
“memory˙kinds” — 2007/6/6 — 11:40 — page 1 — #1

What kind of memory is needed to win infinitary

Muller games? ∗

Erich Grädel

 Lukasz Kaiser

Mathematische Grundlagen der Informatik
RWTH Aachen University
52056 Aachen, Germany

{graedel,kaiser}@informatik.rwth-aachen.de

Abstract

In an influential paper entitled “How much memory is needed to

win infinite games”, Dziembowski, Jurdziński, and Walukiewicz have
shown that there are Muller games of size O(n) whose winning strategies
require memory of size at least n!. This shows that the LAR-memory,
based on the latest appearance records introduced by Gurevich and
Harrington, is optimal for solving Muller games. We review these results
and reexamine the situation for the case of infinitary Muller games,
i.e. Muller games with infinitely many priorities. We introduce a new,
infinite, memory structure, based on finite appearance records (FAR)
and investigate classes of Muller games that can be solved with FAR-
memory.

1 Introduction

We study two-player games of infinite duration that are played on finite or
infinite game graphs. Such a game is determined if, from each position, one of
the two players has a winning strategy. On the basis of the axiom of choice it
is not difficult to prove that there exist nondetermined games. The classical
theory of infinite games in descriptive set theory links determinacy of games
with topological properties of the winning conditions. Usually the format of
Gale-Stewart games is used where the two players strictly alternate, and in
each move a player selects an element of {0, 1}; thus the outcome of a play
is an infinite string π ∈ {0, 1}ω. Gale-Stewart games can be viewed as graph

∗This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (games)

“memory˙kinds” — 2007/6/6 — 11:40 — page 2 — #2

2 E. Grädel, L. Kaiser

game, for instance on the infinite binary tree, or on a bipartite graph with
four nodes. Zermelo [20] proved already in 1913 that if in each play of a game,
the winner is determined already after a finite number of moves, then one of
the two players has a winning strategy. In topological terms the winning sets
in such a game are clopen (open and closed). By a celebrated theorem due to
Martin [16] every game where the winning condition is given by a Borel set is
determined.

For game theory that relates to computer science, determinacy is just a
first step in the analysis of a game. Rather than in the mere existence of
winning strategies, one is interested in effective constructions of reasonably
simple winning strategies. An aspect of crucial importance for the complexity
of a strategy is its dependency on the history of the play.

In general, strategies may be very complicated functions that can depend
on the entire history of the play. However, in many cases, simple strategies
suffice. Of particular interest are positional strategies for which the next move
depends only the current position, and not at all on previous history. That is, a
player moving according to a positional strategy f will at a position v always
perform the same move v → f(v) no matter how often and by what path
position v has been reached. A game is positionally determined, if from each
position, one of the two players has a positional winning strategy. Another
important case are finite-memory strategies for which the dependency on the
history can be calculated on the basis of a finite set of memory states and
which can thus be implemented by a finite automaton.

Positional determinacy and determinacy via finite-memory strategies have
been extensively studied for games whose winning conditions are defined in
terms of a mapping that assigns to each position a priority from a finite
set C. Specifically, in Muller games the winner of a play is determined by
the set of those priorities that have been seen infinitely often. It has been
proved by Gurevich and Harrington [12] that Muller games are determined
via finite memory strategies that are based on a data structure called latest
appearance records (LAR). Intuitively a latest appearance record is a list of
priorities in the order in which they have last occurred in the play. Thus, on n

priorities, an LAR-memory has n! memory states. Dziembowski, Jurdziński,
and Walukiewicz [6] have shown that LAR-strategies are essentially optimal
for Muller games.

Theorem 1.1. There exists a sequence (Gn)n∈ω of Muller games such that
the game graph of Gn is of size O(n) and every winning strategy for Gn requires
a memory of size at least n!

“memory˙kinds” — 2007/6/6 — 11:40 — page 3 — #3

What kind of memory is needed to win infinitary Muller games? 3

In particular, Muller games need not be positionally determined, not even
for solitaire games (where only one player moves). An important special case
of Muller games are parity games. These are games with a priority labeling
Ω assigning to each position v a priority Ω(v) ∈ {0, . . . , d}, for some d ∈ N,
and with parity winning condition: Player 0 wins a play π if the least priority
occurring infinitely often in π is even. Parity games are of importance for
several reasons.

(1) Many classes of games arising in practical applications admit reductions
to parity games (over larger game graphs). This is the case for games
modeling reactive systems, with winning conditions specified in some tem-
poral logic or in monadic second-order logic over infinite paths (S1S), for
Muller games, but also for games with partial information apeearing in
the synthesis of distributed controllers.

(2) Parity games arise as the model checking games for fixed point logics such
as the modal µ-calculus or LFP, the extension of first-order logic by least
and greatest fixed points [8, 10]. In particular the model checking problem
for the modal µ-calculus can be solved in polynomial time if, and only if,
winning regions for parity games can be decided in polynomial time.

(3) Parity games are positionally determined [7, 17]. This is a game theo-
retical result of fundamental importance and with great algorithmic rele-
vance.

To establish positional determinacy or finite-memory determinacy is a fun-
damental step in the analysis of an infinite game, and is also crucial for the
algorithmic construction of winning strategies. In the case of parity games
with finitely many priorities the positional determinacy immediately implies
that winning regions can be decided in NP ∩ Co-NP; with a little more effort
it follows that the problem is in fact in UP ∩ Co-UP [13]. Further, although it
is not known yet whether parity games can be solved in polynomial time, all
known approaches towards an efficient algorithmic solution make use of posi-
tional determinacy. The same is true for the efficient algorithms that we have
for specific classes of parity games, including parity games with a bounded
number of priorities [14], games where even and odd cycles do not intersect,
solitaire games and nested solitaire games [2], and parity games of bounded
tree width [18], bounded entanglement [3], or bounded DAG-width [1, 19].

