈ E′
ρ the

maps fuu′ and fvv′ agree on their common domain: this follows from the
construction of D(T) and D(T′), because elements represented at u and v

are identified in D(T) via ρ in exactly the same way as the corresponding
elements at u′ and v′ are identified in D(T′).

We claim that the set of all fvv′ , for (v, v′) ∈ Z, is a guarded bisimulation
between D(T) and D(T′).

As the situation is entirely symmetric, it suffices to argue, for instance, for
the forth condition. Let c and d be guarded lists in D(T), represented by
u and v in T, respectively. Let (u, u′) ∈ Z, fuu′ : c 7→ c′. We need to
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find v′ ∈ T′ such that (v, v′) ∈ Z and such that fvv′ agrees with fuu′ on
their common domain. Let X be the set of common elements in c and d.
Consider the unique shortest path from u to v in T. As Z is a two-way
bisimulation, this path gives rise to a bisimilar path from u′ to some v′ in
T′. Now fvv′ is as desired: the elements of X live at all nodes on the path
from u to v, whence all the intermediate mappings fww′ along the path, and
in particular fvv′ respect fuu′ |X . 2

Remark. It is straightforward to extend all the notions and observations of
this section to the case of structures B with a distinguished parameter tuple
b that is a guarded list in B. The tree T(B, b), for instance, would be rooted
in the guarded list b rather than in the empty list, and could alternatively
be described as the unravelling of K(B) from b. In the opposite direction,
i.e. for the passage from a consistent τ̃ -tree to a τ -structure, one can clearly
extract a guarded list from the root as the distinguished parameter tuple
for D(T). All results, and in particular Lemma 4.5.4 and Proposition 4.5.5,
go through trivially with a distinguished guarded list of parameters.



Chapter 5

Tableaux and Finite Models

In this chapter we show how the methods employed for modal logics can be
generalised to a tableau algorithm for the guarded fragment. As major spin-
off we obtain an alternative, elementary proof of the finite model property
for the guarded fragment. However, retrieving a finite model from a tableau
is significantly more involved than in the case of modal logic.

The version of the tableau algorithm presented here is specifically tuned
towards generating finite models. An alternative approach, shown to work
for the much more expressive clique guarded fragment, is presented in [35].
There, the output of the tableau algorithm is used as template for an infinite
model of bounded tree width, giving an alternative proof of the generalised
tree-model property for both the guarded and clique guarded fragments.
The question of whether there is a tableau-based proof of the finite model
property for the clique guarded fragment is still open.

For starters, a tableau algorithm for modal logic will be presented. The
reader familiar with tableau algorithms can skip to Section 5.2.

5.1 Tableau Algorithm for ML

Definition 5.1.1. Let ψ ∈ ML be a formula in NNF.
A completion tree T = (V, (Ea)a∈A,∆) for ψ consists of

• a rooted tree (V, (Ea)a∈A)

• a function ∆ : V → cl(ψ)

A completion tree T is called complete, if none of the rules from Figure 5.1

69
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can be applied. If a ∆-label of T contains contradictory atomic statements
Pb and ¬Pb, we say that T contains a clash. Else T is clash-free. A com-
pletion tree that is both clash-free and complete is a tableau.

Given a formula ψ ∈ ML, the tableau algorithm starts by creating a root
node λ and initialising ∆(v) to {ψ}. Then the rules from Figure 5.1 are
applied until either a clash occurs, producing output “ψ unsatisfiable”,
or a tableau is reached, in which case “ψ satisfiable” is output.

R∧ : if ϕ ∧ ϑ ∈ ∆(v) and {ϕ, ϑ} 6⊆ ∆(v)
then ∆(v) = ∆(v) ∪ {ϕ, ϑ}

R∨ : if ϕ ∨ ϑ ∈ ∆(v) and {ϕ, ϑ} ∩∆(v) = ∅
then ∆(v) = ∆(v) ∪ {χ} for χ ∈ {ϕ, ϑ}

R2 : if [a]ϕ ∈ ∆(v) and ϕ 6∈ ∆(w)
for some a-successor w of v

then ∆(w) = ∆(w) ∪ {ϕ}

R¦ : if 〈a〉ϕ ∈ ∆(v) and there is no a-successor w of v

with ϕ ∈ ∆(w)
then create an a-successor w of v and let ∆(w) = {ϕ}

Figure 5.1: The Completion Rules for ML

Proposition 5.1.2. The tableau algorithm is a (non-deterministic) decision
procedure for ML-satisfiability.

The proof typically consists of three parts.

1. Every sequence of rule applications terminates after a finite number
of steps (Termination).

2. If ψ is satisfiable, then the rules can be applied to generate a tableau
for ψ (Completeness).

3. If the algorithm constructs a tableau for ψ, then ψ is satisfiable (Sound-
ness or Correctness).

We give a sketch of the proof for the ML algorithm. For termination, observe
that each application of the R¦- or R2-rule decreases the modal depth of
the formula that is propagated. This gives a bound on the depth of the
completion tree. The number of successor nodes generated for any node
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by the R¦-rule is bounded by the number of 3-subformulae of ψ. And
a finite number of rule applications suffices to decompose the formulae in
the ∆-labels. These observations can be combined to one global measure
that shows that the interference between the decomposing rules and the
propagation of formulae does not create the possibility of an infinite chain
of rule applications.

Towards completeness, if ψ is satisfiable and K, k |= ψ, one uses a function
g : V → K to track which node of K gave rise to a node in T , with g(λ) = k.
This can be done in a way that ϕ ∈ ∆(v) implies K, g(v) |= ϕ for all v ∈ V

is an invariant across rule application. Then use K to steer the algorithm to
produce a tableau. E.g. when applying the R∨-rule at v to ϕ ∨ ϑ ∈ ∆(v),
choose one of ϕ and ϑ according to which of them holds at g(v). Or when
creating a new node w as successor to v because of a formula 3χ ∈ ∆(v),
let g(w) be a successor of g(v) that satisfies χ. Since the occurrence of both
Pb and ¬Pb would contradict the invariant for g, the resulting tableau is
necessarily clash-free.

Towards correctness, each tableau for ψ can be made into a model for ψ

by defining the unary predicates (Pb)b∈B. For each node v ∈ V , let v ∈ Pb

iff Pb ∈ ∆(v). This yields a structure T = (V, (Ea)a∈A, (Pb)b∈B). Then, by
straightforward induction, one obtains T, v |= ϕ for all ϕ ∈ ∆(v).

We next take a look at the ramifications for the tableau algorithm when
we add universal quantification ¥ to ML. Intuitively there is not much
margin for choice other than to propagate the ϕ in ¥ϕ to all nodes. A
new completion rule R¥ is given in Figure 5.2, for the definition of blocked
see below. If we keep the other rules unchanged, we can not guarantee
termination of the algorithm.

Example. Consider the formula ψ = ¥3P , and for the moment forget
that it holds in the empty transition system. In the beginning, the tableau
algorithm creates the root λ, and after applying the R¥-rule we get ∆(λ) =
{¥3P,3P}. Application of the R¦-rule creates a new node v with ∆(v) =
{P}. Next the R¥-rule adds 3P to ∆(v). The last two steps are repeated
ad infinitum, creating an infinite chain of nodes at which P and 3P hold.

The solution lies in the finite bound on the number of different ∆-labels.
Every chain of nodes that grows beyond a certain point will contain pairs
of nodes that locally look alike. The algorithm needs to be modified to
recognise these situations where a node is blocked by an ancestor of the
same local type.
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R¦ : if 〈a〉ϕ ∈ ∆(v) and there is no a-successor w of v

with ϕ ∈ ∆(w) and v is not blocked
then create an a-successor w of v and let ∆(w) = {ϕ}

R¥ : if ¥ϕ ∈ ∆(v) and ϕ 6∈ ∆(w) for some w ∈ V

then ∆(w) = ∆(w) ∪ {ϕ}

Figure 5.2: Additional/Changed Rules for ML + ¥

With the correct definition of blocking, and an appropriately adapted tableau
algorithm, one can again show the following proposition. We omit the proof
and continue with the tableau for the guarded fragment, where the methods
are exhibited in greater detail.

Proposition 5.1.3. The tableau algorithm is a (non-deterministic) decision
procedure for ML+¥-satisfiability.

5.2 Tableau Algorithm for GF

Let ϕ be a formula and K a set of constants. In the following an alternative
notion of the closure of ϕ is needed, where constants from K are substituted
for the free variables of ϕ.

Definition 5.2.1. The closure of ϕ relative to K, cl(ϕ, K), is defined as
cl(ϕ, K) = {χ(c) : χ ∈ cl(ϕ), c ⊆ K}.

Definition 5.2.2. Let K be a countable set of constants. Let ψ ∈ GF be a
closed formula in NNF.
A completion tree T = (V,E,C,∆, N,B, I) for ψ consists of

• a rooted tree (V,E),

• a function C : V → P(K) assigning each node a set of constants of
size at most width(ψ),

• a function ∆ : V → cl(ψ,C(v)),

• a function N : V → mapping each node to a distinct natural num-
ber, with the additional property that, if v is an ancestor of w, then
N(v) < N(w),

• an explicit blocking relation B that will be explained below,
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• an indexing function I :
⋃{C(v) : v ∈ V } → {1, . . . ,width(ψ)}, with

the additional property that I|C(v) is 1-1 for every v ∈ V .

A constant c ∈ K is called shared between two nodes v1, v2 ∈ V , if c ∈
C(v1) ∩ C(v2), and c ∈ C(w) for all nodes w on the (unique, undirected,
possibly empty) shortest path connecting v1 to v2.

A node v ∈ V is called directly blocked by a node w ∈ V , if w 6= v is a node
such that N(w) < N(v), and there is an injective mapping π from C(v) into
C(w) such that, for all constants c ∈ C(v) that are shared between v and
w, π(c) = c, π(∆(v)) = ∆(w)|π(C(v)∗), and I(c) = I(π(c)) for all c ∈ C(v).
The definition of blocking is recursive. This does not cause any problems
because the status of a node v only depends on its own label, and the status
of nodes w with N(w) < N(v). At the latest, the recursion terminates at
the root node, where the N -value is minimal.

For each directly blocked node v the relation B contains (w, v) for one (of
the possibly many) nodes w that directly block v. In this case we say that
v is explicitly blocked by w.

A node is called blocked if it is directly blocked or if its predecessor is blocked.

A completion tree T contains a clash if there is a node v ∈ V such that

• for a constant c ∈ C(v), c 6= c ∈ ∆(v), or

• there is an atomic formula α and a tuple of constants a ⊆ C(v) such
that {α(a),¬α(a)} ⊆ ∆(v).

Otherwise, T is called clash-free. A completion tree T is called complete if
none of the completion rules given in Figure 5.3 can be applied to T . A
complete and clash-free completion tree for ψ is called a tableau for ψ.

To test ψ for satisfiability, the tableau algorithm creates an initial tree with
only a single node v0, ∆(v0) = {ψ} and C(v0) = ∅. Then, alternately, the
rules from Figure 5.3 are applied and B updated so that it adheres to the
definition, until either a clash occurs, producing output “ψ unsatisfiable”,
or the tree is complete, in which case “ψ satisfiable” is output.

Theorem 5.2.3. The tableau algorithm is a (non-deterministic) decision
procedure for GF-satisfiability.

Proof. This is an immediate consequence of the following facts estab-
lished in the subsequent sections. Termination is shown in Lemma 5.2.5,
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R∧ : if ϕ ∧ ϑ ∈ ∆(v) and {ϕ, ϑ} 6⊆ ∆(v)
then ∆(v) = ∆(v) ∪ {ϕ, ϑ}

R∨ : if ϕ ∨ ϑ ∈ ∆(v) and {ϕ, ϑ} ∩∆(v) = ∅
then ∆(v) = ∆(v) ∪ {χ} for χ ∈ {ϕ, ϑ}

R= : if a = b ∈ ∆(v) and a 6= b

then C(w) = (C(w) \ {a}) ∪ {b} and ∆(w) = ∆(w)[a 7→ b]
for all w that share a with v

R∀ : if (∀y.α(a,y))ϕ(a,y) ∈ ∆(v) and α(a, b) ∈ ∆(v), ϕ(a, b) 6∈ ∆(v)
for some b ⊆ C(v)

then ∆(v) = ∆(v) ∪ {ϕ(a, b)}

R∃ : if (∃y.α(a,y))ϕ(a,y) ∈ ∆(v) and for every b ⊆ C(v),
{α(a, b), ϕ(a, b)} 6⊆ ∆(v) and there is no child w of v

with {α(a, b), ϕ(a, b)} ⊆ ∆(w) for some b ⊆ C(w)
and v is not blocked

then let b be a sequence of distinct and fresh constants that
match the length of y,

create a child w of v with C(w) = a ∪ b and
∆(w) = {α(a, b), ϕ(a, b)}, let
N(w) = 1 + max{N(v) : v ∈ V \ {w}}
and arbitrarily extend I according to Definition 5.2.2.

Rl : if α(a) ∈ ∆(v), α atomic, not an equality, w is a neighbour of v

with a ⊆ C(w), and α(a) 6∈ ∆(w)
then ∆(w) = ∆(w) ∪ {α(a)}

Rl∀ : if ϕ(a) ∈ ∆(v), ϕ(a) is univ. quantified, and w is a neighbour of v

with a ⊆ C(w) and ϕ(a) 6∈ ∆(w)
then ∆(w) = ∆(w) ∪ {ϕ(a)}

Figure 5.3: The Completion Rules for GF

completeness in Lemma 5.2.6 and correctness via explicit construction of a
finite model is shown in Lemma 5.2.11. 2

5.2.1 Termination

The following technical lemma is a consequence of the completion rules and
the blocking condition.



5.2. TABLEAU ALGORITHM FOR GF 75

Lemma 5.2.4. Let ψ ∈ GF be a sentence in NNFwith |ψ| = n, width(ψ) =
m, and T a completion tree generated for ψ by application of the rules in
Figure 5.3. For every node v ∈ T ,

1. |C(v)| ≤ m

2. |∆(v)| ≤ n×mm

3. Every path of length ` > m!× 2n×mm
in T contains a blocked node.

Proof. 1. Nodes are only generated when initialising the tree, and by the
R∃-rule. The R=-rule may later remove some of the constants living at a
node, but no constants are ever added to a C(v) once v has been generated.

When triggered by the formula (∃y.α(a,y))ϕ(a,y), the R∃-rule initialises
C(w) such that it contains a and another constant for every variable in x

and y. Hence,

|C(w)| ≤ |a ∪ y ∪ z| ≤ | free(α)| ≤ width(ψ).

2. The set ∆(v) is a subset of cl(ψ,C(v)), for which |cl(ψ,C(v))| ≤ n×mm

holds because there are at most n formulae in cl(ψ), each of which has at
most m free variables. There are at most |C(v)|m distinct sequences of
length m with constants from C(v).

3. Let u1, . . . , u` be ` > m! × 2n×mm
distinct nodes that form a path;

w.l.o.g. u1 is the root of T . For every ui, we construct an injective mapping
πi : C(vi) → {1, . . .m} such that, if a constant a is shared between two
nodes ui, uj , then πi(a) = πj(a).

By induction on i we define an injective mapping νi : C(ui) → {1, . . . ,m}
for every i ∈ {1, . . . , `} as follows. For ν1 we pick an arbitrary injective
function from C(u1) to {1, . . . ,m}. For νi we choose an arbitrary injective
function such that νi(a) = νi−1(a) for all a ∈ C(ui) ∩ C(ui−1).

All mappings νi are injective. For any constant a the set Va = {v ∈ V : a ∈
C(v)} induces a subtree of T . If ui, uj ∈ Va are neighbours, the definition
above ensures νi(a) = νj(a). By induction over the length of the shortest
connecting path we obtain the same for arbitrary ui, uj ∈ Va.

For every node vi there is a ji such that vi = uji and we set πi = νji .

There are at most 2n×mm
distinct subsets of cl(ψ, {1, . . . ,m}), and at most

m! different indexings of the occurring constants. Hence, there must be two
nodes ui, uj such that πi(∆(ui)) = πj(∆(uj)), N(vi) < N(vj), and πi, πj
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are compatible with I. This implies that either uj is blocked by ui via
π = π−1

i ◦ πj , or both are blocked by a common third node w. Note that
for π to be well-defined, πi must be injective. By construction, π preserves
shared constants. Since πi(∆(ui)) = πj(∆(uj)), π(∆(uj)) = ∆(ui)|π(C(uj))

holds. 2

Lemma 5.2.5. Let ψ ∈ GF be a sentence in NNF. Any sequence of rule
applications of the tableau algorithm starting from the initial tree terminates.

Proof. For any completion tree T generated by the tableau algorithm, we
define ‖ · ‖ : V 7→ 3 by

‖v‖ = (|C(v)|, n× (m + 1)m − |∆(v)|,
|{ϕ ∈ ∆(v) : ϕ triggers the R∃-rule for v}|).

The lexicographical order ≺ on 3 is well-founded, i.e. it has no infinite
decreasing chains. Any rule application decreases ‖v‖ w.r.t. ≺ for at least
one node v, and never increases ‖v‖ w.r.t. ≺ for an existing node v. However
it may create new successors, one at a time. Since ≺ is well-founded, there
can only be a finite number of applications of rules to every node in T , and
hence a finite number of successors to each node. An infinite sequence of
rule applications would necessarily generate a tree of infinite depth.

Yet, as a corollary of Lemma 5.2.4, we have that the depth of T is bounded
by 2n×mm

. 2

5.2.2 Completeness

Lemma 5.2.6. Let ψ ∈ GF be a sentence in NNF. If ψ is satisfiable, then
there is a sequence of rule applications starting from the initial tree that
yields a tableau.

Proof. Since ψ is satisfiable, there is a model A of ψ. We will use A to guide
the application of the non-deterministic R∨-rule. For this we incrementally
define a function g :

⋃{C(v) : v ∈ V } → A such that A |= g(∆(v)) for all
v ∈ V . We refer to this property by (§).

Claim 5.2.7. If, for a completion tree T , there exists a function g, such
that (§) holds and a rule is applicable to T , then it can be applied in a way
that maintains (§).
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• If the R∧-rule is applicable to a node v ∈ V with ϕ ∧ ϑ ∈ ∆(v) then,
due to (§), A |= g(ϕ ∧ ϑ) and hence A |= {g(ϕ), g(ϑ)}. So the R∧-rule
can be applied to v without violating (§).

• If the R∨-rule is applicable to a node v ∈ V with ϕ ∨ ϑ ∈ ∆(v) then,
due to (§), A |= g(ϕ ∨ ϑ) and A |= g(χ) for a χ ∈ {ϕ, ϑ}. Hence, the
R∨-rule can be applied to v without violating (§).

• If the R=-rule is applicable to v ∈ V with a = b ∈ ∆(v), then, since
A |= g(a) = g(b), g(a) = g(b) must hold. Hence, for every node w

that shares a with v, g(∆(w)) = g(∆(w)[a 7→ b]) and the rule can be
applied without violating (§).

• If the R∀-rule is applicable to v ∈ V with (∀y.α(a,y))ϕ(a, y) ∈ ∆(v)
and b ⊆ C(v) with α(a, b) ∈ ∆(v), then from (§) we get that A |=
α(g(a), g(b)) and A |= (∀y.α(g(a),y)) → ϕ(g(a),y), which implies
A |= ϕ(g(a), g(b)). Hence ϕ(a, b) can be added to ∆(v) without vio-
lating (§).

• If the R∃-rule is applicable to v ∈ V with (∃y.α(a,y))ϕ(a,y), then
this implies A |= g((∃y.α(a,y))ϕ(a,y)). Hence, there is a sequence
b′ ⊆ A of elements such that A |= {α(g(a), b′), ϕ(g(a), b′)}. Extend
g such that g(b) = b′, so A |= {g(α(a, b), g(ϕ(a, b))}. Note that this
might involve setting g(b1) = g(b2) for some b1, b2 ∈ b. With this
construction the resulting extended completion-tree T and extended
function g again satisfy (§).

• If the Rl-rule is applicable to v ∈ V with α(a) ∈ ∆(v) and a neighbour
w with a ⊆ C(w), then it adds α(a) to ∆(w). From (§) we get that
A |= α(g(a)). Hence, adding α(a) to ∆(w) does not violate (§).

• If the Rl∀-rule is applicable to a node v ∈ V with a universally quan-
tified formula ϕ(a) ∈ ∆(v) and a neighbour w which shares a with v,
(§) yields A |= ϕ(g(a)). Hence adding ϕ(a) to ∆(w) does not violate
(§).

Claim 5.2.8. A completion-tree T for which a function g exists such that
(§) holds is clash free.

Assume that T contains a clash, namely, there is a node v ∈ V such that
either a 6= a ∈ V (v)—implying A |= g(a) 6= g(a)—, or that there is a
sequence a ⊆ C(v), and an atomic formula α such that {α(a),¬α(a)} ⊆
∆(v). From (§), A |= {β(g(a)),¬β(g(a))} would follow, a contradiction.
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These claims yield Lemma 5.2.6 as follows. Let T be a tableau for ψ. Since
A |= ψ, (§) is satisfied for the initial tree together with the function g

mapping a0 to an arbitrary element of the universe of A. By Lemma 5.2.5,
any sequence of applications is finite, and from Claim 5.2.7 we get that there
is a sequence of rule-applications that maintains (§). By Claim 5.2.8, this
sequence results in a tableau. 2

Lemma 5.2.6 involves two different kinds of non-determinism, namely how
to extend I to new constants as well as the choice of which rule to apply
to which constraint (as several rules might be applicable simultaneously),
and which disjunct to choose in an application of the R∨-rule. While the
latter choice is don’t-know non-deterministic, i.e., for a satisfiable formula
only certain choices will lead to the discovery of a tableau, the former choice
is don’t-care non-deterministic. This means that arbitrary choices of which
rule to apply next and how to extend I will lead to the discovery of a tableau
for a satisfiable formula. For an implementation of the tableau algorithm this
has the following consequences. Exhaustive search is necessary to deal with
all possible expansions of the R∨-rule, but arbitrary strategies of choosing
which rule to apply next, and where to apply it, will lead to a correct
implementation—although the efficiency of the implementation will strongly
depend on a sophisticated strategy.

5.2.3 Correctness

In order to prove the correctness of the tableau algorithm we have to show
that the existence of a tableau for ψ implies satisfiability of ψ. To this pur-
pose, we construct an, indeed finite, model from a tableau. An alternative
correctness proof is given in [59], providing a further proof of the generalised
tree model property.