For several reasons it is interesting to generalise the theory of infinite
games to the case of infinitely many priorities. Besides the theoretical interest,

“memory˙kinds” — 2007/6/6 — 11:40 — page 4 — #4

4 E. Grädel, L. Kaiser

winning conditions depending on infinitely many priorities arise naturally in
several contexts. In pushdown games, stack height and stack contents are
natural parameters that may take infinitely many values. In [5], Cachat,
Duparc, and Thomas study pushdown games with an infinity condition on
stack contents, and Bouquet, Serre, and Walukiewicz [4] consider more general
winning conditions for pushdown games, combining a parity condition on the
states of the underlying pushdown automaton with an unboudedness condition
on stack heights. Similarly, Gimbert [9] considers games of bounded degree
where the parity winning condition is combined with the requirement that an
infinite portion of the game graph is visited.

A systematic study of positional determinacy of games with infinitely
many priorities has been initiated in [11]. It has been shown that there are
interesting cases where positional determinacy is a consequence of the winning
condition only, holding for all game graphs. Most notably this is the case for
the parity condition on ω. Moreover a complete classification of the infinitary
Muller conditions with this property has been established in [11] and it has
been shown that all of them are equivalent to a parity condition.

Whereas the proof for the positional determinacy of parity games with
priorities in ω is somewhat involved, it is quite easy to construct games with
infinitary Muller winning conditions whose winning strategies require infinite
memory. For instance there are very simple max-parity games (where the
maximal priority seen infinitely often determines the winner) with this prop-
erty (see Section 4). Nevertheless, the required (infinite) memory structures
are often quite simple. In some cases it is enough to store just the maximal
priority seen so far. In other cases a tuple (of fixed length) of previously seen
priorities suffices to determine the next move of a winning strategy. This mo-
tivates the introduction of a new memory structure for winning strategy, that
we call finite appearance records (FAR) which generalise the LARs used for
finitary Muller games. We determine some classes of Muller games that can
be reduced to parity games via FAR-memories. These include games where
the wining condition is a downward cone, a singleton condition, a finite union
of upwards cones or consists of finitely many winning sets only. Further the
same property holds for all max-parity games where the difference between
the priorities of any two consecutive positions is bounded.

Here is an outline of this paper. In Section 2 we present the technical
definitions on games, winning strategies, memory structures and game reduc-
tions. In Section 3 we survey the case of Muller games with finitely many
priorities and present proofs of two classical results of the field. First we show

“memory˙kinds” — 2007/6/6 — 11:40 — page 5 — #5

What kind of memory is needed to win infinitary Muller games? 5

that Street-Rabin games are positionally determined for one player (which
also implies that parity games are positionally determined for both players).
Second, we describe the LAR-memory and show how Muller games can be re-
duced, via LAR-memory, to parity games. In Section 4 we briefly survey the
results from [11] on parity games and Muller games with infinitely many pri-
orities. In Section 5 we introduce finite appearance records and FAR-memory
structures. Finally, in Section 6 we analyse some classes of Muller games that
can be solved with FAR-memories.

2 Games, strategies, and memory structures

We study infinite two-player games with complete information, specified by a
triple G = (G, Ω, W) where G = (V, V0, V1, E) is a game graph, equipped with
a partioning V = V0 ∪V1 of the nodes into positions of Player 0 and positions
of Player 1, where Ω : V → C is a function that assigns to each position a
priority (or colour) from a set C, and where W specifies a winning condition.
The pair (G, Ω) is called the arena of the game. In case (v, w) ∈ E we call
w a successor of v and we denote the set of all successors of v by vE. To
avoid tedious case distinctions, we assume that every position has at least one
successor. A play in G is an infinite path v0v1 . . . formed by the two players
starting from a given initial position v0. Whenever the current position vi

belongs to V0, then Player 0 chooses a successor vi+1 ∈ viE, if vi ∈ V1, then
vi+1 ∈ viE is selected by Player 1. The winning condition describes which
of the infinite plays v0v1 . . . are won by Player 0, in terms of the sequence
Ω(v0)Ω(v1) . . . of priorities appearing in the play. Thus, a winning condition
is given by a set W ⊆ Cω of infinite sequences of priorities.

In traditional studies of infinite games it is usually assumed that the set C

of priorities is finite, although the game graph itself (i.e., the set of positions)
may well be infinite. This permits, for instance, to specify winning condition
by formulae from a logic on infinite paths, such as LTL (linear time temporal
logic), FO (first-order logic), or MSO (monadic second-order logic) over a
vocabulary that uses the linear order < and monadic predicates Pc for each
priority c ∈ C.

A (deterministic) strategy for Player σ in a game G = (V, V0, V1, E, Ω) is
a partial function f : V ∗Vσ → V that maps initial segments v0v1 . . . vm of
plays ending in a position vm ∈ Vσ to a successor f(v0 . . . vm) ∈ vmE. A
play v0v1 · · · ∈ V ω is consistent with f , if Player σ always moves according
to f , i.e., if vm+1 = f(v0 . . . vm) for every m with vm ∈ Vσ. We say that
such a strategy f is winning from position v0, if every play that starts at

“memory˙kinds” — 2007/6/6 — 11:40 — page 6 — #6

6 E. Grädel, L. Kaiser

v0 and that is consistent with f , is won by Player σ. The winning region
of Player σ, denoted Wσ, is the set of positions from which Player σ has a
winning strategy.

A game G is determined if W0 ∪ W1 = V , i.e., if from each position one
of the two players has a winning strategy. In general, winning strategies can
be very complicated. It is of interest to determine which games admit sim-
ple strategies, in particular finite memory strategies and positional strategies.
While positional strategies only depend on the current position, not on the
history of the play, finite memory strategies have access to bounded amount of
information on the past. Finite memory strategies can be defined as strategies
that are realisable by finite automata. However, we will also need to consider
strategies that require infinite memory. We therefore introduce a general no-
tion of a memory structure and of a strategy with memory, generalising the
finite memory strategies studied for instance in [6].

Definition 2.1. A memory structure for a game G with positions in V is a
triple M = (M, update, init), where M is a set of memory states, update :
M × V → M is a memory update function and init : V → M is a memory
initialisation function. The size of the memory is the cardinality of the set
M . A strategy with memory M for Player σ is given by a next-move function
F : Vσ × M → V such that F (v, m) ∈ vE for all v ∈ Vσ, m ∈ M . If a
play, from starting position v0, has gone through positions v0v1 . . . vn the
memory state is m(v0 . . . vn), defined inductively by m(v0) = init(v0), and
m(v0 . . . vivi+1) = update(m(v0 . . . vi), vi+1). In case vn ∈ Vσ, the next move
from v1 . . . vn, according to the strategy, leads to F (vn, m(v0 . . . , vn)). In
case |M | = 1, the strategy is positional; it can be described by a function
F : Vσ → V .

We will say that a game is determined via memory M if it is determined
and both players have winning strategies with memory M on their winning
regions. A game is positionally determined if it is determined via positional
winning strategies.

Given a game graph G = (V, V0, V1, E) and a memory structure M =
(M, update, init) we obtain a new game graph G×M = (V ×M, V0×M, V1×
M, Eupdate) where

Eupdate = {(v, m)(v′, m′) : (v, v′) ∈ E and m′ = update(m, v′)}.

Obviously, every play (v0, m0)(v1, m1) . . . in G×M has a unique projection
to the play v0v1 . . . in G. Conversely, every play v0, v1, . . . in G has a unique

“memory˙kinds” — 2007/6/6 — 11:40 — page 7 — #7

What kind of memory is needed to win infinitary Muller games? 7

extension to a play (v0, m0)(v1, m1) . . . in G × M with m0 = init(v0) and
mi+1 = update(mi, vi+1).

Consider two games G = (G, Ω, W) and G′ = (G′, Ω′, W ′). We say that G
reduces via memory M to G′, (in short G ≤M G′) if G′ = G × M and every
play in G′ is won by the same player as the projected play in G.

Given a memory structure M for G and a memory structure M
′ for

G × M we obtain a memory structure M
∗ = M × M

′ for G. The set of
memory locations is M × M ′ and we have memory initialization init∗(v) =
(init(v), init′(v, init(v)) and the update function

update∗((m, m′), v) := (update(m, v), update′(m′, (v, update(m, v))).

Proposition 2.2. Suppose that a game G reduces to G′ via memory M

and that Player σ has a winning strategy for G′ with memory M
′ from

(v0, init(v0))). Then Player σ has a winning strategy for G with memory
M × M

′ from position v0.

Proof. Given a strategy F ′ : (Vσ × M) × M ′ → (V × M) for Player σ on G′

we have to construct a strategy F : (Vσ × (M × M ′)) → V × (M × M ′).

For any pair (v, m) ∈ Vσ × M we have that F ′(v, m) = (w, update(m, w))
where w ∈ vE. We now put F (v, mm′) = w. If a play in G that is consistent
with F proceeds from position v, with current memory location (m, m′), to a
new position w, then the memory is updated to (n, n′) with n = update(m, w)
and n′ = update′(m′, (w, n)). In the extended play in G′ we have an associated
move from position (v, m) to (w, n) with memory update from m′ to n′.
Thus, every play in G from initial position v0 that is consistent with F is
the projection of a play in G′ from (v0, init(v0)) that is consistent with F ′.
Therefore, if F ′ is a winning strategy from (v0, init(v0)), then F is a winning
strategy from v0. q.e.d.

Corollary 2.3. Every game that reduces via memory M to a positionally
determined game, is determined via memory M.

Obviously, memory reductions between games compose. If G reduces to
G′ with memory M = (M, update, init) and G′ reduces to G′′ with mem-
ory M

′ = (M ′, init′, update′) then G reduces to G′′ with memory (M ×
M ′, init′′, update′′) with init′′(v) = (init(v), init′(v, init(v))) and

update((m, m′), v) = (update(m, v), update′(m′, (v, update(m, v))).

“memory˙kinds” — 2007/6/6 — 11:40 — page 8 — #8

8 E. Grädel, L. Kaiser

3 Games with finitely many priorities

In this section we consider Muller games, Street-Rabin games, and parity
games with finitely many priorities.

3.1 Muller games and Street-Rabin games

Definition 3.1. A Muller winning condition over a finite set C of priorities
is written in the form (F0,F1) where F0 ⊆ P(C) and F1 = P(C) − F0. A
play π in a game with Muller winning condition (F0,F1) is won by Player σ

if, and only if, Inf(π), the set of priorities occurring infinitely in π, belongs
to Fσ.

The Zielonka tree for a Muller condition (F0,F1) over C is a tree Z(F0,F1)
whose nodes are labelled with pairs (X, σ) such that X ∈ Fσ. We de-
fine Z(F0,F1) inductively as follows. Let C ∈ Fσ and C0, . . . , Ck−1 be
the maximal sets in {X ⊆ C : X ∈ F1−σ}. Then Z(F0,F1) consists of a
root, labeled by (C, σ), to which we attach as subtrees the Zielonka trees
Z(F0 ∩ P(Ci),F1 ∩ P(Ci)), for i = 0, . . . , k − 1.

Besides parity games there are other important special cases of Muller
games. Of special relevance are games with Rabin and Street conditions
because these are positionally determined for one player [15].

Definition 3.2. A Streett-Rabin condition is a Muller condition (F0,F1) such
that F0 is closed under union.

In the Zielonka tree for a Streett-Rabin condition, the nodes labeled (X, 1)
have only one successor. We remark that in the literature, Streett and Ra-
bin conditions are often defined in a different manner, based on a collection
{(Ei, Fi) : i = 1, . . . k} of pairs of sets. However, it is not difficult to see that
the definitions are equivalent [21]. Further, it is also easy to show that if both
F0 and F1 are closed under union, then (F0,F1) is equivalent to a parity
condition. The Zielonka tree for a parity condition is just a finite path.