In the following, let ψ ∈ GF and let T = (V,E,C,∆, N,B, I) be a tableau
for ψ. W.l.o.g. we assume, for every node v ∈ V and every a ∈ C(v), that
a = a ∈ ∆(v). Further, whenever a new node w is created we assume all
constants in C(w) that are not propagated from the parent node to be chosen
fresh, i.e. not occuring in the C-label of any other node of the completion
tree.

Let C(V ) =
⋃{C(v) : v ∈ V, v not blocked} and define the equivalence

relation ∼ on C(V ) as the reflexive and transitive closure of the set of all
pairs of constants (c, d), where c ∈ C(u) and d ∈ C(v) for some (u, v) ∈ B,
and it is the case that the function π that verifies that u blocks v maps d to
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c.

We also use ∼ as an operator that maps a constant a to its ∼-class ã. For
tuples of constants a, this operation is performed component-wise. We say
that ã ⊆ C(v), if for each a ∈ a we have ã ∩ C(v) 6= ∅.

Definition 5.2.9. Let v, w ∈ V and a ∈ C(v), b ∈ C(w). An (a, b)-path in
T is a sequence (s1, c1), . . . , (sk, ck) in V × C(V ) such that c1 = a, ck = b

and for all 1 ≤ i < k we have ci ∈ C(si) and one of the following holds.

1. (si, si+1) ∈ E and ci = ci+1

2. (si, si+1) ∈ B and π(ci+1) = ci

3. 1. and 2. for reversed roles of i and i + 1.

Intuitively, an (a, b)-path verifies a ∼ b. Since each single explicit blocking
preserves the I-index, it follows that I(a) = I(b) whenever there is an (a, b)-
path in T .

The general idea in the construction of a model from a tableau is to use
C(V )/∼ for the universe, and define the relations according to the atomic
information in the nodes. In general, there may be problematic situations
in a tableau that prevents this construction from being well defined, what
we call dormant clashes.

Definition 5.2.10. Two distinct nodes v, w ∈ V , two tuples of constants
a, b and an atomic statement β form a dormant clash (v, w,a, b, β) in T , if
a ∈ C(v), b ∈ C(w) and it is the case that a 6= b, but a ∼ b and β(a) ∈ ∆(v)
and β(b) 6∈ ∆(w).

A dormant clash (v, w,a, b, β) can occur whenever there are (ai, bi)-paths for
all i ≤ |a| = |b|, but there is not (at least) one path from v to w along which
all of these constants are propagated simultaneously. Since β indeed makes
use of all constants from a, only such a path would ensure the complete
atomic information about a at v to match that of b at w.

Given a tableau T , we isolate a set of critical edges S = S(T ), a subset of
E ∪B defined as follows.

Let D = (v, w,a, b, β) be a dormant clash. Let VD ⊆ V be the set of
nodes that contains v, and all nodes u where there are (possibly several)
E ∪ B-paths p from v to each u such that this p is an (ai, ci)-path for all
ai ∈ a and some appropriate ci ∈ C(u). That is, VD is a subset of the
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nodes that contain tuple of constants ∼-equivalent to a. The existence
of a single path from v to each u ∈ VD that propagates a whole set of
constants ∼-equivalent to a implies that the complete atomic information
about these constants is shared between v and all u ∈ VD. More precisely,
for every u ∈ VD there is a c ⊆ C(u), c ∼ a and for every atomic statement
γ, γ(a) ∈ ∆(v) ⇐⇒ γ(c) ∈ ∆(u). This shows that w 6∈ VD, since
β(a) ∈ ∆(v), but β(b) 6∈ ∆(w).

Next, we choose an index t = tD ≤ |a| = |b| and let SD be the set of E ∪B-
edges that (a) go from VD to V \ VD, or vice versa, and (b) propagate a
constant that is ∼-equivalent to at. Let S be the union of the sets SD for
all dormant clashes D of T .

By making (finitely) many isomorphic copies of all subtrees of the tableau
below the root, it is possible to redirect the critical edges in a kind of hyper-
cube construction that eliminates the dormant clashes.

Lemma 5.2.11. If there is a finite tableau T for ψ, then there is also a
finite tableau T ′ for ψ that does not contain dormant clashes.

Proof. Observe that no B-edge can be incident to the root of T , since all
other nodes contain at least one constant in their C-label.

Let λ be the root of T and let n = |S|. We make an enlarged version T ′ of T
where all subtrees with roots that are direct E-successors of λ are replaced
by 2n isomorphic copies. The formal definition of T ′ is

• V ′ = {λ} ∪ {vi : v ∈ V \ {λ}},
• E′ = {(λ, vi) : (λ, v) ∈ E} ∪ {(vi, wi) : (v, w) ∈ E},
• C ′(vi) = {ai : a ∈ C(v)}, C ′(λ) = ∅,
• ∆′(vi) = {ϕ(ai) : ϕ(a) ∈ ∆(v)}, ∆′(λ) = ∆(λ),

• N ′(vi) = 2n ·N(v) + i, N ′(λ) = 0,

• B′ = {(vi, wi) : (v, w) ∈ B},
• I ′(vi) = I(v),

for all 0 ≤ i < 2n.

This first step also creates 2n copies of our original critical edges, namely
all (ri, si) for which (r, s) ∈ S. We now modify E′ and B′ as follows. Let
{(rk, sk) : 0 ≤ k < n} be an enumerated version of S.
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For all 0 ≤ k < n and all 0 ≤ `, j < 2n, if the binary representations of `

and j differ exactly at the k-th position, we modify T ′ as follows:

• If (rk, sk) is a B-edge, delete (r`
k, s

`
k) and (rj

k, s
j
k) from B′ and add

(r`
k, s

j
k) and (rj

k, s
`
k) instead.

• If (rk, sk) is an E-edge, delete (r`
k, s

`
k) and (rj

k, s
j
k) from E′ and add

(r`
k, s

j
k) and (rj

k, s
`
k) instead. Then, at all nodes in the subtrees with

root sj
k or s`

k, rename the constants occurring in the C and ∆-labels
from c` to cj , resp. vice versa.

In the second case the π-functions associated with the B′-edges are canon-
ically modified to take care of the renaming of constants, e.g. if some π

belongs to a B′-edge (uj , vj) and π(cj) = dj , then π is changed to send c`,
which now replaces cj at vj , to dj , instead.

This construction achieves the following. If i 6= j there are either exactly
two copies of an S-edge connecting T i and T j , the case when the binary
representations of i and j differ at exactly one position, and no connecting
edges in all other cases. Unfortunately the correlation between the names
of constants and nodes, that a constant ci necessarily lives at a node vi, is
destroyed.

Let T i be T ′ restricted to {vi : v ∈ V } ∪ {λ}, which is the i-th copy of the
original T .

Claim. T ′ is a complete and clash-free finite completion tree for ψ.

By construction T ′ is finite and all labelling functions satisfy the definition of
a completion tree. Most of the labels, including the ∆-labels, are isomorphic
to some label in T . This in particular shows that T ′ is clash-free. Further,
for every node w that is blocked in T , the copies wi in T ′ are blocked, too,
and if w was explicitly blocked by v in T then wi is explicitly blocked by
some copy vj of v. Hence T ′ is complete.

Claim. T ′ contains no dormant clash.

In the following sense the construction of T ′ does not introduce new dormant
clashes, although it creates multiple copies of the ones already existing in
T . If D′ = (vi1 , wj1 ,ai2 , bj2 , β) is a dormant clash in T ′, it follows that
a 6= b. For consider the following. The π-functions used to verify blockings
are compatible with I, so no two distinct constants that co-exist in the C-
label of one node are ∼-equivalent. Consequently, if we suppose a = b, the
atomic information for ai and bj is necessarily the same, and D′ can not be
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a dormant clash. This also means that v 6= w, since v = w and a ∼ b would
imply a = b.

A crucial observation is that the (canonical) projection of any (ai, bj)-path
in T ′ to T , by mapping nodes vx to v and constants cy to c, is an (a, b)-path
in T . With our precondition ai2 ∼ bj2 , we get a ∼ b in T . Moreover,
since the ∆-labels at vi1 and wj1 are copies of the ∆-labels of v and w,
D = (v, w,a, b, β) already was a dormant clash in T .

For each dormant clash D in T let S′D ⊆ E ∪ B′ be the set of all copies of
the original critical edges SD in T , and let S′ be the union of all S′D. Then,
if D′ is a dormant clash in T ′ and D the clash in T that it is a copy of, S′D′
is a subset of S′D.

Let D′ = (vi1 , wj1 ,ai2 , bj2 , β) be a dormant clash in T ′. We distinguish
two cases according to whether bin(i1) and bin(j1) differ at bit positions
associated with edges in SD.

First assume that there is a difference at an SD-position and choose one of
the corresponding edges ε ∈ SD. Every path from vi1 to wj1 (that does
not pass through the root λ), in particular any (ai2 , bj2)-path for constants
ai2 ∈ C ′(vi1) and bj2 ∈ C ′(wj1), has to pass through an odd number of
copies of ε. Since SD was chosen to contain edges that do not propagate the
complete tuple of constants involved in the dormant clash D, the above is
the same as to say that there is at least one ai2

t ∈ ai2 that is not propagated
from vi1 to wj1 . Else, for all ai2

t ∈ a, we could find (ai2
t , bj2

t )-paths containing
a copy of ε. Their canonical projections to T would be (ak, bk)-paths using
ε itself, so ε propagates a complete set of constants ∼-equivalent to a. This
is a contradiction to ε ∈ SD because of the choice of SD. We conclude that
ai2 6∼ bj2 , a contradiction to D′ being a dormant clash.

Next let i and j only differ at bit positions not associated with SD and let
t = tD. If ai2

t ∼ bj2
t , there is an (ai2

t , bj2
t )-path p′ that starts at vi1 and

ends at wj1 . (In fact, any (ai2
t , bj2

t )-path can be extended in such a way
since, for any constant cx, the set of nodes where cx occurs is necessarily
E′-connected.)

Let p be the canonical projection of p′ to T . Then p is an (at, bt)-path from
v to w. As i and j do not differ at SD associated bit-positions, p′ contains an
even number of S′D-edges, and the projection p contains an even number of
SD-edges. Since v ∈ VD, w 6∈ VD and p propagates a constant ∼-equivalent
to at, p has to use an SD-edge for going from VD to V \ VD. Actually, each
time p switches between VD and V \ VD it has to be done via an SD-edge,
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otherwise p could not propagate a constant ∼-equivalent to at. Now the
total number of SD-edges along p is even, so each time p leaves VD it has
to come back again later. This zig-zagging shows that p either does not
end at w ∈ V \ VD, or that p does not propagate at to w. Either way is
a contradiction to the assumption that D′ is a dormant clash and we can
start with an (ai2

t , bj2
t )-path p′. 2

Lemma 5.2.12. Let ψ ∈ GF and let T be a tableau for ψ. Then ψ is
(finitely) satisfiable.

Proof. According to Lemma 5.2.11 we assume that T = (V,E,C,∆, N,B, I)
is a tableau for ψ that does not contain critical edges.

Towards the finite satisfiability we construct a finite structure A = A(T )
with universe A = C(V )/∼. For each relation R ∈ τ and each tuple a ∈ A

of matching arity let a ∈ RA iff there is a node v ∈ V and a tuple of
constants b ∈ C(v) such that all bi ∼ ai and Rb ∈ ∆(v). Note that with Rl
and the non-existence of dormant clashes, this is the case iff the same holds
true independent of the specific choice of b or v. Hence A is well defined.

Claim. A |= ψ.

This is implied by the stronger statement that for every closed formula ϕ

using constants from a that appears in the ∆-label of some unblocked node
v of T , ϕ[a 7→ ã] holds in A. Again ϕ is assumed to be in NNF.

• For equality statements this is immediate. The R=-rule makes sure
that distinct constants occurring at a common node have distinct ∼-
classes. For inequality statements, assume that a 6= b ∈ ∆(v), but
a ∼ b for two distinct constants a, b and some node v. However I(a) 6=
I(b), since a and b occur in a C-label together. This is a contradiction
to (a, b)-paths preserving I-indices.

• For an atomic sentence Ra, we get A |= Rã immediately from the
construction of A. In case of a negated atomic sentence, assume ϕ(a) =
¬Ra ∈ ∆(v) but A |= Rã. This implies the existence of a (dormant)
clash in T , a contradiction.

• For positive Boolean combinations the argument is immediate.

• Let ϕ(a) = (∃y.β(a,y))η(a,y). If, for some b ∈ C(v), it holds that
β(a, b), η(a, b) ∈ ∆(v), we note that A |= η(ã, b̃) and A |= β(ã, b̃) by
induction hypothesis for β and η.
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If there is no b ∈ C(v) with β(a, b), η(a, b) ∈ ∆(v), then application
of the R∃-Rule yields a successor node w of v with constants b ∈ C(w)
such that β(a, b), η(a, b) ∈ ∆(w). If w is not blocked, the claim again
follows by induction hypothesis for β and η.

If, however, w is blocked, consider the node u with (u, w) ∈ B and the
injection π : C(w) → C(u). Then β(π(a), π(b)) and η(π(a), π(b)) are
in the ∆-label of u. Since all pairs of constants (a, a′) where a′ = π(a)
are in the same ∼-class, it follows by induction that A |= β(ã, b̃) ∧
η(ã, b̃), and hence ϕ(ã) holds in A.

• Finally let ϕ(a) = (∀y.β(a,y))η(a,y). Assume that there is a tuple
b such that A |= β(ã, b̃). Then there is a node w where ã∪ b̃ ⊆ C(w),
i.e., there are tuples a′, b′ ⊆ C(w) with a′ ∼ a and b′ ∼ b. Moreover,
β(a′, b′) ∈ ∆(w) and ϕ(a′) ∈ ∆(w). Hence, the R∀-rule is applicable
for ϕ(a′) at w and must have been applied because T is complete. This
gives us η(a′, b′) ∈ ∆(v), which, by induction, yields A |= η(ã′, b̃′) and
hence A |= η(ã, b̃).

This completes the proof of Lemma 5.2.12. 2

Corollary 5.2.13. GF has the finite model property.

Proof. If ψ ∈ GF[τ ] is satisfiable, then, by Lemma 5.2.6, it has a finite
tableau. As shown in the proof of Lemma 5.2.12, such a tableau induces a
finite model for ψ. 2



Chapter 6

Action Guarded Logics

At this point we take a closer look at the area between modal and guarded
logics. Our main focus is on the class of action guarded logics, where the
vocabulary will be split into two disjoint sets, the action predicates and
the state predicates. Action predicates are only allowed in guard positions,
whereas state predicates may only occur as non-guards. It turns out that
there is a whole flock of design choices for action guarded logics between
ML and GF. We will consider some properties of ML that no longer hold
true for GF and identify the exact borders on a map of action guarded
logics. The study of bisimulation safety is rounded of by identifying an
action guarded fragment that exhibits a behaviour similar to the modal
case. Further studies, implicitly or explicitly concerned with our take on
action guarded logics, can be found e.g. in [6, 22, 48].

6.1 The Playground

The aim of guarded logics was to capture the good behavioural properties of
modal logic by keeping the guarded quantification pattern, and dropping all
other restrictions, most prominently the restriction to structures of width
at most two. The freedom to use relations of arbitrary arity is one of the
central points of the greater flexibility that guarded logics posses over modal
logics, and will therefore not be touched. Otherwise we typically end up in
2-variable logic, which has been extensively studied previously, cf. [28, 29]
for more information and references.

Already the initial publication on the guarded fragment [1] contained three
variants of quantifier patterns.

85
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• (∃y.R(x,y))ϕ(y) for GF1

• (∃y.R(x,y))ϕ(x,y) for GF2

• (∃y.R(x,y))ϕ(x,y,z) for GF3

The 2nd variant, GF2, is what became to be known as the guarded fragment
GF. The 3rd variant, GF3, was shown to be undecidable, and is therefore
unsuitable for a main role in guarded logics. The 1st variant, GF1, has not
attracted much attention for the simple reason that many desired properties
hold for the much larger GF2. On the other hand, research in [48] has
shown that restriction to GF1 is necessary for transferring certain complexity
results from modal logics, in this case in the shape of description logics, to
the guarded world.

More concretely, compare the guarded fragment, where any quantification
(∃x′.R(x))ϕ(x) is valid as long as x′ ⊆ x, and modal logic, where the quan-
tifier pattern is (∃y.E(x, y))ϕ(y). We see that GF1 more closely resembles
the modal quantifier pattern than GF. This is motivation enough to let the
question of whether a logic allows the re-use of old elements in the body of
a quantification be one of our three main distinguishing features.

The naming feature of action guarded logics is the partitioning of the vocab-
ulary τ into an action vocabulary τa and a state vocabulary τs. An action
guarded quantification (∃x.R(x)) is required to use an R ∈ τa as guard,
whereas only predicates from τs are allowed in non-guard positions. Com-
pare this to modal logics, where similarly binary predicates occur only in
modalities, i.e. as guards of quantifications, and unary predicates occur only
independent of quantifications.

Finally, note that modal logic equips guard relations with a sense of di-
rection. An edge relation E permits modal operators that translate into
(∀y.Exy) and (∃y.Exy), but not the inverse (∀y.E(yx)). We generalise this
aspect by optionally regarding an n-ary action relation as (i;n−i)-ary. This
fixes the first i positions as input or source elements, and the last n− i po-
sitions of E-guarded tuples as output or destination elements. In this sense,
the binary relations in modal logic are action predicates of arity (1; 1). For
example, a guard relation R of arity (2; 2) can be used as (∀yz.R(uv.yz)),
but not as (∀xyz.R(xy.uz)), as is possible in GF.

All in all there is a whole flock of discerning properties, some of which can
be turned on and off independently, that break down the step from ML to
GF. Freely combining these parameters leads to an impressive number of
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different logics. Not considered here are variants of guarded logic where the
use of equality is restricted. Some aspects of restricting the vocabulary to
that of labelled graphs are discussed in Sections 4.1 and 7.2.

Definitions. For the following definitions τ , τs and τa are relational vo-
cabularies. For the logics with directional actions, the action vocabulary
τa consists of relations with split arity (i; j), where i, j ≥ 1. The state vo-
cabulary τs contains relations with normal arities i. For all guard atoms α

the notation α(x,y) means that α contains all variables from x and y. We
consider the following combinations.

Syntax of GF1. (Disallow re-use of old elements.)

(i) If R ∈ τ ∪ {=}, then R(x) is in GF1.

(ii) GF1 is closed under Boolean combinations.

(iii) If ψ(y) is a formula of GF1and G(x,y) is a τ -atom,
then ∃y(

G(x,y) ∧ ψ(y)
)

is in GF1.

Syntax of SGF. (Split action/state vocabulary.)

(i) If R ∈ τs ∪ {=}, then R(x) is in SGF.

(ii) SGF is closed under Boolean combinations.

(iii) If ψ(x,y) is a formula of SGF and G(x,y) is a τa-atom,
then ∃y(

G(x,y) ∧ ψ(x,y)
)

is in SGF.

Syntax of SGF1. (Split action/state vocabulary; disallow re-use.)

(i) If R ∈ τs ∪ {=}, then R(x) is in SGF1.

(ii) SGF1 is closed under Boolean combinations.

(iii) If ψ(x,y) is a formula of SGF1 and α(x,y) is a τa-atom,
then ∃y(

G(x,y) ∧ ψ(y)
)

is in SGF1.

Syntax of AGF. (Split action/state vocabulary with directed actions.)

(i) If R ∈ τs ∪ {=}, then R(x) is in AGF.

(ii) AGF is closed under Boolean operations.

(iii) If G ∈ τa, ϕ(x,y) ∈ AGF, G is of arity (|x|; |y|) and y ∩ x = ∅, then
∃y(G(x;y) ∧ ϕ(x,y)) is in AGF.

Syntax of AGF1. (Split action/state vocabulary with directed actions;
disallow re-use of old elements.)

(i) If R ∈ τs ∪ {=}, then R(x) is in AGF1.
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(ii) AGF1 is closed under Boolean operations.

(iii) If G ∈ τa, ϕ(y) ∈ AGF1, G is of arity (|x|; |y|) and y ∩ x = ∅, then
∃y(G(x;y) ∧ ϕ(y)) is in AGF1.

Syntax of AGFI. (Split action/state vocabulary with directed actions and
their inverse.)

(i) If R ∈ τs ∪ {=}, then R(x) is in AGFI.

(ii) AGFI is closed under Boolean operations.

(iii) If G ∈ τa, ϕ(x,y) ∈ AGFI, G is of arity (|x|; |y|) and y ∩ x = ∅, then
∃y(G(x;y) ∧ ϕ(x,y)) and ∃x(G(x;y) ∧ ϕ(x,y)) are in AGFI.

Syntax of AGFI1. (Split action/state vocabulary with directed actions and
their inverse; disallow re-use of old elements.)

(i) If R ∈ τs ∪ {=}, then R(x) is in AGFI1.

(ii) AGFI1 is closed under Boolean operations.

(iii) If G ∈ τa, ϕ(x), ϕ′(y) ∈ AGFI1, G is of arity (|x|; |y|) and y ∩ x = ∅,
then ∃y(G(x;y) ∧ ϕ′(y)) and ∃x(G(x;y) ∧ ϕ(x)) are in AGFI1.

Finding the correct notion of bisimulation for a given guarded quantifier pat-
tern is a straightforward adaptation of the standard guarded bisimulation,
at least for logics with undirected actions. These variants implicitly contain
global quantification in the sense of quantifying over all free variables of
the subformula. This lets bisimulation be a notion between structures as
such, without selected starting tuples. Concerning the format of formulae,
this is a very prominent dividing line, since only logics that allow global
quantification contain formulae without free variables, or sentences.

A Note on States. What is missing in the AGF(1)-logics, is a uniform
notion of what a state is. In modal style logics, every node of the graph or
transition system is a state. Formulae typically define sets of states. In the
guarded fragment, this role is assumed by the guarded tuples.