In a Streett-Rabin game, Player 1 has a positional wining strategy on his
winning region. On the other hand, Player 0 can win, on his winning region,
via a finite memory strategy, and the size of the memory can be directly read
of from the Zielonka tree. We present an elementary proof of this result. The
exposition is inspired by [6]. In the proof we use the notion of an attractor.

Definition 3.3. Let G = (V, V0, V1, E, Ω) be an arena and let X, Y ⊆ V , such
that X induces a subarena of G (i.e., every position in X has a successor in
X). The attractor of Player σ of Y in X is the set AttrX

σ (Y) of those positions

“memory˙kinds” — 2007/6/6 — 11:40 — page 9 — #9

What kind of memory is needed to win infinitary Muller games? 9

v ∈ X from which Player σ has a strategy in G to force the play into Y . More
formally AttrX

σ (Y) =
⋃

α Zα where

Z0 = X ∩ Y,

Zα+1 = Zα ∪ {v ∈ Vσ ∩ X : vE ∩ Zα 6= ∅} ∪ {v ∈ V1−σ ∩ X : vE ⊆ Zα}

Zλ =
⋃

α<λ

Zα for limit ordinals λ

On AttrX
σ (Y), Player σ has a positional attractor strategy to bring the play

into Y . Moreover X \ AttrX
σ (Y) is again a subarena.

Theorem 3.4. Let G = (V, V0, V1, E, Ω) be game with Streett-Rabin winning
condition (F0,F1). Then G is determined, i.e. V = W0 ∪ W1, with a finite
memory winning strategy of Player 0 on W0, and a positional winning strategy
of Player 1 on W1. The size of the memory required by the winning strategy
for Player 0 is bounded by the number of leaves of the Zielonka tree for
(F0,F1).

Proof. We proceed by induction on the number of priorities in C or, equiva-
lently, the depth of the Zielonka tree Z(F0,F1). Let ℓ be number of leaves of
Z(F0,F1). We distinguish two cases.

First, we assume that C ∈ F1. Let

X0 := {v : Player 0 has a winning strategy with memory of size ≤ ℓ from v},

and X1 = V \ X0. It suffices to prove that Player 1 has a positional win-
ning strategy on X1. To construct this strategy, we combine three positional
strategies of Player 1, a trap strategy, an attractor strategy, and a winning
strategy on a subgame with fewer priorities.

We observe that X1 is a trap for Player 0; this means that Player 1 has a
positional trap-strategy t on X1 to enforce that the play stays within X1.

Since F0 is closed under union, there is a unique maximal subset C′ ⊆ C

with C′ ∈ F0. Let Y := X1∩Ω−1(C \C′) and let Z = AttrX1

1 (Y)\Y . Observe
that Player 1 has a positional attractor strategy a, by which he forces from
any position z ∈ Z that the play reaches Y .

Finally, let V ′ = X1 \ (Y ∪ Z) and let G′ be the subgame of G induced
by V ′, with winning condition (F0 ∩P(C′),F1 ∩P(C′)). Since this game has
fewer priorities, the induction hypothesis applies, i.e. V ′ = W ′

0∪W ′
1, Player 0

has a winning strategy with memory ≤ ℓ on W ′
0 and Player 1 has a positional

“memory˙kinds” — 2007/6/6 — 11:40 — page 10 — #10

10 E. Grädel, L. Kaiser

winning strategy g′ on W ′
1. However, W ′

0 = ∅; otherwise we could combine
the strategies of Player 0 to obtain a winning strategy with memory ≤ ℓ on
X0 ∪ W ′

0) X0 contradicting the definition of X0. Hence W ′
1 = V ′.

We can now define a positional strategy g for Player 1 on X1 by

g(x) =

g′(x) if x ∈ V ′

a(x) if x ∈ Z

t(x) if x ∈ Y

Consider any play π that starts at a position v ∈ X1 and is consistent with
g. Obviously π stays within X1. If it hits Y ∪Z only finitely often, then from
some point onward, it stays within V1 and coincides with a play consistent
with g′. It is therefore won by Player 1. Otherwise π hits Y ∪ Z, and hence
also Y , infinitely often. Thus, Inf(π)∩ (C \C′) 6= ∅ and therefore Inf(π) ∈ F1.

We now consider the second case, C ∈ F0. There exist maximal subsets
C0, . . . , Ck−1 ⊆ C with Ci ∈ F1. Observe that for every set D ⊆ C, we have
that if D ∩ (C \ Ci) 6= ∅ for all i < k, then D ∈ F0. Let

X1 := {v : Player 1 has a positional winning strategy from v},

and X0 = V \X1. We claim that Player 0 has a finite memory winning strategy
of size ≤ ℓ on X0. To construct this strategy, we proceed in a similar way as
above, for each of the sets C \ Ci. We will obtain strategies f0, . . . , fk−1 for
Player 0, such that fi has finite memory Mi, and we will use these strategies
to build a winning strategy f on X0 with memory M0 ∪ · · · ∪ Mk−1.

For i = 0, . . . , k−1, let Yi = X0∩Ω−1(C \Ci) let Zi = AttrX0

0 (Yi)\Yi, and
let ai be a positional attractor strategy, by which Player 0 can force a play
from any position in Zi to Yi. Further, let Ui = X0\(Yi∪Zi) and let Gi be the
subgame of G induced by Ui, with winning condition (F0∩P(Ci),F1∩P(Ci)).
The winning region of Player 1 in Gi is empty; indeed, if Player 1 could win Gi

from v, then, by induction hypothesis, he could win with a positional winning
strategy. By combining this strategy with the positional winning strategy of
Player 1 on X1, this would imply that v ∈ X1; but v ∈ Ui ⊆ V \ X1.

Hence, by induction hypothesis, Player 0 has a winning strategy fi with
finite memory Mi on Ui. Let (fi + ai) be the combination of fi with the
attractor strategy ai. From any position v ∈ Ui∪Zi this strategy ensures that
the play either remains inside Ui and is winning for Player 1, or it eventually
reaches a position in Yi.

“memory˙kinds” — 2007/6/6 — 11:40 — page 11 — #11

What kind of memory is needed to win infinitary Muller games? 11

We now combine the finite-memory strategies (f0 + a0), . . . , (fk−1 + ak−1)
to a winning strategy f on X0, which ensures that either the play ultimately
remains within one of the regions Ui and coincides with a play according to
fi, or that it cycles infinitely often through all the regions Y0, . . . , Yk−1.

At positions in
⋂

i<k Yi, Player 0 just plays with a (positional) trap strat-
egy ensuring that the play remains in X0. At the first position v 6∈

⋂

i<k Yi,
Player 0 takes the minimal i such that v 6∈ Yi, i.e. v ∈ Ui ∪ Zi, and uses
the strategy (fi + ai) until a position in w ∈ Yi is reached. At this point,
Player 0 switches from i to j = i + ℓ (mod k) for the minimal ℓ such that
w 6∈ Yj . Hence w ∈ Uj ∪ Zj ; Player 0 now plays with strategy (fj + aj) until
a position in Yj is reached. There Player 0 again switches to the appropriate
next strategy, and so on.

Assuming that Mi ∩ Mj = ∅ for i 6= j it is not difficult to see that f

can be implemented with memory M = M0 ∪ · · · ∪ Mk−1. We leave a formal
definition of f to the reader.

It remains to prove that f is winning on X0. Let π be a play that starts
in X0 and is consistent with f . If π eventually remains inside some Ui then
it coincides, from some point onwards, with a play that is consistent with fi,
and therefore won by Player 0. Otherwise it hits each of the sets Y0, . . . , Yk−1

infinitely often. But this means that Inf(π) ∩ (C \ Ci) 6= ∅ for all i ≤ k; as
observed above this implies that Inf(π) ∈ F0.

Note that, by induction hypothesis, the size of the memory Mi is bounded
by the number of leaves of the Zielonka subtrees Z(F0 ∩ P(Ci),F1 ∩ P(Ci).
Consequently the size of M is bounded by the number of leaves of Z(F0,F1).

q.e.d.

Of course it also follows from this Theorem that parity games are posi-
tionally determined.

3.2 Latest appearance records and reductions for Muller games

The classical example of a game reduction with finite memory is the reduction
of Muller games to parity games via latest appearance records. Intuitively, a
latest appearance record (LAR) is a list of priorities ordered by their latest
occurrence. More formally, for a finite set C of priorities, LAR(C) is the set of
sequences c1 . . . ck♮ck+1 . . . cℓ of elements from C ∪ {♮} in which each priority
c ∈ C occurs at most once, and ♮ occurs precisely once. At a position v, the
LAR c1 . . . ck♮ck+1 . . . cℓ is updated by moving the priority Ω(v) to the end,
and moving ♮ to the previous position of Ω(v) in the sequence. For instance,
at a position with priority c2, the LAR c1c2c3♮c4c5 is updated to c1♮c3c4c5c2.

“memory˙kinds” — 2007/6/6 — 11:40 — page 12 — #12

12 E. Grädel, L. Kaiser

(If Ω(v) did not occur in the LAR, we simply append Ω(v) at the end). Thus,
the LAR-memory for an arena with priority labeling Ω : V → C is the triple
(LAR(C), init, update) with init(v) = ♮Ω(v) and

update(c1 . . . ck♮ck+1 . . . cℓ, v) = c1 . . . ck♮ck+1 . . . cℓΩ(v)

in case Ω(v) 6∈ {c1 . . . cℓ}, and

update(c1 . . . ck♮ck+1 . . . cℓ, v) = c1 . . . cm−1♮cm+1 . . . cℓcm

if Ω(v) = cm.
The hit-set of a LAR c1 . . . ck♮ck+1 . . . cℓ is the set {ck+1 . . . cℓ} of priorities

occuring after the symbol ♮. Note that if in a play π = v0v1 . . . , the LAR at
position vn is c1 . . . ck♮ck+1 . . . cℓ then Ω(vn) = cℓ and the hit-set {ck+1 . . . cℓ}
is the set of priorities that have been seen since the latest previous occurrence
of cℓ in the play.

Lemma 3.5. Let π be a play of a Muller game G, and let Inf(π) be the set
of priorities occurring infinitely often in π. On π the hit-set of the latest
appearance record is, from some point onwards, always a subset of Inf(π) and
infinitely often coincides with Inf(π).

Proof. For each play π = v0v1v2 . . . there is a position vm such that Ω(vn) ∈
Inf(π) for all n ≥ m. Since no priority outside Inf(π) is seen anymore after
position vm, the hit-set will from that point onwards always be contained in
Inf(π), and the LAR will always have the form c1 . . . cj−1cj . . . ck♮ck+1 . . . cℓ

where c1, . . . cj−1 remain fixed and {cj , . . . , ck, ck+1, . . . cℓ} = Inf(π). Since all
priorities in Inf(π) are seen again and again, it happens infinitely often that,
among these, the one occuring leftmost in the LAR is hit. At such positions,
the LAR is updated to c1, . . . , cj−1♮cj+1 . . . cℓcj and the hit-set then coincides
with Inf(π). q.e.d.

Theorem 3.6. Every Muller game with finitely many priorities reduces via
LAR memory to a parity game.

Proof. Let G be a Muller game with game graph G, priority labelling Ω : V →
C and winning condition (F0,F1). We have to prove that G ≤LAR G′ for a
parity game G′ with game graph G × LAR(C) and an appropriate priority
labeling Ω′ on V × LAR(C) which is defined as follows.

Ω′(v, c1c2 . . . ck♮ck+1 . . . cℓ) =

{

2k if {ck+1, . . . , cℓ} ∈ F0,

2k + 1 if {ck+1, . . . , cℓ} ∈ F1.