For the AGF(1)-logics, there are two types of distinguished tuples, those that
are the source of an action, and those that are the destination of an action.
For directional actions, we called source tuples active, and destination tuples
guarded , i.e. the two notions that coincide for the guarded fragment are split
according to their, more or less natural, differing meaning. The sets of active
and guarded tuples will in general not coincide, so taking either one or the
other as set of states of a structure is non-uniform in an intuitive sense. What
makes this problematic, is how an (action) guarded logic with directional
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GF1SGF
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AGFI1AGF
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ML
Figure 6.1: Inclusion map of the major (action) guarded logics.

actions uses actions. A formula ϕ(x) defines a set of active tuples, however
it depends on local atomic properties of active and guarded tuples.

Calling every active or guarded tuple a state has the disadvantage that the
question of whether a tuple is a state or not does not solely rely on (atomic)
properties of said tuple, as is the case for GF where states and actions are
not distinguished, or is trivially given, as for ML.

In logics with directional guards, but without their inverses, the set of active
tuples can be easily defined, whereas no first-order formula that adheres to
the prescribed quantifier pattern can define the set of guarded tuples. As
soon as inverse actions are allowed, every active tuple is guarded, and vice
versa, so this division disappears.

Definition 6.1.1. Let A be a τa∪̇τs-structure.

A set X ⊆ A is AGF1-active if there are a, b in A, and an R ∈ τa, such that
(a; b) ∈ RA and X ⊆ a.

A set X ⊆ A is AGF1-guarded if there are a, b in A, and an R ∈ τa, such
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that (a; b) ∈ RA and X ⊆ b.

In both cases the notation should imply that the arity of R is (|a|; |b|).

Bisimulations. We give the precise definitions for the bisimulations corre-
sponding to the AGF1, AGFI and SGF1 quantifier patterns. The remaining
variants for AGF, AGFI1, SGF and GF1 can be interpolated from these,
and the GF-bisimulation given in Section 3.4. Remember that the action
vocabulary is directed for AGF and AGFI, and contains normal relations
for SGF1.

Definition 6.1.2. Let A and B be τa∪̇τs-structures.

An AGF1-bisimulation between A and B is a non-empty set I of finite partial
τs-isomorphisms f between A and B that is closed under subfunctions and
satisfies the following conditions.

Forth. For every f : X → Y ∈ I, active tuple a ⊆ X, action predicate
R ∈ τa and tuple a′ ⊆ A where (a;a′) ∈ RA, and for b = f(a) ⊆ Y there is
a tuple b′ ⊆ B such that (b; b′) ∈ RB and f ′ : a′ 7→ b′ ∈ I.

Back. Similarly for every f : X → Y ∈ I, active tuple b ⊆ Y , action
predicate R ∈ τa and tuple b′ ⊆ B where (b; b′) ∈ RB, and for a = f−1(b) ⊆
X there is a tuple a′ ⊆ A such that (a;a′) ∈ RB and f ′ : a′ 7→ b′ ∈ I.

In this and the next chapter, AGF1 will be the most prominently used
action guarded logic. We reserve the notation ∼1 for AGF1-bisimulation.
Two structures A and B with tuples a ∈ A, b ∈ B are AGF1-bisimilar if
there is an AGF1-bisimulation I : A ∼1 B such that f : a → b is in I.
The bisimulation for AGFI differs from AGF1 in that the old elements a

resp. b have to be covered by the f ′ too. The inverse actions are treated by
additional requirements that simply turn around the guard relations.

Definition 6.1.3. Let A and B be τa∪̇τs-structures.

An AGFI-bisimulation between A and B is a non-empty set I of finite partial
τs-isomorphisms f between A and B that is closed under subfunctions and
satisfies the following conditions.

Forth. For every f : X → Y ∈ I, active tuple a ⊆ X, action predicate
R ∈ τa and tuple a′ ⊆ A where (a;a′) ∈ RA, and for b = f(a) ⊆ Y there is
a tuple b′ ⊆ B such that (b; b′) ∈ RB and f ′ : aa′ 7→ bb′ ∈ I.

Forth’. For every f : X → Y ∈ I, guarded tuple a ⊆ X, action predicate
R ∈ τa and tuple a′ ⊆ A where (a′;a) ∈ RA, and for b = f(a) ⊆ Y there is
a tuple b′ ⊆ B such that (b′; b) ∈ RB and f ′ : aa′ 7→ bb′ ∈ I.
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Back. Similarly for every f : X → Y ∈ I, active tuple b ⊆ Y , action
predicate R ∈ τa and tuple b′ ⊆ B where (b; b′) ∈ RB, and for a = f−1(b) ⊆
X there is a tuple a′ ⊆ A such that (a;a′) ∈ RB and f ′ : aa′ 7→ bb′ ∈ I.

Back’. Finally for every f : X → Y ∈ I, active tuple b ⊆ Y , action
predicate R ∈ τa and tuple b′ ⊆ B where (b′; b) ∈ RB, and for a = f−1(b) ⊆
X there is a tuple a′ ⊆ A such that (a′;a) ∈ RB and f ′ : aa′ 7→ bb′ ∈ I.

For SGF1 we can forget about directions and inverses of actions. The com-
bination with not allowing the re-use of old elements nevertheless makes
the formalisation of SGF1-bisimulation significantly more complex than the
standard guarded bisimulation for GF. The distinction between action and
state relations does not make a great difference.

Definition 6.1.4. Let A and B be τa∪̇τs-structures.

A SGF1-bisimulation between A and B is a non-empty set I of finite partial
τs-isomorphisms f between A and B that is closed under subfunctions and
satisfies the following conditions.

Forth. For every f : X → Y ∈ I and every τa-guarded set X ′∪̇X ′′ ⊆ A

guarded by an atom α, X ′′ ⊆ X, there are Y ′, Y ′′ ⊆ B, Y ′′ ⊆ Y , such that an
f ′ : X ′ → Y ′ is in I, and for some enumerations a′′ = X ′′ and a′ = X ′ there
is a bijection g′′ such that both A |= α(a′,a′′) and B |= α(f ′(a′), g′′(a′′)).

Back. Similarly for every f : X → Y ∈ I and every τa-guarded set Y ′∪̇Y ′′ ⊆
B guarded by an atom α, Y ′′ ⊆ Y , there are X ′, X ′′ ⊆ A, X ′′ ⊆ X,
such that an f ′ : X ′ → Y ′ is in I, and for some enumerations b′′ = Y ′′

and b′ = Y ′ there is a bijection g′′ such that both B |= α(b′, b′′) and
A |= α(f ′(b′), g′′(b′′)).

Now that we have the various bisimulations available it can easily be shown
that the definitions above do not yield semantically equivalent logics.

Theorem 6.1.5. All inclusions in Figure 6.1 are strict.

Proof. To separate a logic L from its L1 variant, consider a vocabulary
consisting of one binary action predicate E and one binary state predicate
R. For the logics with directional actions, E has arity (1, 1). Let A be
the structure consisting of four nodes a1, a2 and b1, b2 such that E(a1, a2),
E(b1, b2) and R(a1, a2) hold. In AGF, a1 and b1 can be distinguished by the
formula (∃y.Exy)Rxy. In contrast, let I be the set of partial automorphisms
on A that contains idA, the identity function on A, all its subfunctions, and
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the two functions a1 7→ b1 and a2 7→ b2. Then it can be verified that I

is a GF1-bisimulation between A, a1 and A, b1. In particular, GF1 can not
distinguish a1 from b1.

The other cases are shown similarly. For GF and SGF, consider the formula
(∀xy.Exy)Rxy ∧ (∀xy.Rxy)Exy ∈ GF1 that forces E and R to coincide.
Clearly, no SGF-bisimulation can check both inclusions — if e.g. E is a
state predicate, then there is no requirement for E-guarded sets. If however
both E and R are action predicates, then the partial homomorphisms in the
bisimulation speak about an empty state vocabulary.

For SGF and AGFI, the difference is eminent from their syntactic defini-
tion. In SGF and SGF1 it is possible to form closed formulae, or sentences,
whereas every AGFI and AGFI1-formula has free variables, and the quanti-
fier pattern always moves from a tuple of old variables to a freshly quantified
tuple. The result is that AGFI(1)-formulae can only make statements about
the connected component of their respective arguments. However, even
when closing AGFI under full quantification, i.e. allowing statements of the
form ∃xy.E(x;y)ϕ(x,y), one discovers that SGF1 has strictly greater ex-
pressive power. This time an example requires higher arity. Let E be an
action predicate of arity (2; 1). Then ∃yz.E(xy; z)true can be expressed in
SGF, which ignores the splitting of the arity, but arguably not in AGFI1.

For AGFI and AGF one can argue as for ML− and ML. Namely, AGFI can
express that a given node has a predecessor via some edge relation, whereas
AGF is limited to following edges in their given direction. E.g. (∃y.Eyx)true,
an AGFI1 formula, can distinguish between two AGF-bisimilar nodes, one
of which has an E-predecessor. 2

Bisimulation Invariance. The definitions of invariant relations and satu-
rated structures first given for the modal case in Section 2.6 can be phrased
likewise for any of the guarded fragments depicted in Figure 6.1. We make
explicit the version with AGF1 as placeholder.

Definition 6.1.6. A global relation R is invariant for AGF1-bisimulation
if, whenever A,a ∼1 B, b and a ∈ RA, then also b ∈ RB.

Definition 6.1.7. A τ -structure A is AGF1-saturated if for all active a ∈ A,
G ∈ τa, a′ ⊆ a and every AGF1-type p:
If (∃y.G(a′,y))p0(y) is consistent with the AGF1-theory of a′ in A for every
finite p0 ⊆ p, then there is a tuple b ∈ A such that A |= G(a′, b))p(b).

As mentioned the proofs to Lemma 2.6.3 and Theorem 2.6.5 can be nearly
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copied in verbatim to show the following statements about AGF1, or indeed
any other of the action guarded fragments.

Proposition 6.1.8. If A is ω-saturated, then A is AGF1-saturated.

This follows from AGF1 being a subset of FO. In preparation of the char-
acterisation theorem below we again establish the following correspondence
between logical equivalence and bisimilarity for saturated structures.

Lemma 6.1.9. Let A and B be AGF1-saturated structures. The relation of
AGF1-equivalence is an AGF1-bisimulation for A and B.

Proof. Consider two tuples a ∈ A, b ∈ B that have the same atomic type.
If both a and b are not active, there is nothing to show; if one is active
and the other not, then they are not AGF1-equivalent. Suppose that a and
b are AGF1-equivalent. For the forth condition, consider an action guard
α and tuple a′ ∈ A that satisfy A |= α(a,a′). Let p be the AGF1-type
of a′. Since the AGF1-types of a and b coincide, and (∃y.α(x,y)p(y) is
necessarily consistent with the theory of a, by AGF1-saturation of B there
is a tuple b′ ∈ B that satisfies B |= α(b, b′) ∧ p(b′). The back condition is
shown similarly. 2

Theorem 6.1.10. A first-order definable global relation is invariant for
AGF1-bisimulation iff it is AGF1 definable.

Proof. Suppose that ϕ(x) ∈ FO is AGF1-bisimulation invariant. Let
Ψ = {ψ ∈ AGF1 : ϕ(x) |= ψ(x)}.
Let A |= Ψ(a) and suppose that A was chosen ω-saturated. Let p be the
AGF1-type of a in A and note that p ∪ {ϕ} is consistent. For surely p is
consistent, and if the union is not, then ϕ |= ¬π1∨· · ·∨¬πn for some πi ∈ p.
Hence ¬π1 ∨ · · · ∨ ¬πn ∈ Ψ, which means that (¬π1 ∨ · · · ∨ ¬πn)(a) holds, a
contradiction to πi ∈ p, the AGF1-type of a.

Since p ∪ {ϕ} is consistent, there is an ω-saturated A′, and a a′ ∈ A′ such
that A′ |= ∧

(p ∪ {ϕ})(a). Now a and a′ both have the same AGF1-type,
and both are tuples of AGF1-saturated structures, so a and a′ are AGF1-
bisimilar. Since ϕ is AGF1-bisimulation invariant, ϕ holds at a, too.

In other words, because ϕ is invariant for AGF1-bisimulation, we have Ψ |=
ϕ. By compactness for FO there is a finite Ψ0 ⊂ Ψ such that Ψ0 |= ϕ(x),
and ϕ(x) ≡ ∧

Ψ0, i.e.
∧

Ψ0 ≡ ϕ is the desired AGF1-formula. 2



94 CHAPTER 6. ACTION GUARDED LOGICS

6.2 Action Guarded Safety

With respect to safety for bisimulation, the action guarded fragments show
the two different behaviours encountered earlier. For GF, safety and invari-
ance more or less coincide, whereas for ML they have a completely different
format. As a byproduct of the two terms falling together for GF, the char-
acterisation theorems for the safe, resp. invariant, fragments of first-order
logic coincide too. Our goal is the generalisation of Theorem 2.6.8 that will
be discussed in the subsequent section.

The first-order operation most critical wrt. safe actions often is the con-
catenation of actions. We will see that concatenation preserves safety only
in the case of AGF1. For the logics with undirected actions, only guarded
relations are safe, and concatenation therefore not considered.

Theorem 6.2.1. A global relation R is safe for SGF-bisimulation iff it is
guarded and invariant for SGF-bisimulation.

A global relation R is safe for SGF1-bisimulation iff it is guarded and in-
variant for SGF1-bisimulation.

The proof is an immediate corollary of Theorem 3.5.5. The point made there
was that for logics beyond SGF1, any relation that contains non-guarded
tuples is immediately not safe for the corresponding notion of bisimulation.

Corollary 6.2.2. A first-order definable global relation is safe for SGF-
bisimulation iff it is equivalent to ϕ(x)∧G(x) where ϕ(x) ∈ SGF and G(x)
says that x is τa-guarded.

A first-order definable global relation is safe for SGF1-bisimulation iff it is
equivalent to ϕ(x) ∧ G(x) where ϕ(x) ∈ SGF1 and G(x) says that x is
τa-guarded.

The AGF variants can hope to emulate the greater flexibility of ML con-
cerning the possible inductive construction of safe relations. Consider two
directional action guards α(x; y) and α′(y;z). We can form their concate-
nation α;α′, an action guard from x to y′, with the obvious semantics.

(α; α′)A = {(a; b) : A |= ∃y(α(a,y) ∧ α′(y, b))}
In the next section the requirement will be relaxed to allow any combination
α(x;y), α′(y′,z) where y′ ⊆ y. However even the given form of concatena-
tion is not safe for AGF. Take for example

ϕ(x) = (∀y.Exz;Ezy)Qxy
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with action predicate E and state predicate Q. Consider the structures
A = ({a, b, c}, E = {(a, b), (b, c)}, Q = {a, c}) and A′ = ({a, b, c}, E =
{(a, b), (b, c)}, Q = ∅). We can easily argue that A, a and A′, a are AGF-
bisimilar. Since the tuple (ac) is not τa = {E}-guarded, the atomic type
of (ac) in the two structures need not coincide. However A |= ϕ(a), and
A′ 6|= ϕ(a), so the global relation defined by E;E is not safe for AGF. The
problem arises from the resulting action not being guarded, in combination
with AGF allowing the source variables to be used in the rest of the formula.
As we will see, concatenation is safe for AGF1.

To circumvent the problem with concatenation for AGF, we could impose
the restriction that in all structures the relations in τs are τa-guarded.
However this restriction has undesirable side effects. Consider the formula
ϕ(x) = (∀xy.(E;E)(x, y))R(xy) and let E be the only action predicate. If
R is assumed E-guarded, R(xy) implies E(xy) ∨ E(yx). The guard (E;E)
translates into something like ∃z.(E(xz) ∧ E(zy)). In combination, this
enforces a kind of undirected transitivity of E.

The other program operations on actions as found in PDL are less rebellious.
Union of actions is safe for any (action-)guarded fragment. It can be pulled
in front of the quantification as disjunction. Similarly intersection is not
safe for all logics with separated action and state vocabulary, since there is
no way to check or enforce any kind of dependency between two distinct
actions. The test operation ϕ? can be replaced by a conjunction, instead of
〈ϕ?〉ψ write ϕ ∧ ψ. In the next section we perform such a decomposition of
programs in more detail.

6.2.1 Safety for AGF1

This section is a generalisation of Theorem 2.6.8 that characterises the modal
bisimulation safe fragment of first-order logic in terms of PDL programs.
The definitions and proofs given here are mostly obtained by syntactic trans-
lation of the proof given in [40] to the more general AGF1 setting. To this
end we first require a guarded equivalent of PDL in order to define action
relations of higher arities at all. We have found an appropriate guarded
generalisation of PDL in what we call1 GPDL1.

1GPDL1 is more than a propositional logic; we keep the “P” in the name to make the

relationship to PDL more visible.
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Syntax of GPDL1.

1. If R ∈ τs ∪ {=}, then R(x) is a GPDL1 formula.

2. The GPDL1 formulae are closed under Boolean operations.

3. If π(x;y) is a GPDL1program, ϕ(y′) is a GPDL1 formula and y′ ⊆ y,
then 〈π(x;y)〉ϕ(y′) is a GPDL1 formula with free variables x.

1. If G ∈ τa and x ∩ y = ∅, then G(x;y) is a GPDL1 program.

2. If π(x;y) and π′(x;y) are GPDL1 programs, then so is π(x;y) ∪
π′(x;y).

3. If π(x;y) and π′(x′;y′) are GPDL1 programs, y ⊇ x′ and x ∩ y′ = ∅,
then so is π(x; y);π′(x′;y′).

4. If ϕ(x) is a GPDL1 formula, then ϕ(x)? is a GPDL1 program from x

to x.

5. If π(x;y) is a GPDL1 program and |x| = |y|, then so is π(x;y)∗.

This definition implicitly allows projection of programs, e.g. G(x; yz); z = z

is a program from x to z. Since we are inside a first-order setting, we will
be mainly concerned with GPDL−1 , the fragment of GPDL1 that does not
use the ∗-operator. This hand-tailored variant of PDL has a close rela-
tionship to AGF1. Every AGF1-formula can be syntactically transformed
into a GPDL−1 -formula by rewriting existential quantifiers (∃yG(x;y)) as
〈G(x;y)〉. Vice versa, for every GPDL−1 formula ϕ there is an equivalent
AGF1 formula ϕ. obtained by inductively decomposing the programs in ϕ

until only atomic programs remain.

(〈G(x,y)〉χ(y)). = (∃y.G(x,y))(χ(y)).

(〈π(x,y) ∪ π′(x,y)〉)χ(y)). = (〈π(x,y)〉χ(y)). ∧ (〈π′(x,y)〉χ(y)).

(〈π(x,y);π′(y,z)〉χ(z)). = (〈π(x,y)〉〈π′(y,z)〉χ(z)).

(〈ϕ(x)?〉χ(x)). = (ϕ(x)). ∧ (χ(x)).

The .-operator commutes with all other syntactic elements of GPDL−1 .

The decomposition of the concatenation operation depends on AGF1 disal-
lowing the use of source tuples in the rest of the formula. As already men-
tioned earlier, this is the exact position where the method fails for AGF,
SGF and GF.
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Definition 6.2.3. A global relation R of arity (i; j) is safe for AGF1-
bisimulation iff for all structures A and B, any AGF1-bisimulation I : A ∼1

B is an AGF1-bisimulation I : (A, RA) ∼1 (B, RB), too.

By choice of construction, GPDL−1 was matched to AGF1, and we obtain
the following unsurprising statement about GPDL−1 .

Proposition 6.2.4. Every GPDL−1 program is safe for AGF1 bisimulation.

Proof. Atomic actions are safe by definition. Union and concatenation
retain safety by chasing one, resp. two edges. Projection is safe, since safe
relations are closed under projections. For the test operation, let ϕ(x) be
an AGF1 formula and consider the program ϕ?. If x ∼1 y then ϕ(x) ⇐⇒
ϕ(y), so, if possible, following the ϕ edges from x resp. y leads to the
bisimilar tuples, namely x and y again. 2

Definition 6.2.5. A formula ϕ(X,x) is completely additive in X if it dis-
tributes over arbitrary unions, that is for all structures A and all families
(Xi)i∈I of sets of tuples of A:

ϕ[
⋃
i∈I

Xi](x)A =
⋃
i∈I

ϕ[Xi](x)A

The second-order variable X is an additional state predicate.

Lemma 6.2.6. ϕ(X,x) is completely additive in X iff for all A and sets of
tuples P in A,

1. P ′ ⊆ P implies ϕ[P ′,a] ⇒ ϕ[P,a],

2. for all a there is a p ∈ P such that ϕ[P,a] ⇒ ϕ[{p},a].

Corollary 6.2.7. If π(x;y) is an X-free GPDL−1 program, then 〈π(x;y)〉Xy

is completely additive in X.

Theorem 6.2.8. An AGF1 formula ϕ(X,x) is completely additive iff it
is equivalent to a formula of the form 〈π(x;y)〉Xy, where π is a X-free
GPDL−1 program.

Proof. Let ϕ(x) in vocabulary τ̂ , τ = τa ∪ τs, τ̂ be τ ∪ {X}. Consider the
following equivalence (∗):

ϕ(x) ≡
∨ {〈π(x;y)〉Xy : π is an X-free GPDL−1 program,

〈π(x;y)〉Xy |= ϕ(X,x)
}
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If (∗) holds, we can conclude by compactness that ϕ(x) is equivalent to a
finite disjunction of formulae of the form 〈π(x; y)〉Xy and repeatedly apply

〈π(x;y)〉Xy ∨ 〈π′(x;y)〉Xy ≡ 〈π(x;y) ∪ π(x; y)〉Xy

to obtain the desired result.

Towards (∗), suppose that A,a |= ϕ(x). Consider an ω-saturated elementary
extension Aω of A. Next, let A∗ be the 2-unravelling of Aω starting at a with
underlying tree T. Denote the elements induced by the root a∗ (obtained
as copy of a). Then Aω,a and A∗,a∗ are AGF1 τ̂ -bisimilar and hence
A∗,a∗ |= ϕ(x).

Since ϕ(x) is completely additive in X, we can restrict the interpretation of
X to a single tuple a∗X , such that ϕ(x) still holds at a∗. Call the obtained
structure A−.

Let a∗0a∗1 · · ·a∗n be the tuples occurring on the unique path from a∗ = a∗0 to
a∗X ⊆ a∗n and let αi be the guard atoms such that each αi(x′i;xi+1) connects
(a subset of) a∗i to a∗i+1, as given in the edge labels of T. For every i ≤ n

define Φi(xi) as the AGF1 τ -type of a∗i in A−. Assuming x′i ⊆ xi for all
i ≤ n as appropriate, define

Γ(x0, . . . ,xn) =
⋃
i≤n

Φi(xi) ∪
⋃
i<n

αi(x′i,xi+1) ∪X(x′n).

Claim. Γ(x0, . . . ,xn) |= ϕ(a∗0).

Suppose B |= Γ(b0, . . . , bn). First, take an ω-saturated elementary extension
Bω of B, and further, by 2-unravelling with respect to b0, obtain B∗ with
root tuple b∗. Since B, b0 ∼1 B∗, b∗, there are again tuples b∗0, . . . , b∗n on
a path in B∗ such that all pairs b∗i and bi are bisimilar. Hence B∗ |=
Γ(b∗0, . . . , b∗n). Let B− be the structure we obtain from B∗ by restricting
the interpretation of X to b∗X , the appropriate subtuple of b∗n. Note that
B− |= Γ(b∗0, . . . , b∗n), since the Φi do not contain X.

We claim that A−,a∗ and B−, b∗ are bisimilar. Let I be the maximal AGF1

τ -bisimulation between A∗ and B∗. As A∗ and B∗ were bisimilar to ω-
saturated structures, and are hence AGF1-saturated, we can conclude that
the functions sending a∗i to b∗i , resp., belong to I (a∗i and b∗i have the same
AGF1-type Φi). The desired τ̂ -bisimulation I ′ is a subset of I, where each
a∗i is only connected to b∗i . and vice versa.

We verify that I ′ is a AGF1 τ̂ -bisimulation for A−,a∗ and B−, b∗.

• Since I ′ is a subset of I and I was maximal, we immediately get that
all f ∈ I ′ are partial τ -isomorphisms.
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Adding X to the language destroys nothing, as X only holds at a∗X
and b∗X , respectively, and I ′ only connects a∗n to b∗n.

• Suppose I ′ contains f : c → d, and there is a c′ and a G ∈ τa such that
A− |= R(c; c′) and c′ is not one of the a∗i . Since also f ∈ I, there is a
d′ such that B− |= R(d;d′) and f ′ : c′ → d′ is in I. If d′ is not one of
the b∗i , then f ′ ∈ I ′. If however d′ is one of the b∗i , then, as B− is still
2-unravelled with respect to τ , we can choose a d′′, B− |= R(d;d′′),
such that d′′ is τ -bisimilar to d′, and hence to c′, and f ′′ : c′ → d′′ is
in I ′.

Now suppose I ′ contains f : c → d, and A− |= R(c;a∗i ) for some
R ∈ τa and some i ≤ n. Then, as A− is unravelled, c = a∗i−1, and, by
definition of I ′, d = b∗i−1. Then b∗i is the desired successor of d in B−.

• The zag-clause is shown similarly.

As A− |= ϕ(a∗0) and b∗0 is AGF1 τ̂ -bisimilar to a∗0, B− |= ϕ(b∗0). By mono-
tonicity of ϕ(x) we can enlarge the interpretation of X as much as we like,
while still maintaining the truth of ϕ at b∗0, so in particular B∗ |= ϕ(b∗0). As
ϕ(x) is invariant for bisimulation, we get Bω |= ϕ(b0). We conclude that
B |= ϕ(b0) by the fact that ϕ(x) is first-order.

Thus we have proved Γ(x0, . . . ,xn) |= ϕ(x0). By compactness, there is a
finite subset Γ0 of Γ that also implies ϕ. So there are X-free AGF1 formulae
ϕ0, . . . , ϕn such that

〈π(x0;xn)〉X(x′n) |= ϕ(X,x0)

for

π = ϕ0(x0)?;α0(x′0;x1); · · · ;αn−1(x′n−1;xn);ϕn(xn)?;x′n = x′n?

Note that π is an X-free GPDL−1 program and that A |= 〈π(a;xn)〉X(x′n).

We have therefore shown that whenever A |= ϕ(a), there is an X-free
GPDL−1 program π such that A |= 〈π(a;xn)〉X(x′n) and 〈π(x;xn)〉X(x′n) |=
ϕ(x). This is precisely what is needed to prove (∗). 2

Theorem 6.2.9. A first-order definable global relation ϕ(x;y) that is safe
for AGF1-bisimulation is equivalent to a GPDL−1 program.

Proof. Suppose ϕ(x;y) is a first-order τ -formula that is safe for AGF1-
bisimulation. Then ψ(x) = ∃y(ϕ(x;y) ∧ X(y)) is invariant for AGF1-
bisimulation, for any X 6∈ τ of arity |y|. By Theorem 6.1.10, ψ is equivalent
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to the translation of an AGF1 formula χ(x). Since ϕ does not contain X,
ψ, and hence χ, are obviously monotone and downward additive in X. By
Lemma 6.2.6, χ(x) is completely additive in X. By Theorem 6.2.8, χ(x) is
equivalent to 〈π(x;y)〉Xy for some X-free GPDL−1 program π.

Claim: π(x;y) ≡ ϕ(x;y).

Let A be a τ ∪ {X}-structure and a, b ∈ A and let B be obtained from
A by restricting X to {b}. Then, since π is X-free, if A |= π(a; b) then
B |= π(a; b), and consequently B |= 〈π(a;y)〉Xy. Then also B |= χ(a), so
B |= ψ(a). As X only holds at b in B, it follows that B |= ϕ(a; b), and,
since ϕ does not contain X, A |= ϕ(a; b).

Similarly ϕ implies π. 2

Piecing together the puzzle we obtain the following result.

Theorem 6.2.10. A first-order definable global relation ϕ(x;y) is safe for
AGF1-bisimulation iff it is equivalent to a GPDL−1 program.

Following the lead from Section 3.6 we now give a characterisation in form
of a suitable variant of guarded relational algebra. Unfortunately, as is the
case with the corresponding bisimulations, the syntax for a relational algebra
matching AGF1 is more complex than for plain guarded GRA.

Syntax of AGRA1.

1. U is a term of width 1.

2. Every R ∈ τs is a term of width k = width(R).

3. Every G ∈ τa is a term of width (k; `) = width(G).

4. If M,N are terms of width k then so are M \N , M ∩N and M ∪N .

5. If M,N are terms of width (k; `) then so is M ∪N .

6. If M is a term of width k and i, j ≤ k then so is σi=j(M).

7. If M is a term of width k, 1 ≤ n1, . . . , nj ≤ k and {1, . . . , k} =
{n1, . . . , nj}, then πn1,...,nj (M) is a term of width j.

8. If M is a term of width (k; `) and 1 ≤ n1, . . . , nj ≤ k, k < m1, . . . ,mi ≤
k+` and {1, . . . , k} = {n1, . . . , nj}, then πn1,...,nj ;m1,...,mi(M) is a term
of width (j; i), or of width j if i = 0.

9. If M is a term of width k and N is a term of width ` then M ×N is
a term of width k + `.
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10. If M is a term of width (k; `) and N is a term of width (`;m) then
M ◦N is a term of width (k;m).

11. If M is a term of width k then M? is a term of width (k; k).

Given a τa∪̇τs-structure A, the semantics of AGRA1 is defined along the lines
of GRA. The cases 1.–9. are handled exactly analogous, with the intuitive
generalisations from singular arities to arities of the form (i; j).

Semantics of AGRA1.

10. (M ◦N)A = {(a; b) : exists c ∈ A, (a; c) ∈ MA and (c, b) ∈ NA}.
11. (M?)A = {(a;a) : a ∈ MA}.

Proposition 6.2.11. A global relation of arity k is definable by an AGRA1

term iff it is definable by an AGF1 formula.

A global relation of arity (k; `) is definable by an AGRA1 term iff it is
definable by a GPDL−1 program.

Proof. Simultaneous inductive translation from AGRA1-terms to GPDL−1 -
programs and formulae.

1. ψU (x) = (x = x).

2. ψR(x) = R(x).

3. ψG(x;y) = G(x, y).

4. ψM ·N (x) = ψM (x) · ψN (x), · ∈ {\,∩,∪}.
5. ψM∪N (x;y) = ψM (x;y) ∪ ψN (x;y).

6. ψσi=j(M)(x) = ψM (x) ∧ xi = xj .

7. ψπn1,...,nj (M)(x′) is obtained from ψM (x) by (a) syntactically letting
x′i = xni if i is the first occurrence of ni in n, and leaving x′i at all other
positions, and (b) taking the conjunction with

∧{x′i = x′i′ : ni = ni′}.
8. ψπn1,...,nj ;m1,...,mi (M)(x′;y′) is obtained from ψM (x;y) by existentially

quantifying over all yk where k 6∈ m1, . . . ,mi, and then proceeding as
in the previous case 7.

9. ψM×N (x,y) = ψM (x) ∧ ψN (y).

10. ψM◦N (x;y) = ψM (x;z);ψN (z;y).
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11. ψM?(x;x) = ψM (x).

And vice versa from GPDL−1 -programs and GPDL−1 and AGF1-formulae to
AGRA1-terms.

1. If ψ(x1, . . . , xk) = (xi = xj) then Nψ = σi=j(Uk).

2. If ψ(x1, . . . , xk) = R(xi1 , . . . , xir) then Nψ = πj1,...,jk
(R× U)

where ja = b for ib = a and ja = r + 1 otherwise.

3. If ψ(x1, . . . , xk) = α(x1, . . . , xk) ∨ β(x1, . . . , xk) then Nψ = Nα ∨Nβ.

4. If ψ(x1, . . . , xk) = ¬α(x1, . . . , xk) then Nψ = Uk \Nα.

5. If ψ(x1, . . . , xk) = ∃y1, . . . , y`(G(x,y)∧α(y)), then Nψ = π1,...,k;(NG ◦
Nα?).

1. If ψ(x;y) = G(x;y), then Nψ = G.

2. If ψ(x;y) = ρ(x;y) ∨ ρ′(x;y), then Nψ = Nα ∪Nβ .

3. If ψ(x;z) = ρ(x;y); ρ′(y′;z), y′ ⊆ y, then Nψ = πn1,...,nk
(Nρ) ◦Nρ′ ,

where n1, . . . , nk are such that y′ = (yn1 , . . . , ynk
) ⊆ y.

4. If ψ(x;y) = ρ(x;x)?, i.e. syntactically x = y, then Nψ = Nρ?.

The proof that these translations are correct is again a rather technical,
straightforward definition chasing. 2

6.3 Functional Guards and Counting

We now take a look at the border of decidability for the counting exten-
sions of action guarded fragments. The counting extension LC of a logic
L adds counting quantifiers of the form ∃≤n.x and ∃≥n.x. A weaker form
of counting consists of functionality constraints for binary predicates. This
only allows counting quantifiers to enforce the functionality of binary rela-
tions, ∀x∃≤1y.Fxy. Following is an overview on the results most relevant to
this work.

Theorem 6.3.1 (Grädel). GFC3 is undecidable.

Theorem 6.3.2 (Grädel, Rosen, Otto). C2 is decidable.



6.3. FUNCTIONAL GUARDS AND COUNTING 103

Theorem 6.3.3 (Goncalves, Grädel). AGFCI is decidable.

On closer inspection, the undecidability proof in [24] for GFC uses GFC1

formulae, plus one functionality statement, effectively proving a stronger
claim than the one stated, namely that GFC1

3 is undecidable. This leaves
SGFC and SGFC1, with at least three variables, as open cases. We close
this gap by showing the following theorem.

Theorem 6.3.4. SGFC1
3 is undecidable.

The method used for the undecidability results is again a reduction from
domino systems to guarded formulae, cf. Section 3.7. The interesting part is
to find a formula that axiomatises something that contains a homomorphic
image of the × -grid. This property is obviously far away from the
generalised tree model property that we have become used to in the context
of guarded logics. We require the following background on decidability and
reductions, for more details see [9].

Let L and L′ be formula classes. A conservative reduction from L to L′ is a
recursive function r : L → L′ such that for all ϕ ∈ L, ϕ is (finitely) satisfiable
iff r(ϕ) is (finitely) satisfiable, respectively. A logic L is a conservative
reduction class if there is a conservative reduction from FO to L. We utilise
the fact that a conservative reduction class inherits the undecidability of the
(finite) satisfiability problem for FO.

Lemma 6.3.5 (Grädel). Let L ⊆ FO be a recursive class of sentences that
is closed under conjunction with GF2-sentences. To establish that L is a
conservative reduction class, it suffices to exhibit a sentence ϕgrid ∈ L, con-
taining the binary predicates F,G (and possibly further auxiliary relations)
such that

(i) For all r ∈ there exists a k ∈ such that some expansion A of the
k · r-grid is a model of ϕgrid.

(ii) If A |= ϕgrid, then there exists a homomorphism from the infinite grid
to A.

To encode a domino system D, the formula ϕgrid ∈ L is combined with a
formula ϕD ∈ GF2 — therefore the requirement that L be closed under
conjunction with GF2 sentences. In our setting we use two ternary relations
NW and SE, or “North-West” and “South-East”, instead of the horizontal
and vertical successor relations, F and G. Additionally, for each domino type
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d we have a unary predicate Pd that gives the set of positions tiled by d.
Given a domino system D = (D,H, V ), consisting of a finite set of dominoes
D, and the horizontal and vertical compatibility relations H,V ⊆ D × D,
the following SGF1

3−-sentence ψD encodes the behaviour of D, whence the
above lemma can be equivalently stated with SGF1

3− in place of GF2.

∀x
∨
d∈D

Pd(x) ∧ ∀x
∧

d6=d′
¬(

Pd(x) ∧ Pd′(x)
) ∧

(∀xyz.NW (xyz))
[ ∨
(d,d′)∈H

(
Pd(x) ∧ Pd′(y)

) ∧ ∨
(d,d′)∈V

(
Pd(z) ∧ Pd′(x)

)]

For the formula ϕgrid we only need counting quantifiers of the form ∃=1,
which is still very near to only using functionality statements. For a more

intuitive reading we write
(

x y

z

)
for NW (xyz) and

(
x

y z

)
for SE(xyz)

to give a semi-graphical representation of these atomic statements.

For each NW -triangle we require exactly one SE-triangle that completes
the square, and one SE-triangle that continues the grid to the North.

ϕNW = ∀xyz.
(

x y

z

) [
∃=1u.

(
y

z u

)
∧ ∃=1uv.

(
y

v u

)
∧ ∃=1uv.

(
v

z u

)

∧ ∃=1uv.
(

x u

v

)
∧ ∃=1u.

(
u

x y

)
∧ ∃=1uv.

(
u

x v

)]
And, symmetrically, the same with switched roles for NW and SE.

ϕSE = ∀xyz.
(

x

y z

)[
∃=1u.

(
u x

y

)
∧ ∃=1uv.

(
u x

v

)
∧ ∃=1uv.

(
u v

y

)

∧ ∃=1uv.
(

u

v z

)
∧ ∃=1u.

(
x u

z

)
∧ ∃=1uv.

(
v u

z

)]
Let ϕgrid = ∃xyz.NW (xyz) ∧ ϕNW ∧ ϕSE . The first conjunction merely
has the role to exclude the empty structure as model for ϕgrid. Now ϕgrid

axiomatises structures that contain at least one grid of NW and SE triangles
as shown in Figure 6.2.

Proposition 6.3.6. ϕgrid axiomatises structures with disjoint infinite grids.

The proof is straightforward. To recapitulate, both ϕgrid and ψD can be
written in SGFC1

3− with NW and SE as guard atoms, or action predicates,
and state predicates Pd. Therefore SGFC1

3− is undecidable.
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NW

SE

NW

SE

NW

SE

NW

SE

NW

SE

NW

SE

· · ·

· · ·

...
...

...

Figure 6.2: The grid defined by NW and SE.

6.4 Transitive Guards

We now take a look at guarded fragments with transitive relations. The
base case is to consider transitivity for binary relations; they can be treated
like edge relations in graphs. By L+TRS we denote the extension of L
by transitive binary predicates, i.e. binary predicates that are required to
be interpreted by transitive relations. The restricted variant L+TG, for
transitive guards, allows transitive relations only at guard positions.

Theorem 6.4.1 (Grädel). GF1
3+TRS is undecidable.

Theorem 6.4.2 (Ganzinger et al.). GF2+TRS without equality is un-
decidable.

The proofs shows that transitivity statements can be used to enforce func-
tionality of a binary predicate. This is strong enough to produce undecid-
ability as in the proof of Theorem 6.3.1. On the other hand we have the
following recent theorem from [56].

Theorem 6.4.3 (Szwast, Tendera). GF+TG is decidable.

We now give an alternative, more straightforward proof of Theorem 6.4.3
that makes the tree-model property of GF+TG explicit. One part of the
given construction takes arbitrary sized sets that are guarded by a tran-
sitive relation and turns them into “equivalent” finite sets. This method
necessarily has one caveat.

Example. Consider the structure A = ( , T ) with one transitive binary
relation T , defined as the usual <-order on . This structure satisfies the
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GF+TG formula

ψ = (∀xy.T (xy))(x 6= y ∧ ¬T (yx) ∧ (∃z.Tyz)).

Any finite candidate A′ for a structure that is GF+TG-equivalent to A will
have to consist of circles of T -edges in order to satisfy the final clause of ψ.
However the transitive closure of a circle includes the reflexive closure, so
the first clause of ψ will not hold in A′.

To circumvent this issue we assume transitivity to include reflexivity; in this
sense a relation T is transitive iff it satisfies the following axiom.

∀xyz((Txy ∧ Tyz) → Txz) ∧ ∀xTxx

Define τR = {R1, . . . , Rnr ,=} to be a set of relation symbols, and τtrs =
{T1, . . . , Tnt} a set of transitive binary action predicates. In the following
we consider vocabularies of the form τ = τR∪̇τtrs.

Definition 6.4.4. Let B be a τ -structure. A set X ⊆ B is transitive-
guarded if there is a T ∈ τtrs such that the Gaifman graph of the {T}-reduct
of the substructure induced by X is connected.

Note that transitive-guarded sets can be arbitrarily large. To state that a
singleton or a pair of elements b or (b1, b2) is a guarded tuple in the usual
sense with guard atom from τtrs we will write τtrs-guarded. The equality
“=” is explicitly put into τR; the intention is that τR-guarded now refers
to guardedness in the usual sense, with all singletons guarded by x = x,
whereas τtrs-guarded strictly requires a τtrs-guard.

Without explicitly using the notion of a GF+TG-bisimulation we use a
special construction to build tree-like models for satisfiable GF+TG for-
mulae. The method is a blending of the unravelling technique for modal
and guarded logics, with some ideas from the canonisation for width-two
guarded bisimulation. The main observation is that we can perform a kind
of guarded unravelling of a GF+TG model with an upper bound on the
size of transitive-guarded sets. However this method is always relative to
a given formula, i.e. it does not give rise to, or employ, a general notion of
GF+TG-bisimulation.

Definition 6.4.5. Consider a sentence ψ ∈ GF+TG that is satisfiable, and
let B be a model of ψ. For b ∈ B and ρ ⊆ τ the type of b is defined as

tpψ,B,ρ(b) = {ψ′(x) ∈ cl(ψ) : B |= ψ′(b′), b′ ⊆ b} ∪ atpB,ρ(b).
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For brevity, we make it a habit to omit parameters that are clear from the
context. Since cl(ψ) is finite, there is a finite upper bound on the number
of distinct types that is independent of B — and independent of ρ ⊆ τ ,
because τ is finite and fixed.

Definition 6.4.6. Let C ⊆ B be a maximal transitive-guarded set and let
T ∈ τtrs be a transitive guard relation that verifies that C is indeed transitive
guarded in B. For every b ∈ C the augmented type aut(b) is defined as

autψ,B,C,T(b) = tpψ,B,τR∪{T}(b)

∪{tpψ,B,τR∪{T}(a, b) : {ab} ⊆ C,B |= T (a, b)}
∪{tpψ,B,τR∪{T}(b, a) : {ab} ⊆ C,B |= T (b, a)}.

Note that the second and third sets in the union are not necessarily disjoint.
Although the intention is in a fashion to disentangle transitive guarded sets,
there is no problem with keeping back and forth edges, i.e. where B |=
T (a, b) ∧ T (b, a). The aim is merely to prevent a pair of elements being
guarded by two different predicates, if not both of them belong to τR.

The size of aut(C) = {aut(b) : b ∈ C} depends on all parameters ψ, B,
C and T . However, for a finite number of types as seen above, there is
an upper bound Naut(ψ) for the number of distinct augmented types, that
depends only on ψ.

Two elements a and a′ with aut(a) = u and aut(a′) = u′ are compatible, if
tpψ,B,τR∪{T}(a, a′) ∈ u and tpψ,B,τR∪{T}(a

′, a) ∈ u′, or vice versa.

We now build a transitive guarded τR∪{T}-structure B[C, T ], that depends
on ψ, T,C, and an optional parameter c ∈ C. The structure B[C, T ] has
universe BC , and is built to adhere to the following properties.

(i) The size of B[C, T ] is bounded by O(| aut(C)|).
(ii) Each element a ∈ BC is associated with an element b = π(a) in B

(and c is in the image of π).

(iii) B[C, T ] behaves just like B|C with respect to T -guarded moves in the
semantic game for ψ.

The first two properties will directly follow from the construction algorithm.
The third property will be established in the proof of the following theo-
rem that uses the construction to build models of bounded tree width for
GF+TG formulae. We also assume that each B[C, T ] has normalised uni-
verse {1, . . . , |B[C, T ]|}.
First, for each u ∈ aut(C) choose an element bu ∈ C that realises u. If a



108 CHAPTER 6. ACTION GUARDED LOGICS

parameter c ∈ C is given, take that as representative for the type aut(c).
Start the construction of B[C, T ] with a fresh set of elements AC = {au :
u ∈ aut(C)} and define π(au) = bu, u ∈ aut(C). Until the last step of
the construction, B[C, T ] will be a graph consisting of the universe AC and
some T -edges, starting with TB[C,T ] = ∅.
Inductively continue as follows. For each a ∈ AC , and each binary type t ∈
aut(π(a)) where a does not have a T -successor, or in fact a T -predecessor, re-
spectively, depending on t; we make explicit the case of a successor, the pre-
decessor case is handled similarly, a′ in B[C, T ] such that tp(π(a), π(a′)) = t,
check whether there is an element a′ ∈ AC that is distinct from a and its
T -successors, such that tp(π(a), π(a′)) = t. If such an a′ exists, add a T -edge
from a and a′ in B[C, T ]. If no such a′ exists, introduce a fresh element a′,
make a′ a T -successor of a and define π(a′) = b′ for some element b′ where
tp(π(a), bt) = t.