“memory˙kinds” — 2007/6/6 — 11:40 — page 13 — #13

What kind of memory is needed to win infinitary Muller games? 13

Let π = v0v1v2 . . . be a play on G and fix a number m such that, for
all numbers n ≥ m and Ω(vn) ∈ Inf(π), the LAR at position vn has the
form c1 . . . cjcj+1 . . . ck♮ck+1 . . . cℓ where Inf(π) = {cj+1, . . . cℓ} and the prefix
c1 . . . cj remains fixed. In the extended play π′ = (v0r0)(v1, r1) . . . all nodes
(vn, rn) for n ≥ will therefore have a priority 2k+ρ with k ≥ j and ρ ∈ {0, 1}.
Assume that the play π is won by Player σ, i.e., Inf(π) ∈ Fσ. Since infinitely
often the hit-set of the LAR coincides with Inf(π), the minimal priority seen
infinitely often on the extended play is 2j +σ. Thus the extended play in the
parity game G′ is won by the same player as the original play in the Muller
game G. q.e.d.

4 Games with infinitely many priorities

The definition of Muller games (Definition 3.1) directly generalises to count-
able sets C of priorities1. However, a representation of a Muller condition
by a Zielonka tree is not always possible, since we may have sets D ∈ Fσ

that have subsets in F1−σ but no maximal ones. Further, it turns out that
the condition that F0 and F1 are both closed under finite unions is no longer
sufficient for positional determinacy. To see this let us discuss the possible
generalisations of parity games to the case of priority assigments Ω : V → ω.
For parity games with finitely many priorities it is of course purely a matter
of taste whether we let the winner be determined by the least priority seen
infinitely often or by the greatest one. Here this is no longer the case. Based
on priority assignments Ω : V → ω we consider the following classes of games.

Infinity games are games where Player 0 wins those infinite plays in which
no priority at all appears infinitely often, i.e.

F0 = {∅}

F1 = P(ω) \ {∅}

Parity games are games where Player 0 wins the plays in which the least
priority seen infinitely often is even, or where no priority appears in-
finitely often. Thus,

F0 = {X ⊆ ω : min(X) is even} ∪ {∅}

F1 = {X ⊆ ω : min(X) is odd}

1With minor modifications, it can also be generalised to uncountable sets C. See [11]
for a discussion of this.

“memory˙kinds” — 2007/6/6 — 11:40 — page 14 — #14

14 E. Grädel, L. Kaiser

Max-parity games are games where Player 0 wins if the maximal priority
occurring infinitely often is even, or does not exist, i.e.

F0 = {X ⊆ ω : if X is finite and non-empty, then max(X) is even}

F1 = {X ⊆ ω : X is finite, non-empty, and max(X) is odd}

It is easy to see that infinity games are a special case of parity games (via a
simple reassignment of priorities). Further we note that for both parity games
and max-parity games, F0 and F1 are closed under finite unions. Nevertheless
the conditions behave quite differently. The parity condition has a very simple
Zielonka tree, namely just a Zielonka path

ω −→ ω \ {0} −→ ω \ {0, 1} −→ ω \ {0, 1, 2} −→ · · ·

whereas there is no Zielonka tree for the max-parity condition since ω ∈ F0

has no maximal subset in F1 (and F1 is not closed under unions of chains).
This is in fact related to a much more important difference concerning the
memory needed for winning strategies.

Proposition 4.1. Max-parity games with infinitely many priorities in general
do not admit finite memory winning strategies.

Proof. Consider the max-parity game with positions V0 = {0} and V1 =
{2n + 1 : n ∈ N} (where the name of a position is also its priority), such that
Player 0 can move from 0 to any position 2n + 1 and Player 1 can move back
from 2n + 1 to 0. Clearly Player 0 has a winning strategy from each position
but no winning stategy with finite memory. q.e.d.

On the other hand it has been shown in [11] that infinity games and
parity games with priorities in ω do admit positional winning strategies for
both players on all game graphs. In fact, parity games over ω turn out to be
the only Muller games with this property.

Theorem 4.2 (Grädel, Walukiewicz). Let (F0,F1) be a Muller winning con-
dition over a countable set C of priorities. Then the following are equivalent.

(i) Every game with winning condition (F0,F1) is positionally determined.

(ii) Both F0 and F1 are closed under finite unions, unions of chains, and
non-empty intersections of chains.

(iii) The Zielonka tree of (F0,F1) exists, and is a path of co-finite sets (and
possibly the empty set at the end).

(iv) (F0,F1) reduces to a parity condition over n ≤ ω priorities.

“memory˙kinds” — 2007/6/6 — 11:40 — page 15 — #15

What kind of memory is needed to win infinitary Muller games? 15

5 Finite Appearance Records

Although over an infinite set of priorities one can easily define Muller games
that do not admit finite memory strategies, these games are often solvable
by strategies with very simple infinite memory structures. For instance, for
the max-parity game described in the proof of Proposition 4.1, it suffices for
Player 0 to store the maximal priority seen so far, in order to determine the
next move in her winning strategy. One can readily come up with other
games where the memory required by a winning strategies is essentially a
finite collection of previously seen priorities.

This motivates the definition of an infinite memory structure that we
call finite appearance records (FAR) which generalises the LAR-memory for
finitely coloured games. In a FAR we store tuples of previously encountered
priorities or some other symbols from a finite set. Additionally the update
function in the appearance record is restricted, so that new values of the
memory can be equal only to the values stored before or to the currently seen
priority.

Definition 5.1. A d-dimensional FAR-memory for a game G with priorities
in C is a memory structure (M, update, init) for G with M = (C ∪ N)d for
some finite set N such that whenever

update(m1, . . . , md, v) = (m′
1, . . . , m

′
d)

then m′
i ∈ {m1, . . . , md} ∪ N ∪ {Ω(v)}.

Note that an LAR-memory over a finite set C is a special case of an FAR-
memory, with d = |C| + 1 and N = {♮, B}, where B is a blank symbol used
to pad latest appearance records in which some priorities are missing. Here
the dimension of the FAR depends on the size of C. Hence, the question
arises whether there is a fixed dimension d and a fixed additional set N such
that every finitely coloured Muller game reduces to a parity game via d-
dimensional FAR-memory. From Theorem 1.1 it follows that his is not the
case. Indeed, since n! grows faster than nd for any constant d, we infer that
for any dimension d there is a Muller game Gd that can not be reduced to a
parity game via d-dimensional FAR-memory.