This construction requires at most 3 · | aut(C)| steps. More precisely, for
each u ∈ aut(C) there are at most 3 elements a1, a2, a3 in B[C, T ] with
aut(π(ai)) = u. For suppose that there is an element a ∈ B[C, T ] that
requires, but does not yet have, a successor of type u. If a is distinct to
all of the ai, the construction can and will make one of them a successor of
a. If a is one of the ai, w.l.o.g. a = a1, then at most one of a2 and a3 is
a predecessor of a, and the other can and will be made a successor of a to
satisfy its requirement. Therefore the construction need never add a fourth
element of type u.

At this point, TB[C,T ] is, in general, not transitive. We need to show that
taking the transitive closure will only connect compatible elements. Consider
a pair (a1, an) that are the end-points of a T -path (a1, . . . , an), where n > 2,
i.e. two elements that will be connected by the transitive closure of TB[C,T ].
Let b1 = π(a1) and successively choose the bi for i ≥ 2 as T -successor of
bi−1 with aut(bi) = aut(π(ai)). Then, by transitivity of T in B, there is a
T -edge from b1 to bn, so aut(b1) = aut(π(ai)) and aut(bn) = aut(π(an)) are
compatible.

To complete the construction of B[C, T ], replace TB[C,T ] by its transitive
closure. Then, for each pair (a, a′) that is T -guarded, and hence compatible,
update B[C, T ] to reflect the atomic τR-type of (a, a′) as given by aut(π(a))
— and, equally, by aut(π(a′)).

Note that although the construction of the B[C, T ] has an air of canonisation
as considered earlier, it is not the real thing. Here the types of the individual
elements are only with respect to the (finite!) set of subformulae of ψ and
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atomic formulae, not any — however defined — notion of bisimulation, that
could, on infinite structures, produce an infinite number of distinct types.

We are now in a position to extend the definitions of K(B) and T(B) as
given in Section 4.4 to structures with transitive guards. This time the size
of the structures at each node is bounded by m = max(width(τ), 3 ·Naut(ψ))
and S contains all τR-guarded τR-structures and, for every T ∈ τtrs, all
transitive-guarded τR ∪{T}-structures of size at most m. Let G(B) contain
all pairs (g,R) where g ⊆ B is a τR-guarded list guarded by R, and all pairs
(t, T ) where t ⊆ B is a maximal transitive-guarded list via T ∈ τtrs. Again
we assume the A ∈ S to have the normalised universe {1, . . . , |A|}, and let
F be the set of all partial 1-1 maps ρ from {1, . . . ,m} to {1, . . . ,m} and
τ̃ = {PA : A ∈ S} ∪ {Eρ : ρ ∈ F}. Towards K(B), define the Eρ and PA

according to the following rules.

For Q ∈ τR, put (b, Q) ∈ G(B) into the PA where B|b is τR-isomorphic to
A via bi 7→ i.

For T ∈ τtrs, put (b, T ) ∈ G(B) into PB[b,T ].

For Q,Q′ ∈ τR, there is an Eρ-edge from (b, Q) to (c, Q′) iff ci = bρ(i) for all
i ∈ dom(ρ).

For T, T ′ ∈ τtrs, there is an Eρ-edge from (b, T ) to (c, T ′) iff there is a ∈ b∩c

with tpψ,B,τR(a) = tpψ,B,τR(π(ci)) = tpψ,B,τR(π(bρ(i))) for dom(ρ) = {i}.
For Q ∈ τR and T ∈ τtrs, there is an Eρ-edge from (b, Q) to (c, T ) iff
(bρ(i))i∈dom(ρ) is T -guarded in B and has the same (ψ,B, τR)-type as the
tuple (π(ci))i∈dom(ρ), and vice versa from (b, T ) to (c, Q) iff (ci)i∈dom(ρ) is
T -guarded in B and has the same (ψ,B, τR)-type as (π(bρ(i)))i∈dom(ρ).

Definition 6.4.7. The transition system K(B) is the τ̃ -structure

K(B) =
(
G(B), (Eρ)ρ∈F , (PA)A∈S

)
.

In this setup, if v ∈ G(B) we denote by Av the unique A ∈ S for which
PA holds at v. The unravelling T(B) is obtained from K(B) as in Def-
inition 4.4.3. These trees satisfy the consistency conditions (a) and (b)
according to Definition 4.5.1, which suffices to build D(T(B)) as per Defi-
nition 4.5.3.

Theorem 6.4.8. GF+TG has the generalised tree model property.

Proof. Let ψ be a satisfiable GF+TG sentence in GF+TG0 normal form
and let B be a τ -structure. We show that B |= ψ iff B∗ = D(T(B)) |= ψ.
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Claim. For every ϕ(x) ∈ cl(ψ) and v = v0ρ1v1 · · · vn ∈ T(B), vn = (b, Q),

1. if Q ∈ τR, then B |= ϕ(b′) iff B∗ |= ϕ(b∗)
for every b′ = (bi1 , . . . , bij ) ⊆ b and b∗ = ([v, i1], . . . , [v, ij ]),

2. if Q = T ∈ τtrs, then B |= ϕ(b′) iff B∗ |= ϕ(b∗)
for every τtrs-guarded b′ ⊆ b and τtrs-guarded a′ ⊆ Avn

∼= B[b, T ] with
tpψ,B,τR∪{T}(π(a′)) = tpψ,B,τR∪{T}(b

′) and b∗i = [v, a′i], 1 ≤ i ≤ |a′|,
and ϕ not a τtrs \ {T}-literal.

If ϕ is a literal, the claim follows from the construction. In case 1 we can
track the atomic τR-type of b in B to Avn , i.e. the function (1, . . . , j) 7→
(b1, . . . , bj) is a τR-isomorphism. Going further from K(B) to T(B) does not
change the atomic τR-type, just as the final step from T(B) to B∗, which
maps each ` in Avn to [v, `] in B∗. In case 2 it is explicitly required that
tp(π(a′)) = tp(b′), so in particular the atomic τR ∪ {T}-types of a′ in Avn

and b′ in B coincide. The further steps are as in case 1, this time with b∗

defined in terms of a′ at v.

If ϕ is of the form ϑ ∨ ζ, ϑ ∧ ζ or ¬ϑ, the claim follows immediately by
induction hypothesis for ϑ and ζ.

If ϕ is of the form (∃6=y.ρ(x,y) ∧ α(y))ϑ(y), and α is a τR-atom, we are
actually in the same situation as in Lemma 4.5.4, if slightly in disguise. The
same arguments basically go through here too, e.g. suppose that there is a
guarded list a′ ⊆ B for which B |= ρ(b′,a′) ∧ α(a′) ∧ ϑ(a′). Then, by the
properties of an unravelling, there is a node vn+1 = (a, R) in B∗, where
R is the guard relation from α, such that a ⊇ a′, and we can choose a∗

as a tuple corresponding to a′ such that B∗ |= ρ(b∗,a∗), and by induction
B∗ |= α(a∗) ∧ ϑ(a∗).

Similarly if ϕ is of the form (∃6=x.α(x))ϑ(x), and α is a τR-atom, we get
the claim by induction hypothesis for α(x) and ϑ(x), case 1, considering all
guarded lists simultaneously. And if α is a τtrs-atom, then ϑ is a positive
Boolean combination of τR-literals and quantified formulae, hence induction
for ϑ(x) and α(x), case 2, yields the claim for ϕ.

If ϕ is of the form (∃y.T (x, y))ϑ(x, y), T ∈ τtrs, consider any maximal
transitive-guarded sets C ⊆ B and C∗ ⊆ B∗, both transitive-guarded by T .
Suppose there are elements a ∈ C and a∗ ∈ C∗, a∗ = [v, i] for the v where C∗

lives and some i, and tpψ,B,τR∪{T}(a) = tpψ,B,τR∪{T}(π(i)), for the π used
in constructing B[C, T ]. Then, according to the construction of B[C, T ],
for every T -successor b ∈ C of a, there is a T -successor b∗ ∈ C∗ of a∗ such
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that for b∗ = [v, j] we have tpψ,B,τR∪{T}(a, b) = tpψ,B,τR∪{T}(π(i), π(j)),
and vice versa. For every such pair b, b∗, induction via case 2 of the claim
yields B |= ϑ(a, b) iff B∗ |= ϑ(a∗, b∗). Putting everything together, there is
a T -edge starting from a that satisfies ϑ iff there is a T -edge from a∗ that
satisfies ϑ. With the preconditions of case 2 this shows the claim.

The case of quantifying over T -predecessors is handled likewise. 2

Theorem 6.4.9 (Goncalves, Grädel). Let L be a logic, C a class of
structures such that

(i) L has the generalised tree model property on C,
(ii) L can be equivalently translated into GSO on C.

Then SatC(L), the satisfiability problem for L on C, is decidable.

By Theorem 6.4.8, GF+TG has the generalised tree model property on
the class T of all τ -structures where the τtrs-predicates are interpreted by
transitive relations. Clearly, on T GF+TG is syntactically a subset of GSO.

Corollary 6.4.10. GF+TG is decidable.
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Chapter 7

Canonical Structures

For many applications it is necessary to concern oneself with the question of
how amiable towards canonisation a given logic, or rather its corresponding
bisimulation, is. The term “canonisation” may seem, and indeed is, a little
shaky with respect to a precise mathematical definition. Given a notion
of bisimulation equivalence, the idea is to find a canonical, in the spirit
of canonisation usually small or smallest possible, representative for every
bisimulation equivalence class of structures.

An application of canonisation is in the realm of relational databases that
are given as finite relational structures. The small size, and possible other
structural properties of the canonical representatives, can lead to more effi-
cient query evaluation; find the canonical companion to the given database
and perform all subsequent queries on this — small — structure.

In descriptive complexity theory, canonisation can help to show capturing re-
sults, since any computation can be made bisimulation invariant by prepend-
ing an appropriate canonisation procedure [51]. Here the crucial feature of
the representative structure is not its size, but the fact that it can be deter-
ministically computed.

Note. Throughout this chapter all structures are assumed to be finite.
Furthermore, the following complexity assessments are based on an arbi-
trary, but fixed, vocabulary, i.e. the size of the vocabulary, and, wherever
appropriate, the maximal occuring arity of a relation symbol, are taken as
constant.

113
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7.1 Modal Canonisation

For modal bisimulation, factoring out modal bisimulation equivalence yields
minimal canonical structures — in the canonical version every bisimulation
type occurs only once. We use the Paige-Tarjan-algorithm as core of an
efficient implementation of modal canonisation [53].

Theorem 7.1.1 (Paige,Tarjan). Let G = (V,E, (Pi)1≤i≤k) be a transition
system where the (Pi)1≤i≤k partition V . The bisimulation classes of G are
computable in time O(|E| log |V |).

A graph in our usual format K = (V, (Ea)a∈A, (Pb)b∈B) can be made eligible
as input to Theorem 7.1.1 by adding intermediate nodes to carry the edge
labels, and initially partitioning the nodes according to their atomic type.

For every edge (u, v) with label a this produces a new node (u, a, v) that
carries the (new) predicate Pa, and two unlabelled edges (u, (u, a, v)) and
((u, a, v), v). The size of the vocabulary is seen as constant, hence the com-
plexity of this preprocessing is in the order of the size of the output, |V |+|E|
nodes and 2|E| edges. The combined complexity of preprocessing and the
Paige–Tarjan procedure therefore is O(|E|+ |V |+2|E| log(|E|+ |V |)), which
reduces to O(|V | + |E| log |V |) for non-trivial inputs. Under the (mild)
assumption that the input graphs are “not too sparse” in the sense that
|E| ≥ c · |V |, for some fixed c > 0, we end up with the original O(|E| log |V |).
Performing the Paige–Tarjan procedure yields a partitioning of the prepro-
cessed input structure into the occuring bisimulation classes. The nodes
that represent edges, and the nodes that are copies of original nodes, can
never coexist inside of a bisimulation class, as the latter never carry labels
Pa for a ∈ A.

The universe of the canonical companion K− = K/∼ consists of the bisimu-
lation classes [u] for every class where u is a node of the original input, i.e.
V − = {[v] : v ∈ V }. Then let [v] ∈ P−

b ⇐⇒ v ∈ Pb. This construction
is well defined. If [v] = [w], then K, v ∼ K, w and v ∈ Pb ⇐⇒ w ∈ Pb.
Towards the edges, to decide whether ([v], [w]) ∈ E−

a choose an arbitrary
v′ ∈ [v] and check all Ea successors w′ in K if they belong to [w]. This
step requires at most one iteration over all nodes, and one over all edges,
respectively, and thus does not increase the total complexity.

It can be easily verified that Z = {(v, [v]) : v ∈ V } is a bisimulation
between K and K−. For every v ∈ V , compatibility for the unary predicates
Pb with [v] ∈ V − is ensured by the definition. For the back condition,
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consider a pair (v, [v]) ∈ Z and some [w] such that ([v], [w]) ∈ E−
a . It is

not necessarily the case that (v, w) ∈ Ea, but since ([v], [w]) ∈ E−
a , there

are v′ ∈ [v] and w′ ∈ [w] such that (v′, w′) ∈ Ea. Now v′ ∼ v, so there
has to be an Ea-successor u of v such that w′ ∼ u, or u ∈ [w] = [w′] is the
desired Ea-successor such that (u, [w]) ∈ Z. The forth condition is checked
similarly.

Algorithm 1 Modal Canonisation
Input: Graph K

let B′ = A ∪B, A′ = ∅
initialise K′ with universe V and no edges
for all a ∈ A and (u, v) ∈ EK

a do
add new node (u, a, v) to V ′ and let (u, a, v) ∈ PK′

a

add new edges (u, (u, a, v)) and ((u, a, v), v) to E′

end for
invoke Theorem 7.1.1 for K′

initialise K− with universe V − = {[v] : v ∈ V } ⊂ K′−

for all a ∈ A and [v] ∈ V − do
for all a-successors w of v in K do

add new edge ([v], [w]) to EK−
a

end for
end for

Output: Canonical K−

Beating around the bush of an exact formal definition, we nail down canon-
isation as follows. Given a notion of bisimulation equivalence, canonisation
is an efficient, in this context: polynomial time, procedure that maps its
input to a smallest possible bisimilar output structure that depends only on
the bisimulation class of the input.

The construction given above effectively shows that modal canonisation can
be performed efficiently. Even more, it actually retains all occurring bisim-
ulation types, not just the ones pertaining to some connected component.
Therefore it respects total bisimulations between structures, rather than
the weaker form that compares the subgraphs reachable from some pair of
distinguished nodes.

Proposition 7.1.2. Modal bisimulation allows canonisation.

The canonisation procedure for modal bisimulation is a good example of
how well behaved modal bisimulation is with respect to manipulations of
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structures. The problems of building a finite model from a tableau in Chap-
ter 5 showed that this property unfortunately does not always carry over
into the guarded world.

On the other hand, the transformations between structures and graphs given
in Chapter 4 suggest something like forming D(K(B)−) to find a canonical
structure wrt. guarded bisimulation, for relational structures B. Unfortu-
nately this simple approach does not work, and has so far appeared to be
rather stubborn towards regaining a canonisation procedure — at least for
the case of full guarded bisimulation.

As first counter example, let B be the graph that consists of two nodes 1, 2,
connected by one undirected edge. Then K(B) has four nodes, corresponding
to the guarded lists (1), (2), (1, 2) and (2, 1). The two singleton lists have
the same bisimulation type in K(B), so they will be identified in K(B)−; the
same is true for (1, 2) and (2, 1). Going further, the universe of D(K(B)−)
only has a single element, which can not be guarded bisimilar to B.

With a little additional work, a solution can be found for guarded bisimu-
lation on graphs, and for AGF1-bisimulation on arbitrary structures.

7.2 Width-2 Guarded Canonisation

To obtain a deterministic algorithm, this is the point where we require an
order on the edge types that were introduced for the atomic expansions in
Section 4.1, and an order on GF-types of width 1. Following the lead from
Section 2.2, we assume that τ is ordered, whereby the edge types — sets of
literals — are ordered according to their val-values. For GF-types of width 1
that can be realised on finite graphs, we use the following weaker version of
a theorem shown in [16, 19].

Theorem 7.2.1 (Dawar). For every ordered finite vocabulary of graphs τ

there is an FO+LFP-formula that defines an order on the canonical version
of the atomic expansion of all τ -graphs K, i.e. an order on (K+)−.

Every GF-type of width 1 in K has a corresponding1 bisimulation type in
K+, each of which is realised exactly once in (K+)−. In other words, Theo-
rem 7.2.1 implies that an order on the width-1 guarded bisimulation types

1Since finite structures are ω-saturated, two nodes are guarded bisimilar iff they are

GF-equivalent
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occurring in K can be found in polynomial time. That is, as long as com-
putation of K+ and (K+)− can be achieved in polynomial time, the latter
which was shown in the previous section.

Creating K+ from K requires an iteration over all pairs of nodes (v, w) with
accumulation of the respective edge type. The val-value of an edge type
can be found by replacing each literal by its respective val-value, and then
sorting the resulting vector of integers.

A canonisation algorithm whose result is merely required to be one of the
possible smallest structures that is guarded bisimilar to the input, not nec-
essarily the same for distinct, but guarded bisimilar, inputs, the fiddling
around with orders is unnecessary. The previously mentioned case of canon-
isation for more efficient database queries is an obvious candidate where this
weaker version will normally suffice. In the proof below we present the full
deterministic construction.

Theorem 7.2.2. Guarded bisimulation for width 2 allows canonisation.

Proof. Let K = (V, (Ea)a∈A, (Pb)b∈B) be a finite graph and, for some
suitable index set I, let T1 = {pi(x) : i ∈ I} be the set of GF-types of
width 1 that are realised in K. Let T2 be the set of edge types of K, and
let K+ be the atomic expansion of K. Suppose that A and B are ordered,
whence the discussion above shows that an order on T1 and T2 can be found
in polynomial time. Further, assume that I is ordered such that pi < pj iff
i < j for all i, j ∈ I.

For each i ∈ I let ki ∈ K be an element that realises pi. For every pair
i, j ∈ I let types(i, j) ⊆ T2 be the set of all edge types t ∈ T2 where there
are a, b ∈ K such that a realises pi, b realises pj , and t is the edge type of
(a, b). Using K+, the sets types(i, j) can be found by iterating over all pairs
of nodes and collecting the edge types for each occuring pair of GF-types.

Let ni = max{| types(i, j)|+ε(i, j) : j ∈ I}, where ε(i, j) ∈ {0, 1} is 1 iff i =
j. We define the canonical graph C for K via its edge expansion C+. For every
type pi ∈ T1 the universe of C+ contains the elements {p0

i , p
1
i , . . . , p

ni−1
i }.

The unary predicates in C+ are chosen such that the atomic type of every
p`

i matches that of pi.

The edges are added inductively, starting with the smallest pi ∈ T1. Suppose
that all ph

j for j < i already have their neighbours in C+, i.e. all edges that
will be adjacent to any of the ph

j have been added earlier. For all j ∈ I

proceed as follows. Let t1 < · · · < tn be an enumeration of types(i, j)
that respects the order, and subsequently consider every tk. If p`

i is not yet
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Algorithm 2 GF2 Canonisation
Input: Graph K over ordered vocabulary τ

let T1 be the set of occuring GF-types of width 1
let T2 be the set of occuring edge types
create K+ as per Section 4.1
invoke Proposition 7.1.2 on K+ to create (K+)−

invoke Theorem 7.2.1 on (K+)− to order T1

for all i, j ∈ I do
compute types(i, j) /* see text */

end for
let C+ be the empty structure
for all i ∈ I do

let ni = max{| types(i, j)|+ ε(i, j) : j ∈ I}
add {p0

1, . . . , p
ni−1
i } to C+, atomic type same as i-th type of T1

end for
for all i ∈ I do /* from smallest to largest */

for all j ∈ I do /* from smallest to largest */
for all 0 ≤ ` ≤ ni do /* from smallest to largest */

for all k ∈ | types(i, j)| do /* from smallest to largest */
if there is no m with a tk-edge from p`

i to pm
j then

let m = (` + k + 1 mod nj)
while p`

i and pm
j are connected do

let m = (m + 1 mod nj)
end while
add tk-edge from p`

i to pm
j in C+

end if
end for

end for
end for

end for
undo encoding of edge types to create K− = C from C+

Output: Canonical K−
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incident to a node of type pj via a tk-edge, let m be the first integer modulo
nj , starting from ` + k + 1, where p`

i and pm
j are not connected in C+, and

add a tk edge from p`
i to pm

j .

The total number of repetitions of the inside of this nested loop is polynomial
in the number of occuring width-1 GF-types, the number of edge types, and
the sum of the ni. Further, it is shown below that the resulting canonical
structure is of minimal possible size. This implies that the sum of the ni

values is at most the size of the given input structure. Summing up, the
computation of the sets types(i, j), and therefore C+, is polynomial time.

The nj are large enough to prevent the construction from introducing mul-
tiple edges into C+. Therefore we can undo the edge-type encoding of C+

to obtain the desired C. For a reasonable representation of C+, this can be
done in linear time in the size of this representation.

Towards correctness, regard the set Z = {(a, p`
i) ∈ K × C : K |= pi(a)}

which clearly is a total bisimulation Z : K+ ∼ C+, so, by Corollary 4.1.3, K

and C are guarded bisimilar.

Further, C is minimal in the sense that for every pi ∈ T1, and every structure
B ∼g K, the number of elements that realise pi in B has to be at least ni.
For suppose that this is not the case. Then there is a j such that there
are less than | types(i, j)| + ε(i, j) elements that realise pi in B. For every
bj ∈ B that realises pj , there are at most | types(i, j)| − 1 elements of type
pi to connect to, however | types(i, j)| different atomic types of width 2 to
realise, a contradiction. 2

7.3 AGF1 Canonisation

The other case where we can give a concise algorithm allows arbitrary width,
but is restricted to the AGF1 quantifier pattern. Then a re-use of modal
canonisation through an appropriate encoding of structures, similar to the
methods presented in Chapter 4, can be used.

Theorem 7.3.1. AGF1-bisimulation allows canonisation.

Proof. Let B be a τs∪̇τa-structure. Similar to the construction of K(B) in
Section 4.4, we associate a graph G(B) with B. Suppose that the maximal
arities in τa are min and mout, i.e. for all R ∈ τa, the arity (i, j) of R

satisfies i ≤ min and j ≤ mout. Let mstate be the maximal arity of the
state predicates in τs. Let S be the set of all τs∪̇τa-structures with universes
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{1, . . . , k}, 1 ≤ k ≤ m = max{min,mout,mstate}. Let H contain all atomic
statements α(x;y) built with actions from τa.

The vocabulary τ̂ has predicates

PA (monadic) for A ∈ S,

Eα (binary) for α ∈ H.

Let M = M(B) contain, as tuple, an arbitrary linearisation of every max-
imal active set, and every maximal guarded set, of B. Technically this
requires the input structure to be ordered, as is implicitly the case for most
common computation models. The algorithm is however order invariant.
The isomorphism class of the canonical structure obtained at the end of this
proof does not depend on the precise choice of how the universe, and the
considered subsets, are ordered. The transition system G(B) is the following
τ̂ -structure.

G(B) =
(
M(B), (Eα)α∈H , (PA)A∈S

)
PA =

{
(b1, . . . , bk) ∈ M : B|{b1,...,bk} ' A via bi 7→ i

}
Eα =

{
((c1, . . . , cl), (d1, . . . , dk)) : B |= α(c1, . . . , cl; d1, . . . , dk)

}
Here, as an exception, α(x;y) does not mean that all variables x and y

actually occur in the atomic statement α. This construction can be done
in polynomial time. Finding M(B) is a matter of iterating over all tuples
in action relations and updating a sorted list of maximal active or guarded
sets. Finding the correct PA-label for each resulting set is a sequence of
lookups for all possible atomic statements. Since m is assumed constant,
this is still polynomial. For the same reason, finding all Eα-edges can be
done efficiently by checking every possible combination of subsets of pairs
of tuples in M(B) for edges in B.

We claim that the reduced graph G(B)− can be converted back into a τs∪̇τa-
structure B− that is AGF1-bisimilar to B. Towards this proposition, note
that G(B) does not induce an equivalence relation on the elements in the
PA-labels — as was the case in the K(B) construction. Then, for every
v ∈ G(B)− let Av be the unique A ∈ S that holds at v. The canonical-to-
be B− is defined as disjoint union of all Av, v ∈ G(B)−, plus the atomic
information recorded in the Eα. That is,

B− =
⋃̇

v∈G(B)−
Av =

{
(v, i) : v ∈ G(B)−, i ∈ Av

}
,

and for every v ∈ G(B)− the function that maps all i ∈ Av to (v, i) is an
isomorphic embedding of Av into B−, and finally Eα(v, w) holds in G(B)−
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iff α((v, 1), . . . , (v, l); (w, 1), . . . , (w, k)) holds in B−, for l = |Av|, k = |Aw|.
This is a straightforward transformation that iterates once over the nodes
and edges, in that order, to successively build B−.

Algorithm 3 AGF1 Canonisation
Input: Structure B over ordered vocabulary τa∪̇τs

find maximal arity m = max{min,mout,mstate}
create set H of all τa-action statements
create set S of all τ -structures of size ≤ m

initialise M(B) as empty list
for all R ∈ τs, a ∈ R do

let M( = {c ∈ M : c ( a}
let M⊇ = {c ∈ M : c ⊇ a}
if M⊇ is empty then

insert a into M(B)
erase all c ∈ M( from M(B)

end if
end for
for all R ∈ τa, (a; b) ∈ R do

/* conditionally update M with a and b as above */
end for
initialise G(B) with universe M(B)
for all c ∈ M(B) do

add correct PA-label to G(B)
end for
for all a, b ∈ M(B) do

add all appropriate Eα-edges to G(B)
end for
invoke Proposition 7.1.2 for G(B)
let B− =

⋃̇{b ∈ G(B)−}
for all α ∈ H, (v, w) ∈ Eα do

add action statement corresponding to (v, w) to B−

end for
Output: Canonical B−

For b ∈ M , let [b]∼ be the bisimulation equivalence class of b, seen as node
of G(B), which is the same as to say that v = [b]∼ is the node of G(B)−

that is bisimilar to b. Let fb be the function that maps every bi ∈ B to
(v, i) ∈ B−. Clearly every fb is a partial τs-isomorphism. Define I as the
smallest set of functions that contains {fb : b ∈ M} and is closed under
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subfunctions.

If f : B → B− ∈ I, given as b = f(a), then I is an AGF1-bisimulation
from B,a to B−, b. Since I covers B and B− completely, it suffices to show
that I satisfies the back and forth conditions to prove that B and B− are
AGF1-bisimilar.

For forth, let f : X → Y ∈ I, a ⊆ X active and B |= α(a;a′) for some
α = R(i1, . . . , il; j1, . . . , jk), R ∈ τa, and c, c′ ∈ M , X ⊆ c, such that
a = (a1, . . . , al) = (ci1 , . . . , cil), a′ = (a′1, . . . , a′k) = (c′j1 , . . . , c

′
jk

). Let
f ′ = fc′ |a′ , by definition an element of I, and let b′ = f ′(a′), b = f(a). By
construction, in this situation there is an Eα-edge from c to c′ in G(B), and
consequently also an Eα-edge from [c]∼ to [c′]∼ in G(B)−. Now b is noth-
ing else than (([c]∼, i1), . . . , ([c]∼, il)), and b′ is (([c]∼, j1), . . . , ([c]∼, jk)), so
B− |= R(b; b′) as desired.

In the back direction, let f and α be as above, and let B− |= α(b, b′) for
some b ⊆ Y , b′ ∈ B−. Again we can find some c, c′ ∈ M such that b =
(([c]∼, i1), . . . , ([c]∼, il)) and b′ = (([c]∼, j1), . . . , ([c]∼, jk)). By definition of
B−, B− |= α(b, b′) implies that there is an Eα-edge from [c]∼ to [c′]∼ in
G(B)−, therefore we can find a c′′ ∈ M that is bisimilar to c′, and an Eα-
successor of c in G(B); we have G(B), c′′ ∼ G(B), c′ ∼ G(B)−, [c′]∼. Then
with a = f−1(b) and a′′ = (c′′i1 , . . . , c

′′
ik

) we know that B |= α(a,a′′). With
our choice of c′′, the desired f ′ can be obtained as fc′′ |a′′ . 2

7.4 Guarded Canonisation

In this section we try to give some intuition into why no canonisation proce-
dure for guarded bisimulation has been found so far, and indeed might not
even exist at all. Of course it is possible to enumerate all structures, from
small to large, and check each one whether it is guarded bisimilar to the
given input structure. While this does succeed in deterministically finding a
minimal bisimilar companion structure, the complexity of the enumeration
of structures and bisimulations obviously prohibits any practical use.

Conjecture 7.4.1. Guarded bisimulation does not allow canonisation.

The crux seems to lie in finite graph representations of structures, in par-
ticular their consistency conditions. For our means, a graph representation
is consistent if it can be transformed back into a relational structure in an
appropriate fashion. For guarded bisimulation we considered the transition
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systems K(B), and their tree versions T(B). We showed that, independent
of these transformations, a first-order definable class of trees of the right
format can be transformed back into structures in a manner that bisimula-
tion on trees corresponds to guarded bisimulation on the transformed-back
structures. The other crucial property of the class of consistent trees is that
it is closed under bisimulation. The heart of the problems is the combination
of these two requirements.

Suppose that τ contains a ternary predicate R, and consider the class of
graphs of vocabulary τ̃ , i.e. the graphs with the same vocabulary as the
K(B)-representations, cf. Section 4.4, for τ -structures B. Some of these
graphs exhibit exactly the same situation as the dormant clashes in Chap-
ter 5. For an example, consider a graph K that contains two nodes v, w,
each labelled with the structure A = ({1, 2, 3}, R = {(1, 2, 3)}). Suppose
that there are three distinct paths p1, p2, p3 of length at least 2 that lead
from v to w, and that the ρ-labels along the paths amount to ρ1 = (1 7→ 2),
ρ2 = (2 7→ 3) and ρ3 = (3 7→ 1). A simple local consistency condition is
unable to detect that the atomic information at v and w is contradictory. To
make all relevant information locally available one could enforce that, in the
terms of Section 4.5, the set of nodes where a ≈-class is represented forms
a clique, and for every pair of nodes there is a ρ-edge that contains a map-
ping for the element in question. This requirement however is completely
incompatible with closure under bisimulation equivalence.

For guarded logics on graphs, i.e. guarded bisimulation of width 2, edge ex-
pansion creates this correspondence between width-2 guarded bisimulation,
and modal bisimulation. The consistency condition for any finite or infi-
nite graph or tree in the vocabulary of an atomic expansion is that it may
not have multiple edges, again expressible in first-order logic. The simple
consistency check made the canonisation algorithm for this case possible,
although the modal canonisation procedure failed.

The other case was AGF1-bisimulation, where the encoding of structures
as graphs differs from the guarded case in that a guard statement R(a; b)
leads to two distinct nodes, one each for a and b, respectively. Although
the arity is not restricted, this more closely matches the modal case where
quantification is a move that loses the old position. The effect is that without
the need to share elements between nodes, we do not require any consistency
condition at all. This made it possible to use modal canonisation as core of
AGF1-canonisation.

In other words, graph encodings are intuitively easy to handle when at
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least one of (a) graphs are trees, (b) graphs are for structures of width-2,
or (c) background is a bisimulation for a quantifier pattern that does not
retain source elements, applies. Compare also the tableau algorithm for
modal logics. Building the actual tableau, and retrieval of an infinite, tree-
like model [35] are significantly less involved with respect to consistency
conditions than the construction that gave us finite models. What this boils
down to is that guarding the quantifiers is not the whole truth about modal
logics.

A solution, and in particular an encoding that allows a simple consistency
condition for finite graph representations with respect to full guarded bisimu-
lation, has so far been quite elusive. Unfortunately this also hinders progress
in direction of finite model theory versions of the bisimulation invariant frag-
ment characterisation theorems, as will be seen in Chapter 8.



Chapter 8

Higher-Order Logics

In this chapter we will give an example of how the transformations be-
tween structures and graphs can be used to obtain a non-trivial result about
guarded logic, employing the equivalent modal version. To this end, the back
and forth transformations for structures from Chapter 4 are supplemented
with corresponding translations for guarded second-order logic in one, and
the modal µ-calculus in the other direction. A characterisation theorem for
the guarded bisimulation invariant fragment of guarded second-order logic
is obtained. This closes a gap, namely that the corresponding results from
modal logic have so far only been known for the first-order level of guarded
logics.

Beyond the general case, the study of the corresponding finite model theory
variants has up to this point proven to be more difficult, and indeed beyond
the first-order level little is yet known. This chapter concludes with an
automata-theoretic approach that enables a small step in this direction for
a weaker variant of monadic second-order logic.

8.1 Back and Forth

Recall the characterisation of the modal µ-calculus from Theorem 2.6.6. We
want to apply this characterisation in restriction to trees, and therefore refer
to the following variant, which is proved en route to Theorem 2.6.6 in [44].

Theorem 8.1.1 (Janin, Walukiewicz). A class of trees is definable in
the modal µ-calculus if, and only if, it is definable in monadic second-order
logic and closed under bisimulation within the class of all trees.

125
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Towards a reduction of Theorem 8.1.11, in the case of sentences, to The-
orem 8.1.1, we define a “forth” translation that maps every sentence ψ ∈
GSO[τ ] to a formula ψ→(x) ∈ MSO[τ̃ ] with one free variable, and a “back”
translation that maps every formula ϕ ∈ Lµ[τ̃ ] to a sentence ϕ← ∈ µGF[τ ].
These translation will be such that

(1) If T is a consistent tree with root λ, then T |= ψ→(λ) iff D(T) |= ψ.

(2) If B is a τ -structure and λ the root of T(B), then T(B), λ |= ϕ iff
B |= ϕ←.

It follows from (1) with Proposition 4.5.5 that GSO sentences that are in-
variant under guarded bisimulation are mapped to MSO formulae that are
bisimulation invariant on consistent trees; cf. Corollary 8.1.7 below.

Before giving the formal definitions, we informally discuss the main problems
arising from the differences between the guarded and the modal viewpoint.

We wish to translate GSO sentences to MSO formulae and Lµ formulae
back to µGF sentences. We want a modal formula to hold at some node v

if, and only if, the corresponding guarded formula holds of the guarded list
represented by v. For second-order variables we need to map sets of guarded
tuples to sets of nodes and vice versa.

For each node v of a consistent tree T, the associated structure Av (if not
empty) represents many different guarded tuples, which may or may not
occur in a given guarded set, independently of each other.

In the translation that takes us from relational structures to trees, a second-
order variable, which ranges over some guarded relation in the relational
structure, has to be coded by several monadic second-order variables over
the tree, each one containing the information about membership of one
particular guarded tuple of components that live at the corresponding node.
We translate an r-ary second-order variable Z in a GSO sentence into a
sequence Z→ of monadic variables Zi1,...,ir , one for each (local) choice of
elements from the guarded list. The idea is that v ∈ Zi1,...,ir for a node v

representing a guarded list ([v, 1], . . . , [v, k]) stands for ([v, i1], . . . , [v, ir]) ∈
Z.

In the other direction we have to deal with monadic second-order variables,
which range over arbitrary sets of nodes of the tree, and in particular over
sets of nodes of different sizes, corresponding to guarded lists of different
lengths. We choose a translation that effectively splits up any monadic
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second-order variable X into disjoint parts, each corresponding to nodes of a
fixed size, before translating these parts into guarded relations of appropriate
arity. Consequently, a monadic second-order variable X is translated into
a sequence X← of second-order variables Xi, 0 ≤ i ≤ m, such that each Xi

ranges over guarded lists of length i. The idea is that d ∈ Xi stands for
v ∈ X where the guarded list d has length i and is represented at node v.

8.1.1 From GSO to MSO

Without loss of generality we restrict attention to GSO sentences in GSO0,
cf. Corollary 4.2.3. Let m be the width of τ , i.e. the maximal arity of rela-
tions in τ . If Z is an r-ary second-order variable, Z→ = (Zi1,...,ir)i1,...,ir≤m

is the corresponding sequence of monadic predicates according to the above
discussion.

Definition 8.1.2. Let T be a consistent τ̃ -tree, and let D(T) be the associ-
ated τ -structure. A tuple J→ of monadic predicates Ji1,...,ir on T encodes an
r-ary guarded relation J on D(T) iff Ji1,...,ir = {v : ([v, i1], . . . , [v, ir]) ∈ J}
for all i1, . . . , ir ≤ m.

Not all sequences J of monadic predicates over T do indeed encode a guarded
relation over D(T). To do so, they have to satisfy the following correctness
conditions.

(a) Ji1,...,i` only contains nodes v where all ij are in Av.

(b) J is consistent on tuples living at different nodes, i.e. if in D(T) a tuple
(d1, . . . , dr) is represented by (i1, . . . , ir) at node u and by (j1, . . . , jr)
at node v, then u ∈ Ji1···ir iff v ∈ Jj1···jr .

Lemma 8.1.3. For each r ≤ m there exists a first-order formula correct(Z→)
that expresses the correctness conditions (a) and (b) above.

These conditions are necessary and sufficient in the sense that a tuple J

over a consistent tree T encodes a guarded relation on D(T) if, and only if,
T |= correct(J).

Proof. Note that it suffices to express condition (b) for adjacent nodes
to enforce it globally. Thus the consistency requirement for Z→ can be
expressed by a first-order formula correct(Z→) that states condition (a) in
an obvious way and contains, for each ρ ∈ F and each tuple (i1, . . . , ir) over
dom(ρ) a clause

∀x∀y[
Eρxy → (

Zi1,...,ir(y) ⇐⇒ Zρ(i1),...,ρ(ir)(x)
)]

.
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The proof of the adequacy claim is straightforward. 2

First-order quantifiers also require special treatment. Let us first consider
the case where T is a tree representation T(B). As noted earlier, such trees
satisfy the strong homogeneity condition that for all nodes u, u′ and all
successors v of u there is a successor v′ of u′ such that the subtrees with
roots v and v′ are isomorphic. To put it differently, an indistinguishable
copy of any guarded list anywhere in B is available locally, at some child
of the current node in T(B). Therefore guarded first-order quantifications
over B can be simulated over T(B) by moving to an immediate successor
of the current node (i.e. by a modal quantifier 3 or 2). However, in the
relationship between T and D(T), if T is an arbitrary consistent τ̃ -tree, this is
no longer the case. To verify a formula of the form (∃6=y . ρ(x,y)∧α(y))ϕ(y)
we want to move from the current tuple x to a new tuple y, guarded by α,
such that ϕ(y) is true and the overlap conditions for x and y as stated by
ρ(x,y) are satisfied. In arbitrary consistent trees, such a witness need not
exist locally, but may only occur as a remote node, which is linked to the
current node by a path along which the common components according to
ρ are kept.

Example. Let τ = {R}, R ternary, and consider the GF0 formula ϕ(y1) =
(∃6=x2x3.R(y1x2x3)). We give a partial description of a series of consistent
τ̃ -trees Tn as follows (explicitly exhibiting only the parts relevant to this
example). Tn has nodes λ, v0, v1, . . . , vn (plus some extra nodes required by
consistency condition (c) in Definition 4.5.1); Aλ = ∅, Avi = ({1}, RAvi =
{(1, 1, 1)}) for i < n and Avn = ({1, 2, 3}, RAvn = {(1, 1, 1), (1, 2, 3)}). There
is an E∅-edge from λ to v0, and for each i = 1, . . . , n there is an E∅ and an
Eρ-edge from vi−1 to vi, where ρ is the function that maps 1 to 1.

Observe that D(Tn) = Avn and consequently D(Tn) |= ϕ([v0, 1]) for all n.
Whatever the exact definition of ϕ→(z), we expect that Tn |= ϕ→(v0) due
to the fact that if y1 = [v0, 1] = [vn, 1] then ∃6=x2x3.R(y1x2x3) holds in
Avn . However, in each Tn the distance from v0 to a node that can verify
the existence of the additional elements as required by ϕ is n. This shows
that it will not be possible to simply translate our given guarded first-order
quantification into their modal counterparts 3 and 2, since those are local.

To capture this situation in MSO we use a sequence W of monadic predicates
W k

ρ , for k ≤ m and ρ ∈ F , that — relative to a given node u — partition
the set of nodes according to their size and their overlap with u. The proof
of the following is then straightforward.

Lemma 8.1.4. There is a first-order formula F-part(z,W ) expressing the
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following correctness conditions on partitions with respect to node z. For
every consistent tree T, u ∈ T, and every sequence W = (W k

ρ )k≤m,ρ∈F of
monadic predicates on T, we have T |= F-part(u, W ) if, and only if, for all
k, ρ

W k
ρ = {w : |Aw| = k and ρ(i) = j ⇔ [w, i] = [u, j]}.

Proof. As in the previous lemma, it suffices to impose corresponding con-
ditions locally and along all edges. The formula F-part(z,W ) states that

(a) The sets W form a partition of the universe.

(b) The node z itself belongs to W
|Az |
id .

(c) If y ∈ W k
ρ , then |Ay| = k.

(d) For all ρ, k, `, and σ: if (x, y) ∈ Eρ, |Ax| = `, |Ay| = k, then x ∈
W `

σ ⇔ y ∈ W k
σ◦ρ and y ∈ W k

σ ⇔ x ∈ W `
σ◦ρ−1 .

One shows by induction on the distance from u that F-part(u, W ) expresses
the right property. 2

The Translation. Recall that formulae in GSO0 either belong to GSOX

and have all their free first-order variables in X, or they belong to GSOY and
have all their free first-order variables in Y , where X and Y are two disjoint
sets of variables. Further, formulae in GSOX that start with a quantifier
are of the form ψ(x) = (∃6=y . ρ(x,y)∧α(y))ϕ(y) with α(y), ϕ(y) ∈ GSOY .

We inductively translate every formula ψ(x1, . . . , xk, Z1, . . . , Zr) ∈ GSOX [τ ]
into an MSO[τ̃ ] formula ψ→(x,Z→

1 , . . . , Z→
r ), with a single free first-order

variable x and sequences of monadic second-order variables Z→
i that cor-

respond to the second-order variables Zi. Similarly, formulae in GSOY are
translated into formulae ψ→ with free first-order variable y. We just present
the translation for formulae in GSOX :

(1) If ψ = R(xi1 , . . . , xir) for R ∈ τ ,
set ψ→(x) =

∨{PA(x) : A ∈ S,A |= R(i1, . . . , ir)}.
(2) If ψ = Z(xi1 , . . . , xir), for some r-ary relation variable Z,

set ψ→(x) = Zi1,...,ir(x).

(3) The translation commutes with ¬, ∧, ∨.

(4) If ψ = (∃6=y . ρ(x,y) ∧ α(y))ϕ(y),
let ψ→(x) = (∃W .F-part(x,W ))

∨
σ⊇ρ

(
(∃y .W

|y|
σ (y))(α ∧ ϕ)→(y)

)
.

(5) For ψ = ∃Zϕ with r-ary relation variable Z,
let ψ→(x) = (∃Z→ . correct(Z→))ϕ→(x).
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Theorem 8.1.5. Let T be a consistent τ̃ -tree with root λ, D(T) the as-
sociated τ -structure and ψ a sentence in GSO[τ ]. Then D(T) |= ψ iff
T |= ψ→(λ).

Proof. This theorem is a consequence of the following more general state-
ment. Consider any formula ψ(x1, . . . , xk, Z1, . . . , Zs) in GSOX [τ ] with free
first- and second-order variables as displayed. Its translation into MSO[τ̃ ]
is ψ→(x,Z→

1 , . . . , Z→
s ). Let (d1, . . . , dk) be a guarded list in D(T), and let

v be a node of T such that |Av| = k and di = [v, i]. Let J1, . . . , Js be
sets of guarded tuples in D(T), and let J→1 , . . . , J→s be their representations
according to Definition 8.1.2.

Claim 8.1.6. D(T) |= ψ(d1, . . . , dk, J1, . . . , Jr) ⇔ T |= ψ→(v, J→1 , . . . , J→r ).

Note that for sentences (i.e. k = r = 0) and for v = λ, the claim implies the
theorem. The claim itself is established inductively. The cases corresponding
to (1) — (3) are immediate.

(4) Let ψ = (∃6=y . ρ(x,y) ∧ α(y))ϕ(y). As second-order variables play no
role for this case, we suppress them.