From this we obtain the following conclusion.

Proposition 5.2. There exists an infinitely coloured Muller game G that
does not reduce to a parity game with any FAR-memory.

“memory˙kinds” — 2007/6/6 — 11:40 — page 16 — #16

16 E. Grädel, L. Kaiser

Proof. Take G to be the disjoint sum of the games Gd, assuming that all these
games have disjoint sets of priorities. Suppose that G reduces to a parity
game via some FAR-memory of dimension d. Since game extensions preserve
connectivity it follows that the extension of the connected component Gd of
G will also be a parity game. But this contradicts the fact that Gd does not
reduce to a parity game via d-dimensional FAR-memory. q.e.d.

6 FAR-reductions for Muller games

In this section we consider some cases of Muller games with priorities in ω

that admit FAR-reductions to positionally determined games.
To illustrate the idea consider any downwards cone F0 = {X : X ⊆ A}

for a fixed set A ⊆ ω. Again it is easy to see that such games may require
infinite-memory strategies. To reduce such a game to a parity game G′ it
suffices to store the maximal priority m seen so far, and to define priorities in
G′ by

Ω′(v, m) =

{

2m + 2 if Ω(v) ∈ A

2Ω(v) + 1 otherwise.

If Inf(π) ⊆ A then Player 0 wins π′ since no odd priority is seen infinitely
often in π′. If there is some a ∈ Inf(π) \A, then 2a + 1 occurs infinitely often
in π′, and since a ≤ m from some point onwards, no smaller even priority can
have this property, so Player 1 wins π′.

Hence any Muller game such that F0 (or F1) is a downwards cone is
determined via one-dimensional FAR-memory.

6.1 Visiting sequences and singleton Muller conditions

Our next example for winning conditions that are amenable for an approach
via FAR-reductions are Muller games where the winning condition of Player 0
is a singleton, i.e., F0 = {A}, F1 = P(ω) \ {A}.

We first observe that such games may require infinite memory.

Theorem 6.1. For any A 6= ∅, there exists a (solitaire) Muller game with
F0 = {A} whose winning strategies all require infinite memory.

Proof. If A = {a1, a2, . . . } is infinite, take the game with set of positions
V = V0 = A (where the name of a positions indicates also its priority), and
moves (a1, an) and (an, a1) for all n ≥ 2. If A = {a1, . . . , an} is finite, let
ω \A = {b1, b2, . . . } we consider instead the game with V = V0 = A∪ (ω \A),
and set of moves

E = {(ai, ai+1) : 1 ≤ i < n} ∪ {(an, b) : b ∈ (ω \ A)} ∪ {(b, a1) : b ∈ (ω \ A)}.

“memory˙kinds” — 2007/6/6 — 11:40 — page 17 — #17

What kind of memory is needed to win infinitary Muller games? 17

In both cases, Player 0 wins, but requires infinite memory to do so. q.e.d.

We will prove that singleton Muller games can be reduced via FAR-
memory to parity games with priorities in ω which, as shown in [11], are
positionally determined. The FAR-memory that we use for this reduction is
based on a particular order in which the elements of the winning sets have to
be seen infinitely often, which is specified by a visiting sequence.

Definition 6.2. Let A = {a1 < a2 < . . . } be an infinite subset of ω. For
each n ∈ ω, let p(an) := a1a2 . . . an be the prefix of an. The visiting sequence
of A is the concatenation of the prefixes of all elements of A

visit(A) = p(a1)p(a2)p(a3) . . .

For a finite set {a1 < a2 < · · · < an} ⊆ ω we define visit(A) = p(an)ω.

Let G be a Muller game over ω.

Lemma 6.3. For any play π = v1v2 . . . of G the set Inf(π) is the unique set
A with the following two properties:

(1) There exists a sequence of indices i1 < i2 < . . . such that Ω(vi1)Ω(vi2) . . .

forms the visiting sequence of A.

(2) If Ω(vk) ∈ ω \ A then there is only a finite number of indices i > k such
that Ω(vi) ∈ {0, . . . , Ω(vk)} ∩ ω \ A.

Proof. First we notice that A = Inf(π) indeed fulfils these two properties.
The visiting sequence can be chosen from the play as all elements of Inf(π)
appear infinitely often. Since all elements of ω \ Inf(π) occur only finitely
often in the play, the second property must also hold.

Conversely, if a set A satisfies property (1), then all elements of A appear
infinitely often in π, so A ⊆ Inf(π). If there were an element a ∈ Inf(π) \ A,
then for any k with Ω(vk) = a, there were infinitely many indices i > k, with
Ω(vi) = a which contradicts property (2). Thus if A satisfies properties (1)
and (2), then A = Inf(π). q.e.d.

Let A ⊆ ω be infinite. Any initial segment of the visiting sequence of A

can be written in the form p(a1)p(a2) . . . p(ai)a1a2 . . . aj where 1 ≤ j ≤ i + 1.
It can be represented by a pair (p, c) where c = aj indicates the position of the
last letter in the current prefix p(ai+1), and p = ai indicates the last previously
compeleted prefix (or ε if we are at the first element). For instance, the initial

“memory˙kinds” — 2007/6/6 — 11:40 — page 18 — #18

18 E. Grädel, L. Kaiser

segment a1 a1a2 a1a2a3 a1a2a3 of the visiting sequence of A is encoded by
(a3, a3), the initial segment a1 is encoded by (ε, a1), and the empty initial
segment by (ε, ε). We write visitn(A) for the initial segment of length A of
visit(A).

Given a (finite or infinite) winning set A, we want to use a three-dimensional
FAR-memory to check whether Inf(π) = A. For infinite A, the memory state
after an initial segment of a play is a triple (p, c, q) where (p, c) encode the
initial segment of the visiting sequence of A that has been seen so far, and q

is the maximal priority that has occurred.