ψ→(x) = (∃W .F-part(x,W ))
∨
σ⊇ρ

(∃y .W |y|
σ (y))(α ∧ ϕ)→(y)

Suppose that D(T) |= ψ(d). Then there exists a guarded list e = (e1, . . . , e`)
of length ` = |y| such that D(T) |= α(e)∧ϕ(e) and ei = dj for ρ(i) = j. Thus
σ = {(i, j) : ei = dj} extends ρ. Since e is guarded, there exists a node w of
size |w| = ` such that all ei live together at w. Actually, due to condition (c)
for consistent trees, we can assume that e = ([w, 1], . . . , [w, `]). We know
that there exists a W satisfying F-part(v,W ). Since σ = {(i, j) : [w, i] =
[v, j]}, it follows that T |= W `

σ(w) and, by induction hypothesis, T |= (α ∧
ϕ)→(w). Therefore T |= ψ→(v).

Conversely, suppose that T |= ψ→(v). For the (unique) tuple W satisfying
F-part(v,W ), there exist σ ⊇ ρ and a node w ∈ W `

σ such that T |= (α ∧
ϕ)→(w). For ei = [w, i] we find that ei = dj for all (i, j) ∈ ρ and, by
induction hypothesis, D(T) |= (α ∧ ϕ)(e). Therefore D(T) |= ψ(d).

For (5), the claim is immediate from the induction hypothesis and from
Lemma 8.1.3. 2

Corollary 8.1.7. If ψ ∈ GSO[τ ] is a sentence that is invariant under
guarded bisimulation, then ψ→(x) is bisimulation invariant on consistent
τ̃ -trees.
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Proof. Let T,T′ be two bisimilar, consistent τ̃ -trees. Then D(T) ∼g D(T)
by Proposition 4.5.5. It follows that

T |= ψ→(λ) ⇔ D(T) |= ψ ⇔ D(T′) |= ψ ⇔ T′ |= ψ→(λ′)

2

8.1.2 From Lµ to µGF

The translation back from the modal into the guarded world also requires
some preliminary discussion. Every formula ϕ of the µ-calculus, evaluated
on a tree T = T(B), defines the set ϕT of all nodes v such that T, v |= ϕ.
Recall from the discussion leading up to Definition 4.4.3 how each node v

of T represents a guarded list π(v) in B. So the idea is to translate ϕ into
a guarded formula ψ(x) defining in B the set ψB = {b ∈ B : B |= ψ(b)},
which should be equal to {π(v) ∈ B : T, v |= ϕ}. The main problem is that
the guarded lists represented in ϕT are not in general of the same lengths,
whence the full set cannot be described by a single guarded formula ψB at
all. We will actually translate ϕ into a tuple (ϕ←0 , . . . , ϕ←m ) of formulae over
B where ϕk = ϕ(x1, . . . , xk), with the intention that ϕk defines the set of
those guarded lists b = π(v) of length k, for which v ∈ ϕT. Note that the
0-component, ϕ←0 , will be a sentence whose truth value tells us whether ϕ is
satisfied in λ, the only node of size 0. As pointed out in the introduction to
this chapter, the same problem occurs in connection with the translation of
monadic second-order variables, whose interpretations, like ϕT, can consist
of arbitrary collections of nodes that correspond to guarded lists of different
lengths. The same representation mechanism works in both cases.

With any monadic second-order variable X we associate a tuple X← =
(X(0), . . . , X(m)), where each X(k) is a k-ary second-order variable. X(0)

in particular should be regarded as a Boolean variable with values true or
false. Formally one can of course replace this null-ary second-order variable
by using a unary one (which is automatically guarded) whose interpretations
are restricted to the empty set (for false) or the full universe (for true).

Definition 8.1.8. Let N be a set of nodes in a tree T(B). The repre-
sentation of N in B is N← = (N (0), . . . , N (m)) where N (k) = {π(v) : v ∈
N and |Av| = k} ⊆ Bk.

Note again that, since the root λ is the only node of size 0, N (0) = true iff
λ ∈ N .
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It is known (see e.g. [50]) that we can assume w.l.o.g. that Lµ formulae
are written without ν-operators, that in any formula µX.ξ the fixed point
variable X occurs in ξ only inside the scope of modal operators, and even
that in each ϕ ∈ Lµ, the fixed point formulae µX.ξ(X) themselves only
occur inside the scope of modal operators.

The Translation. For every formula ϕ ∈ Lµ[τ̃ ] we now define formu-
lae ϕ←k (x1, . . . , xk) ∈ µGF[τ ], one for each k ≤ m, in which each monadic
second-order variable X of ϕ is represented by a tuple of second-order vari-
ables X←.

(1) If ϕ = PA, then set ϕ←k = false if |A| 6= k, and let ϕ←k (x1, . . . , xk)
otherwise be the atomic type of (1, . . . , k) in A, i.e., the conjunction
over all atomic and negated atomic τ -formulae α such that free(α) ⊆
{x1, . . . , xk} and A |= α(1, . . . , k). Note that for k = 0, this gives
ϕ←k = true if A = ∅ and ϕ←k = false otherwise.

(2) If ϕ = X, then ϕ←0 = false, and for 1 ≤ k ≤ m

ϕ←k (x1, . . . , xk) = X(k)(x1, . . . , xk).

(3) The translation commutes with ¬, ∧ and ∨ (for each k).

(4) If ϕ = 〈ρ〉ϑ, then

ϕ←k (x1, . . . , xk) =
∨
α

(∃6=y1, . . . , y` . ρ(x,y) ∧ α(y))ϑ←` (y),

where α ranges over all guards in variables y1, . . . , y` for ` such that
dom(ρ) ⊆ {1, . . . , `}.

(5) If ϕ = µX.ϑ, then ϕ←0 , ϕ←1 , . . . , ϕ←m are the components [lfp X(i) . S]
of the simultaneous least fixed point defined by the system

S =


X(0) = ϑ←0 (X←)
X(1)y1 = ϑ←1 (y1, X

←)
...

X(m)ym = ϑ←m (ym, X←)
of fixed point equations, where yk = (y1, . . . , yk).

In connection with X(0) in (5) note that in the light of the assumption that
all µ-operators and fixed-point variables occur only in the scope of modal
operators, we are not ultimately interested in whether λ enters a fixed point.
In this sense the Boolean component is redundant.

Theorem 8.1.9. Let B be a τ -structure, let λ be the root of T(B) and let
ψ be a formula in Lµ[τ̃ ]. Then B |= ψ←0 iff T(B), λ |= ψ.



8.1. BACK AND FORTH 133

Proof. Again we inductively prove a more general statement, involving free
second-order variables and the semantics of ψ on the whole of T(B). We
consider the case of just one free monadic second-order variable Y . This
case is entirely indicative of the general case, but notationally somewhat
lighter. Let ϕ(Y ) be a formula in Lµ[τ̃ ], N a set of nodes in T = T(B) with
representation N←.

Claim 8.1.10. (ϕ0(N←)B, . . . , ϕm(N←)B) is the representation of ϕ(N)T

in B in the sense of Definition 8.1.8.

The claim is proved inductively. The cases corresponding to (1) — (3) are
trivial.

Consider (4) and let ϕ = 〈ρ〉ϑ. Suppose first that T, v |= ϕ, where |v| = k,
π(v) = (b1, . . . , bk). We need to show that B |= ϕ←k (b1, . . . , bk). As T, v |= ϕ,
there is a node w such that (v, w) ∈ Eρ and T, w |= ϑ. Let π(w) = (c1, . . . , c`)
and note that (v, w) ∈ Eρ ensures that dom(ρ) ⊆ {1, . . . , `}. Then bi = cj

for all (i, j) ∈ ρ and, by induction hypothesis, B |= ϑ←` (c1, . . . , c`). Hence
B |= ϕ←k (b1, . . . , bk).

Conversely, suppose that B |= ϕ←k (b1, . . . , bk). This means that there exists
a guarded list (c1, . . . , c`) with bi = cj for all (i, j) ∈ ρ and such that B |=
ϑ←` (c1, . . . , c`). By the construction of T(B), there exists a node w such that
(v, w) ∈ Eρ and π(w) = (c1, . . . , c`). The induction hypothesis implies that
T, w |= ϑ. It follows that T, v |= ϕ.

For (5) finally let ϕ = µX.ϑ(X). Consider the stages Xα of the fixed point
induction on ϕ,

X0 = ∅
Xα+1 = ϑ(Xα) =

{
v ∈ T : T, v |= ϑ(Xα)

}
Xδ =

⋃
α<δ Xα for limit ordinals δ.

Let similarly, for the stages of the simultaneous fixed point of the system S

in ϕ←,

(X(k))0 = ∅
(X(k))α+1 = ϑ←k ((X←)α)
(X(k))δ =

⋃
α<δ(X

(k))α.

By induction hypothesis, if M← is the representation of M in B, then
(ϑ←0 (M←), . . . , ϑ←m (M←)) is the representation of ϑ(M)T in B. By induction
on α, this implies that the stage (X←)α of [lfp X←. S] represents in B the
stage Xα of µX.ϑ in T. Hence the same is true for the least fixed points.

2
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We are now in a position to prove our main theorem for sentences.

Theorem 8.1.11. Every sentence in GSO that is invariant under guarded
bisimulation is equivalent to a sentence in µGF.

Proof. Let ψ ∈ GSO[τ ] be invariant under guarded bisimulation and
let ψ→(x) be its translation into MSO[τ̃ ]. By Corollary 8.1.7 ψ→(x) is
bisimulation-invariant on consistent trees. Recall that the consistency con-
dition for trees can be formulated by a monadic second-order (in fact even
first-order) sentence γ, which is bisimulation invariant with respect to all
trees. As a consequence, the formula (γ → ψ→)(x) is bisimulation invari-
ant on arbitrary trees. By the Janin-Walukiewicz Theorem, Theorem 8.1.1
above, there exists an equivalent formula ϕ in the µ-calculus. Let ϕ←0 be the
0-component of its translation into µGF[τ ]. Putting everything together, we
have the following chain of equivalences.

B |= ψ ⇔ D(T(B)) |= ψ ⇔ T(B) |= ψ→(λ) ⇔ T(B), λ |= ϕ ⇔ B |= ϕ←0

The first equivalence uses Lemma 4.5.4 and the guarded bisimulation in-
variance of ψ; the second one is an application of Theorem 8.1.5; the third
equivalence follows from the Janin Walukiewicz Theorem; the fourth is an
application of Theorem 8.1.9. 2

Remark. Again, there are straightforward extensions of all the results in
this section at least to the case of structures with distinguished guarded
lists of parameters, and to formulae whose free variables get interpreted by
guarded lists. Compare in particular the claims 8.1.6 and 8.1.10.

8.2 Back and Forth with Parameters

We look at extensions of our main results to the analysis of formulae with
free variables, and to structures with parameters. The most natural case, in
the spirit of the guarded scenario, is that of guarded parameter tuples. Most
of our techniques and results, however, can meaningfully be generalised even
to the case of formulae in arbitrary tuples of variables, and correspondingly
to structures with arbitrary parameter tuples rather than guarded ones.

As pointed out above, a special case of parameter tuples, namely that of
guarded lists, was actually implicit in the basic case as treated in Sections 4.4
and 8.1. One can put a distinguished guarded list from B at the root of
the tree representation T(B), rather than using the empty guarded list as a
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default as we did above. For guarded lists of parameters – and for formulae
whose free variables get interpreted as guarded lists – the above treatment
in fact goes through almost verbatim. The claims 8.1.6 and 8.1.10 that were
established in the proofs of Theorems 8.1.9 and 8.1.9, in particular, already
deal with formulae whose free variables refer to guarded lists.

This approach immediately yields the further generalisation to the important
case of variable-guarded formulae. We first describe the simple argument
required for this extension, as a shortcut to the variable-guarded case for
our main theorem. The most general case of formulae, whose free variables
refer to arbitrary parameter tuples, is then discussed in Sections 8.2.1, 8.2.2
and 8.2.3 below, thereby also indicating an alternative approach to the case
of variable-guarded formulae.

Recall that a formula ϕ(x) is variable-guarded if it is logically equivalent to
ϕ(x) ∧ G(x). Also recall from Section 3.2 that the GF formula G(x) is a
disjunction over formulae ξηα(x) specifying the equality type η(x) of x and
an extension of x to an α-atom. Putting ξηα(x) into GF0 normal form we
may assume

ξηα(x) = η(x) ∧ (∃6=y.ρ(x,y) ∧ α(y)
)
α(y).

For a variable-guarded GSO formula ϕ(x), we therefore find that it is equiva-
lent to a disjunction of formulae of the form η(x)∧(∃6=y.ρ(x,y)∧α(y)

)
ϕ̃(y),

where the ϕ̃(y) are obtained through suitable variable substitutions in ϕ(x)
(not all y necessarily free in ϕ̃(y)). The new variables y in ϕ̃(y) stand for
guarded lists. Assuming this normal form for variable-guarded ϕ(x) ∈ GSO,
and using the formalisation of guarded bisimulation with parameters as dis-
cussed in connection with Definition 3.4.1, we find that ϕ(x) is invariant un-
der guarded bisimulation if, and only if, each ϕ̃(y) is invariant under guarded
bisimulation. The case of formulae whose free variables stand for guarded
lists, and the translation machinery treated in Sections 8.2.1 and 8.1 are
therefore sufficient to yield the following strengthening of Theorem 8.1.11.

Theorem 8.2.1. Every variable-guarded formula of GSO that is invariant
under guarded bisimulation is equivalent to a formula in µGF.

8.2.1 Structures and Trees

We outline the modifications required in the back and forth translations
of Sections 4.4 and 8.1 in order to incorporate arbitrary tuples of parame-
ters right from the beginning. In particular we extend the correspondence
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between relational structures and suitable trees to incorporate arbitrary pa-
rameter tuples.

To see the motivation behind the following stipulations, consider the vari-
ation in the guarded bisimulation game that is required to capture equiva-
lence with respect to arbitrary tuples of parameters. This variation merely
concerns the start position in the game. For the game on A,a and B, b,
we initially put pebbles on a and b. Eve has lost if a 7→ b is not a par-
tial isomorphism. Otherwise, i.e., if the initial pebbling describes a partial
isomorphism, we proceed as before. Adam can choose either structure and
remove any number of pebbles from that structure, then put pebbles so as to
end up with a pebbling of a guarded list; Eve must respond by first remov-
ing corresponding pebbles in the opposite structure, then putting pebbles in
such a way that the resulting correspondence is again a partial isomorphism.
Note that all information about the initial parameters is lost after this first
round, as far as it is not carried over via pebbles that are left fixed by Adam
in his first move.

Recall the vocabulary τ̃ used for the trees T(B) associated with τ -structures
B: τ̃ has monadic predicates PA for all A ∈ S, S the set of guarded τ -
structures on universes {1, . . . , k}, k bounded by the width m of τ , and bi-
nary relations Eρ for ρ ∈ F , F the set of partial bijections on {1, . . . ,m}. In
order to treat tuples of n distinct parameters b = (b1, . . . , bn), which need not
form a guarded tuple, we expand τ̃ to τ̃n by adding further predicates PA/n

and Eρ/n for A ∈ Sn and ρ ∈ Fn where Sn is the set of all τ -structures on uni-
verse {1, . . . , n}, Fn the set of partial 1-1 maps ρ : {1, . . . ,m} → {1, . . . , n}.
Let B be a τ -structure, b = (b1, . . . , bn) a tuple of distinct parameters in B.
With B, b we associate a tree T(B, b) of type τ̃n, obtained as an unravelling
of a transition system K(B, b), which captures the guarded bisimulation
game on B with initial position b.

K(B, b) has nodes for all guarded lists g in B and one extra distinguished
node p for the parameter tuple b. We use a separate node p to represent b

even if b happens to be a guarded list itself.

The restriction of K(B, b) to the set of nodes g 6= p is isomorphic with the
old K(B). In the neighbourhood of the distinguished node p we interpret
the new predicates. Put p ∈ PA/n for that A ∈ Sn that is isomorphic with
B|{b1,...,bn} via i 7→ bi, and let (p, g) ∈ Eρ/n if g is a guarded list in B such
that ρ describes a partial isomorphism between B|g and B|{b1,...,bn}. Note
that we put no in-going edges to p. These choices capture the special role
that the parameters b play as initial conditions in the bisimulation game. In
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the first round the game passes to guarded lists extending a chosen subtuple
of b, and the identity of that subtuple needs to be preserved by Eve; any
components of the parameter tuple that are not kept in this move lose their
special identity.

For T(B, b) we take the unravelling of K(B, b) from the distinguished node
p. The root λ of T(B, b) represents b and is uniquely distinguished by being
coloured by a monadic predicate PA/n and by having outgoing edges of types
Eρ/n.

The corresponding class of consistent τ̃n-trees T is defined analogously to
the class of consistent τ̃ -trees, with the additional stipulations that

(a) There is a unique A ∈ Sn such that the root of T is in PA/n; we denote
it by Aλ.

(b) All edges from the root are Eρ/n-edges for ρ ∈ Fn, and such edges only
occur from the root; if (λ, v) ∈ Eρ/n, then ρ is a partial isomorphism
between Av and Aλ.

(c) If c = (c1, . . . , ck) is a guarded list in Aλ, then there is a node w such
that (λ, w) ∈ Eρ/n for ρ = {(i, ci) : 1 ≤ i ≤ k}.

It is clear how to construct a τ -structure D(T) from a consistent τ̃n-tree
T, in complete analogy with the procedure described in Section 4.4. The
distinguished parameters d = (d1, . . . , dn) for D(T) and their quantifier free
type are extracted from Aλ.

With these modifications we find that all the results of Section 4.4 remain
valid in the extended setting. In particular,

• B, b ∼g B′, b′ iff T(B, b) ∼ T(B′, b′); cf. Lemma 4.4.4.

• Consistency is first-order definable and bisimulation invariant within
the class of τ̃n-trees; cf. Lemma 4.5.2.

• For all B, b: D(T(B, b)),d ∼g B, b ; cf. Lemma 4.5.4.

• For all consistent τ̃n-trees T and T′: if T ∼ T′, then D(T),d ∼g

D(T′),d′ ; cf. Proposition 4.5.5.

We now address the issue of translating formulae between the guarded world
of τ -structures with parameters and the modal world of their tree represen-
tations.
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8.2.2 From GSO to MSO

In order to incorporate the not necessarily guarded tuple of parameters it is
convenient to augment the GSO0 normal form by a third set of new variables,
z1, . . . , zn, which are only to be used as free variables for the parameters.
A GSO-formula is in extended GSO0 normal form if its free variables are
among the zi and if all its subformulae beginning with (guarded) first-order
quantifications are in ordinary GSO0 normal form. W.l.o.g. we consider only
GSO formulae in this normal form which moreover require the free variables
z = (z1, . . . , zn) to stand for pairwise distinct elements through conjuncts
zi 6= zj for i 6= j, so that their semantics fits the above format of τ -structures
B with tuples b = (b1, . . . , bn) of pairwise distinct parameters.

For a second-order variable Z of arity r, ranging over guarded relations over
the τ -structures B, we again introduce a tuple Z→ of monadic second-order
variables. These range over subsets of the T(B, b) that do not contain the
root. This latter condition is to be added to the correctness criterion, since
the root of T(B, b) does not in general represent a guarded tuple. With this
modification Lemma 8.1.3 carries over directly.

The first-order formula F-part(z,W ) of Lemma 8.1.4 needs to be modified
in order to take edges Eρ/n into account. It is convenient for the further
translation to choose the W such that none of the W k

ρ contain the root, and
to stipulate this condition in F-part(z,W ). The compatibility conditions
imposed by links through the root, then, have to be phrased in terms of pairs
of nodes (both adjacent to the root) linked via Eρ/n◦(Eρ′/n)−1 combinations.

With these straightforward modifications, Lemma 8.1.4 carries over un-
changed. For the translation from our GSO-formulae ϕ(z) to its MSO-
counterpart ϕ→(z), we may now use exactly the same translation as in
Section 8.1, with the minor difference that the quantifier free subformulae
in variables z are translated into disjunctions over PA/n rather than PA. We
then obtain the analogue of Theorem 8.1.5, to the effect that

• for all consistent τ̃n-trees T with root λ and for all GSO-formulae
ϕ(z) in the normal form as considered above: D(T),d |= ϕ(z) iff
T |= ϕ→(λ).

As before, it follows that guarded bisimulation invariant ϕ translate into
bisimulation invariant ϕ→, which by the Janin Walukiewicz Theorem are
therefore equivalently expressible in the µ-calculus.
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8.2.3 From Lµ to µGF

For the converse translation of formulae, which takes us from the trees
T(B, b) back to the B, b, we now need to deal with one additional issue.
This concerns the fact that an arbitrary monadic second-order or Lµ for-
mula over the tree may involve monadic second-order variables or monadic
fixed points that contain the root. For Lµ we can simply eliminate these.
Indeed, any Lµ formula over trees is logically equivalent to a Boolean com-
bination of atomic propositions and Lµ formulae of the form 3ξ. We may
appeal to the same restricted syntax as used for the proof of Theorem 8.1.9,
cf. [50]. Note that the evaluation of an Lµ formula 3ξ at the root of a
tree T only requires the evaluation of ξ in all subtrees rooted at children
of the root. For the T(B, b) this means that the translations provided in
Section 8.1, cf. in particular claim 8.1.10 in the proof of Theorem 8.1.9, can
be used without changes for such ξ.

From the resulting tuple of formulae ξ←k (x1, . . . , xk) in µGF we may then
obtain the correct translation of 〈ρ/n〉ξ — where 〈ρ/n〉 is the modal operator
associated with Eρ/n — with

(〈ρ/n〉ξ)←(z) defined as∨
α

(∃6=(x1, . . . , xk).ρ(z, x1, . . . , xk) ∧ α(x1, . . . , xk)
)
ξ←k (x1, . . . , xk),

where α ranges over all guards in variables x1, . . . , xk for all k such that
dom(ρ) ⊆ {1, . . . , k}.
We thus obtain the following extension of Theorem 8.1.9:

• For any τ -structure B with n pairwise distinct parameters b, and for
any formula ψ in Lµ[τ̃n]: B |= ψ←(z) iff T(B, b), λ |= ψ.

Putting the results together, yields the following variant of Theorem 8.1.11
for arbitrary formulae.

Theorem 8.2.2. Every formula of GSO that is invariant under guarded
bisimulation is equivalent to a formula in µGF.

Recall that Proposition 3.3.1 states that any formula of µGF is logically
equivalent to one in which all fixed points are strictly guarded, i.e., in which
µ or ν operators are only applied to variable-guarded formulae.

Corollary 8.2.3. µGF ⊆ GSO for formulae in arbitrary tuples of free
variables.

Together with Theorem 8.2.2 this finally gives the full content of our main
theorem for arbitrary formulae. A formula of GSO is invariant under guarded
bisimulation if, and only if, it is equivalent to a formula in µGF.
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8.3 Bisimulation Invariant MSO∗

In this section we take a small stab in the direction of a finite model the-
ory version of the Janin-Walukiewicz characterisation theorem. The first
characterisation result in the finite was obtained by Rosen [55].

Theorem 8.3.1 (Rosen). A class of finite graphs is ML-definable iff it
is definable by a FO-formula that is bisimulation invariant on the class of
finite graphs.

For guarded logics, so far only the case of width-2 has been solved [52]. This
is a further indication that the restriction to finite structures has a greater
impact on guarded bisimulation than on modal bisimulation, cf. Chapter 7.

Theorem 8.3.2 (Otto). A class of finite graphs is GF-definable iff it is
definable by a FO-formula that is guarded bisimulation invariant on the class
of finite graphs.

Starting point is the simple observation that MSO and GSO contain for-
mulae that are invariant for (guarded) bisimulation on the class of finite
structures, but not (guarded) bisimulation invariant in general.

Example 8.3.3. Consider any vocabulary of graphs that contains one or
more edge relations. Let ψ ∈ MSO express that there is an infinite binary
tree. In particular ψ is an infinity axiom. Let ϕ ∈ ML be the simple re-
quirement that there is a successor node, a bisimulation invariant statement.
Combine the two formulae as ϑ(x) = ψ∨ (¬ψ∧ϕ◦(x)). On finite structures,
ϑ behaves like ϕ. On infinite structures, ϑ(x) is not bisimulation invariant.
To see this, take an isolated point as interpretation for x. The truth value
of ϑ(x) then depends on whether an additional connected component is a
binary tree, or merely something else infinite. So ϑ is only bisimulation
invariant in the sense of finite model theory.

We consider the logic MSO∗, a variant of MSO presented in [15], where
formulae are evaluated over the unravellings of transition systems. The
syntax of MSO∗ formulae is the same as for MSO. We will write ϕ, resp.
ϕ∗, for the (syntactically) same formula to denote whether it is interpreted
as formula of MSO or MSO∗. Correspondingly, as we are back in the realm
of modal logics, the structures considered are again labelled graphs.

Semantics of MSO∗. Given a graph G with node v ∈ G, a formula ϕ∗(x) ∈
MSO∗ holds in v, denoted G, v |= ϕ∗, iff T(G, v) |= ϕ.
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8.3.1 Automata for MSO

We use the following automata-theoretic characterisation of MSO and Lµ

over trees [44, 62]. The tree automata considered belong to the class of
alternating ω-tree automata with parity acceptance conditions. They work
on infinite trees and have the form A = (Q,Σ, q0, δ,Ω), where

• Q is a finite set of states,

• Σ is a finite input alphabet,

• q0 ∈ Q is the initial state,

• δ is the transition function and

• Ω : Q → is the parity function.

For each pair (q, a) ∈ Q × Σ, δ(q, a) is a disjunction of formulae of one of
the two forms,

∃x.
(
diff(x) ∧

k∧
j=1

qij (xj) ∧ ∀z(diff(z,x) →
∨̀
i=1

qji(z))
)

(8.1)

∃x.
( k∧

j=1

qij (xj) ∧ ∀z
∨̀
i=1

qji(z)
)

(8.2)

where |x| = k, all qi ∈ Q, and diff(y) states that all arguments are distinct.

If A only uses formulae of the form (8.2), we call it a µ-automaton; if it
only uses (8.1) it is an MSO-automaton. In the following, any automaton is
either a µ-automaton or an MSO-automaton. These automata operate on a
kind of normal form of trees, rather than trees as per Definition 2.3.1.

Definition 8.3.4. A tree T = (V, (Pb)b∈B, (Ea)a∈A) is normal , if |A| = 1
and |{b : s ∈ Pb}| = 1 for all s ∈ V .

If T is a normal tree we write E for the single edge relation of T. For every
s ∈ V we write bs for the (unique) b ∈ B with T |= Pb(s) and, in this case, let
Ps = Pb. Automata for trees with atomic properties B have input alphabet
Σ = B. In this context, when a node v ∈ V is used in place of a letter b ∈ Σ,
this is a shortcut for bv.

For every signature of transition systems τ = {(Pb)b∈B, (Ea)a∈A} we define
the derived signature τ ′ = {(Pb)b∈B′ , E} where B′ = P(B) × A. There is
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an obvious bijection between the class of τ -trees and the class of normal
τ ′-trees. In the one direction, a node v that is reachable via Ea from its
parent, and where Pb holds at v iff b ∈ Bv for some suitable Bv ⊆ B, will
get the label ({Pb : b ∈ Bv}, a). In the other direction, the first component
determines which Pb hold at the node in question, and the second component
gives the edge label. The second component is ignored at the root, which
has no predecessor and hence no incoming edge.

Since the automata can only digest normal trees, we assume forthwith that
any considered class of trees consists only of normal trees. With the above
translation this is a mere technicality, since every class of trees can be
brought into that form. The semantics of automata is defined via the usual
notion of a run.

A run of A over T is a further tree ρ = (W,F ) where W ⊆ V T × QA and
F ⊆ W ×W such that (λ, q0) ∈ W and the following hold.

• The canonical projection π : W → V is a graph homomorphism from ρ

to the {E}-reduct of T. That is, ((s, q), (s′, q′)) ∈ Eρ only if (s, s′) ∈ E.

• For every (s, q) ∈ W , the Q-structure A(s, q) with universe
{s′ : (s, s′) ∈ E} and monadic predicates q′ ∈ Q interpreted as
{s′ : ((s, q), (s′, q′)) ∈ F} has to satisfy A(s, q) |= δ(q, bs).

A run ρ of A over T is accepting if for each infinite path α = (λ, q0)(s1, q1) · · ·
in ρ it is the case that min{n : ∃ωi.Ω(qi) = n} is even. A tree is accepted
by A if there is an accepting run of A over T. Furthermore, ρ is pruned if
it has the same “format” as T, i.e. if for every v ∈ V there is precisely one
q ∈ Q with (v, q) ∈ W .

Given an automaton A we denote by L(A) the set of trees accepted by A,
also called the tree language recognised by A.

Our considerations for MSO∗ will build on manipulating trees and using
a given accepting run as template for an accepting run on the new tree.
Towards this end we make the following technical observations.

Lemma 8.3.5. For every MSO-automaton A, every tree T ∈ L(A) and
every accepting run ρ of A on T there is a subtree ρ′ of ρ that is pruned and
an accepting run of A on T.

Proof. We inductively define a sequence of runs ρi, i < ω, where the first
i levels, where the root is at level 1, of each ρi ⊆ ρ satisfy the sparsity
condition of a pruned run. Start with ρ1 = ρ; ρ only has one root (λ, q0).
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For the inductive step suppose that ρi was already constructed. For every
(s, p) ∈ W on level i that has successors that violate the requirement, i.e.
successors (t, q) ∈ W and (t, q′) ∈ W for some q 6= q′, proceed as follows.

Choose δ′ as one of the possibly several disjuncts of δ(p, s) that is satisfied in
the accepting run ρ, i.e. A(s, p) |= δ′. We can write δ′, a formula of the form
(8.1), as ∃x.(γ(x)∧∀z.ζ(x, z)) and choose a concrete sequence of, necessarily
distinct, elements v ∈ A(s, p) such that A(s, p) |= γ(v)∧∀z.ζ(v, z). For each
v ∈ v the γ-part of such an MSO-formula contains precisely one statement
qv(v), qv ∈ Q.

Taking this further, for every v ∈ A(s, p), v 6∈ v we can choose one of the
possibly several disjuncts qv(z) of ζ that is satisfied by v in ρ, i.e. A(s, p) |=
qv(v) — which is the case iff ((p, s), (qv, v)) ∈ F .

All in all, for every v ∈ A(s, p) there is one qv such that the structure
A′ obtained from A(s, p) by interpreting each qv as {v}, and all other q-
predicates as ∅, is a model of δ′, and hence A′ |= δ(p, s). The actual pruning
consists of deleting all successor nodes (v, q) of (s, p) where q 6= qv. This
obviously has the desired effect that every successor t of s in T occurs in no
more than one node of the form (t, q) in ρ.

Simultaneous application of the above construction to all nodes on level i

yields the intermediate run ρi, and we finally obtain ρ′ defined by ρ′ =
⋂

ρi.
Since ρ′ ⊆ ρ, it satisfies the homomorphism property of a run. By the
same argument the global parity acceptance condition for the paths of ρ′ is
satisfied. The local condition that A(s, p) |= δ(p, s) for every node (s, p) ∈ ρ′

was ensured by the construction. So ρ′ is a pruned accepting run of A on
T. 2

Corollary 8.3.6. For every MSO-automaton A, every tree T ∈ L(A) and
every accepting run ρ of A on T there is a finitely branching T′ ⊆ T such
that the restriction of ρ to T′ is an accepting run of A.

Proof. Let (s, p) ∈ ρ and let v ∈ A(s, p) be a sequence of tuples for the
existentially quantified variables of δ(p, s) as in the proof of Lemma 8.3.5
above. Close inspection of the procedure there shows that all successors
(v, q) of (s, p) in ρ where v 6∈ v can be deleted while retaining the properties
of an accepting run. The obtained ρ′ is finitely branching, and the desired
T′ is the projection of T to {v ∈ V : (v, q) ∈ ρ′, q ∈ Q}. 2

The following theorems sum up the automata-theoretic framework used in
the proof of Theorem 8.1.1.
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Theorem 8.3.7 (Walukiewicz). A tree language L is MSO-definable iff
L = L(A) for an MSO-automaton A.

Theorem 8.3.8 (Janin, Walukiewicz). A tree language is Lµ-definable
iff L = L(A) for some µ-automaton A.

We immediately obtain the following corollary to Theorem 8.1.1 for MSO∗.

Corollary 8.3.9. Every formula in MSO∗ that is invariant under bisimu-
lation is equivalent to a formula in Lµ.

Proof. If ϕ∗ ∈ MSO∗ is bisimulation-invariant in general, then ϕ ∈ MSO
is bisimulation invariant on the class of all trees. Hence, on trees, ϕ is
equivalent to an Lµ-formula ψ. Then, for all transition systems K, and all
nodes v ∈ K, by definition ϕ∗ holds at v in G iff ϕ holds at the root of T(K, v).
Using the equivalence on trees, the latter is the case iff ψ holds at the root
of T(K, v), which, since Lµ is bisimulation invariant and T(K, v) ∼ K, v, is iff
ψ holds at v in K. 2

8.3.2 Finite Model Theory and MSO∗

Theorem 8.3.10. Every formula in MSO∗ that is invariant under bisimu-
lation on the class of finite graphs is equivalent to a formula in Lµ.

The theorem as such is not particularly thrilling. What is more interesting
is the following, stronger result that it is a corollary of.

Lemma 8.3.11. Every formula in MSO∗ that is invariant under bisimula-
tion on the class of finite graphs is bisimulation-invariant on the class of all
transition systems.

Proof. Let ϕ∗ ∈ MSO∗ be bisimulation-invariant in the finite. Assume to
the contrary that there are infinite structures K1, K2 and nodes v1 ∈ K1,
v2 ∈ K2 such that K1, v1 ∼ K2, v2 and K1 |= ϕ∗(v1), K2 6|= ϕ∗(v2), i.o.w.
T1 |= ϕ1, T2 |= ϕ2 for T1 = T(K1, v1), T2 = T(K2, v2), ϕ1 = ϕ, ϕ2 = ¬ϕ1.

Let Ai be the automaton for ϕi and let ρi be an accepting run of Ai on Ti.
By Lemma 8.3.5 and Corollary 8.3.6 the Ti and ρi can be chosen finitely
branching, and the ρi can be chosen pruned.

The nodes of ρi are pairs of the form (s, q), where s ∈ Vi is a node of Ti

and q ∈ Qi is a state of Ai. With ρi being pruned, the second component
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of these tuples is redundant; there is a function qi : Vi → Qi such that
every node of ρi has the form (s, qi(s)). Instead of talking about ρi, we can
pretend that the nodes of Ti are, in addition to their respectively associated
Ps, labelled by their corresponding state qi(s). Further, for the construction
we will require every node to be labelled by a set of states of A1, and a set
of states of A2, the choice of which will be detailed below. The result is
effectively a τ+

i = {Pb}b∈B × Qi × P(Q1) × P(Q2)-structure T+
i . We can

now talk about Ti, which is the actual input tree, ρi, which is the run of Ai

on Ti (or, equivalently, Ti with the corresponding states as additional label)
and T+

i , which in addition to ρi has the pair of sets of states as further label.
Conversely, every T+

i implicitly describes a normal tree of the same format
as the input, and a run of Ai on that tree.

By assumption, the trees T1 and T2 are bisimilar. Let Z : T1 ∼ T2 be the
maximal two-way bisimulation between T1 and T2. That is, Z is minimal
in the sense that it is a union of cross products of the nodes on bisimilar
paths starting at the respective root nodes, and maximal in the sense that
it is the union of all such products. That is, Z is the maximal bisimulation
that connects only nodes at the same distance from their respective roots.

Towards the additional set labels, consider a node s ∈ V1 and let T2,s ⊂ T2

be the image of s under Z, and let T1,s ⊂ T1 be the inverse image of the
elements of T2,s under Z. Next define Q1,s = {q ∈ Q1 : q = q1(v), v ∈ T1,s}
and Q2,s = {q ∈ Q2 : q = q2(v), v ∈ T2,s}. Then the label of s in T+

1 is
(Ps, q1(s), Q1,s, Q2,s).

Similarly ρ2 is extended to a τ+
2 = {Pb}b∈B×Q2×P(Q1)×P(Q2)-structure

T+
2 . We now take the finitely branching T+

i and transform them into finite
T−i such that the unravelling of T−i describes an (infinite) accepting run of
Ai on the unravelling of the (finite) structure described by T−i . We will
write s for nodes of Ti, and s+ for the same node in T+

i .

The following procedure is based on certain properties of the grouping of
nodes as implied by the sets Ti,s. Since Z is a two-way bisimulation, and
Z ⊃ T1,s × T2,s for every s ∈ V1 ∪ V2, every group T1,s ∪ T2,s contains nodes
that are at the same distance from the root node λ1 or λ2, respectively. The
set of all groups {T1,s∪T2,s : s ∈ V1} = {T1,s∪T2,s : s ∈ V2} is a partition
of V1 ∪ V2. By construction, the τ+-labels within a group only differ at the
second position, however for all v ∈ Ti,s we have qi(v) ∈ Qi,s, and vice versa
for every q ∈ Qi,s there is a v ∈ Ti,s such that qi(v) = q. This will be used
in the “bending back” below; if two nodes s+ and t+ in Vi have the same
τ+
i -label, then for every node v ∈ Tj,s there is a node v′ ∈ Tj,t such that v+
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and v′+ share the same τ+
i -label.

The language τ+
i is finite, and T+

i is finitely branching. By König’s Lemma
we can find a depth Nfin

i such that all labels in τ+
i that occur only finitely

often in T+
i do not occur at a distance from the root greater than Nfin

i . Let
Nfin = max{Nfin

i }.
By the same argument there is a depth N≥0

i such that for all paths α in
T+

i , every τ+
i -label that occurs infinitely often along α occurs at least once

at some depth d, Nfin < d < N≥0
i . Again let N≥0 = max{N≥0

i }.
The runs ρi implicitly contained in T+

i are accepting, hence the minimal
parity index Ωα occurring infinitely often along each path α is even. The
same argument as above this time yields a depth Nmin

i such that, for all
paths α in T+

i , one node with minimal parity index ωα occurs at some
depth d, Nfin < d < Nmin

i ; let Nmin = max{Nmin
i }.

For any tree T, let T|d denote the set of nodes at distance d from the root,
and T|[d,d+k] denote all nodes at distance between d and d+k (inclusive). We
define a function Ξi : T+

i |Nmin+1 → T+
i |[Nfin:N≥0] such that T−i is obtained

by cutting off T+
i at level Nmin + 1, and replacing the successors of nodes

at level Nmin by their respective Ξi images.

Let s+ ∈ T+
1 |Nmin+1 with label (Ps, q,Q1,s, Q2,s). Since the depth of s+ is

greater than Nfin, the label of s+ occurs infinitely often in T. Hence there
is a node t+ ∈ T+

i |[Nfin:N≥0] that has the same label as s+. Let Ξ(s+) = t+.
Then extend Ξ by choosing, for every node Ti,s, a node in Ti,t with the same
τ+
i -label.

Then T−i is obtained by cutting off T+
i after level min and replacing the suc-

cessors of the nodes on level min by their respective Ξ-image. Consequently
Z|T−1 ×T−2

: T−1 ∼τ T−2 is a τ -bisimulation.

Claim. The unravellings of the T−i are accepting runs of Ai on the unrav-
ellings of the τ -reducts of the respective T−i .

The unravelling of T−i describes a run, that is, at each node the appropriate
formula as given by the transition function holds true. Regarding the parity
index, observe that every infinite path α in T−i only sees finitely many nodes
of depth less than Nfin, so we can forget about them. Now regard the
infinitely many segments of α, each going from where α enters T+

i |[Nfin:N≥0]

to the loop-back point on level Nmin. Each of these segments is part of an
infinite path β in T+

i . Remember that T+
i |[N≥0:Nmin] was chosen such that

every of these infinite paths β in T+
i sees its minimal, since the original run
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was accepting: even, parity index in that part of the path. Hence, for each
segment of α, the minimal parity index seen is even.

We started with the assumption that ϕ∗ is bisimulation invariant on the class
of finite structures. However, if ϕ∗ can distinguish two bisimilar (infinite)
trees T1 and T2, we can transform them into two bisimilar finite structures,
the τ -reducts of T−1 and T−2 , that are distinguished by ϕ∗, a contradiction.
Hence ϕ∗ is bisimulation invariant on the class of all structures. 2

8.4 GSO and GSO∗

The goal is to lift all current bisimulation-invariance theorems from the
modal to the guarded world. The following corollary can be shown in exactly
the same fashion as the corresponding result for MSO∗.

Corollary 8.4.1. Every GSO∗-formula that is bisimulation invariant is
equivalent to a µGF-formula.

Proof. If ψ∗(x) ∈ GSO∗ is guarded bisimulation invariant, then ψ(x)
is guarded bisimulation invariant on the class of all unravelled structures
and hence, on these structures, equivalent to a µGF-formula ϕ(x). Then,
for all structures A and all tuples a ∈ A, A |= ψ∗(a) iff, by definition,
T(A,a) |= ψ(a) iff, by Theorem 8.2.2, T(A,a) |= ϕ(a) iff, since ϕ is guarded
bisimulation invariant and A,a ∼g T(A,a), A |= ϕ(a). 2

At this point we hit a, for now, final dead end. What we need is the
“Holy Grail” for transforming finite structures into finite graphs with a
well-behaved consistency condition. Until then, the following conjectures
are not more than wishful thinking, lacking any strong indication in either
direction. The interested reader may see them as incentive to continue with
research centred around finite structures, rather than trees.

Conjecture 8.4.2. Every GSO∗ formula that is guarded bisimulation in-
variant on the class of finite structures is bisimulation invariant on the class
of all structures.

Conjecture 8.4.3. Every MSO-formula that is bisimulation invariant on
the class of finite graphs is, on finite graphs, equivalent to an Lµ-formula.

Conjecture 8.4.4. Every GSO-formula that is bisimulation invariant on
the class of finite structures is, on finite structures, equivalent to a µGF-
formula.
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[9] E. Börger, E. Grädel and Y. Gurevich, The Classical Decision Problem,
Springer, 1997.

[10] J. Bradfield, The modal mu-calculus alternation hierarchy is strict, The-
oretical Computer Science, vol. 195, 1998, pp. 133–153.

149



150 BIBLIOGRAPHY

[11] J. Bradfield and C. Stirling, Modal logics and mu-calculi, in Handbook
of Process Algebra, Elsevier, 2001, pp. 293–332.

[12] D. Calvanese, G. De Giacomo and M. Lenzerini, On the Decidability
of Query Containment under Constraints, in Proceedings of the 17th
Symposium on Principles of Database Systems (PODS), 1998, pp. 149–
158.

[13] B. Courcelle, On the expression of graph properties in some fragments of
monadic second-order logic, Descriptive Complexity and Finite Models,
in DIMACS Series in Discrete Mathematics, vol. 31, AMS, 1997, pp. 33–
62.

[14] B. Courcelle, The monadic second-order logic of graphs XIV: Uniformly
sparse graphs and edge set quantifications, Submitted for publication.

[15] B. Courcelle, I. Walukiewicz, Monadic Second-Order Logic, Graph Con-
verings and Unfoldings of Transition Systems, Annals of Pure and Ap-
plied Logic, vol. 92, 1998, pp. 35–62.

[16] A. Dawar, Feasible Computation Through Model Theory, Dissertation,
1993.

[17] F. Donnini, M. Lenzerini, D. Nardi and A. Schaerf, Reasoning in de-
scription logics, in Principles of Knowledge Representation, CSLI Pub-
lications, 1996, pp. 193–238.

[18] F. M. Donini, M. Lenzerini, D. Nardi and W. Nutt The Complexity
of Concept Languages, in Information and Computation, vol. 134(1),
1997, pp. 1–58.

[19] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer, 2nd
edition, 1999.

[20] H. Ganzinger, C. Meyer and M. Veanes, The Two-Variable Guarded
Fragment with Transitive Relations, in Proceedings of the 14th IEEE
Symposium on Logic in Computer Science (LICS), 1999, pp. 24–34.

[21] H. Ganzinger and H. de Nivelle, A Superposition Decision Procedure for
the Guarded Fragment with Equality, in Proceedings of the 14th IEEE
Symposium on Logic in Computer Science (LICS), 1999, pp. 295-305.
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1995-1996 Leitung einer Übungsgruppe im Fach “Mathematische Logik” am

Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik
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