Definition 6.4. For any infinite set A ⊆ ω, we define a three-dimensional
FAR-memory FAR(A) = (M, init, update) with M = {(p, c, q) : p, c ∈ ω ∪
{ε}, q ∈ ω}. The initialisation function is defined by

init(v) =

{

(ε, Ω(v), Ω(v)) if Ω(v) = a1

(ε, ε, Ω(v)) if Ω(v) 6= a1

The update function is defined by

update(p, c, q, v) := (p′, c′, q′),

where q′ = max(q, Ω(v)), and where either (p, c) and respectively (p′, c′)
encode, for some n, the initial segments visitn(A) and visitn+1(A) of the
visiting sequence of A such that visitn+1(A) = visitn(A)Ω(v), or otherwise,
(p′, c′) = (p, c).

For a more formal description, let

up(p, c, v) =

2 if, for some i, p = ai, c = ai+1, Ω(v) = a1

1 if, for some j ≤ i, p = ai, c = aj , Ω(v) = aj+1

0 otherwise

(where, to simplify notation, we identify ε with a0). Note that up(p, c, v) = 2
if, at node v, the visiting sequence is updated with an a1 (i.e. a prefix p(ai) has
been completed and a new one is started), that up(p, c, v) = 1 if the visiting
sequence is updated by another value, and that up(p, c, v) = 0 if no update of
the visiting sequence happens at v. Then we can define update(p, c, q, v) :=

“memory˙kinds” — 2007/6/6 — 11:40 — page 19 — #19

What kind of memory is needed to win infinitary Muller games? 19

(p′, c′, q′) by

(p′, c′) =

(c, Ω(v)) if up(p, c, v) = 2

(p, Ω(v)) if up(p, c, v) = 1

(p, c) if up(p, c, v) = 0

q′ = max(q, Ω(v))

For finite A = {a1 < a2 < · · · < an} this has to be modified since once
cannot really encode the part of the visiting sequence that one has seen with
priorities in A. In this case the value (p, c, q) is so that c is the last element
of the visiting sequence, q is the maximal priority that has occurred so far,
and p is the maximal priority that had occured up to the last time when, in
the visiting sequence of A, a prefix p(an) had been completed and c had been
updated from an to a1. Thus we set

up(p, c, v) =

2 if c = an, Ω(v) = a1

1 if, for some i < n, c = ai, Ω(v) = ai+1

0 otherwise

and update(p, c, q, v) := (p′, c′, q′) with

(p′, c′) =

(q, Ω(v)) if up(p, c, v) = 2

(p, Ω(v)) if up(p, c, v) = 1

(p, c) if up(p, c, v) = 0

q′ = max(q, Ω(v)).

Theorem 6.5. Any singleton Muller game with F0 = {A} can be reduced,
via memory FAR(A), to a parity game.

Proof. The given Muller game G with arena (G, Ω) and Muller condition such
that F0 = {A} is reduced via memory FAR(A) to a parity game G′ with
priority function Ω′ : V × FAR(A) → ω defined as follows.

Ω′(v, p, c, q) =

2p + 2 if Ω(v) ∈ A, up(p, c, v) ∈ {1, 2}

2p + 3 if Ω(v) ∈ A, up(p, c, v) = 0

min(2p + 3, 2Ω(v) + 1) if Ω(v) 6∈ A

We have to prove that any play π = v0v1v2 . . . of G is won by the same
player as the extended play π′ = (v0, p0, c0, q0)(v1, p1, c1, q1)(v2, p2, c2, q2) . . .

of G′.

“memory˙kinds” — 2007/6/6 — 11:40 — page 20 — #20

20 E. Grädel, L. Kaiser

We first assume that Inf(π) = A and prove that either no priority at all
occurs infinitely often in π′ or the minimal such is even. If A is infinite, then
the sequence of the values pn diverges and therefore no priority will be seen
infinitely often in π′. If A is finite then it may be the case that the sequence
(pn)n∈ω converges, i.e., pn = p from some point onwards. But since the
visiting sequence will be updated again and again this means that infinitely
often the priority 2p + 2 occurs in π′, and the only other priority that may
occur infinitely often is 2p + 3. Hence Player 0 wins π′.

For the converse, we assume that Player 1 wins π. We distinguish several
cases. If there exist some a ∈ A \ Inf(π) then from some point onwards,
the visiting sequence cannot be updated anymore, so the sequence (pn)n∈ω

stabilises at some value p. Then the minimal priority seen infinitely often is
either 2p + 3, or 2Ω(v) + 1 for some Ω(v) ∈ ω \ A and Player 1 also wins π′.
If no such element a exists, then A (Inf(π) and there is a minimal element
b ∈ Inf(π) \ A. If the sequence (pn)n∈ω diverges (which is always the case for
infinite winning sets A) then the minimal priority seen infinitely often in π′

is 2b + 1. If A is finite then the sequence pn may stabilise at some value p

which coincides with the largest priority ever occurring in π. Hence b ≤ p and
therefore 2b + 1 < 2p + 2, so the minimal priority seen infinitely often in π′ is
2b + 1. Again Player 1 wins the associated play in the parity game. q.e.d.

Corollary 6.6. Singleton Muller games are determined with FAR memory.

6.2 Finite unions of upwards cones

Visiting sequences can also be used for the case where F0 is a finite union of
upwards cones, i.e.

F0 =
k

⋃

i=1

{X : Ai ⊆ X ⊆ ω}

for some finite collection of sets A1, . . . , Ak.
The FAR-memory stores the pairs (pi, ci) encoding the visiting sequences

of A1, . . . , Ak. All that has to checked is whether Ai ⊆ Inf(π) for some i, which
is the case if, and only if, one of the visiting sequences is updated infinitely
often. Thus we can define priorities by

Ω′(v, p1, c1, . . . , pk, ck) =

{

0 if up(pi, ci, v) = 2 for some i

1 otherwise.

Theorem 6.7. Any Muller game such that Fσ is a finite union of upwards
cones is determined via FAR-memory.

“memory˙kinds” — 2007/6/6 — 11:40 — page 21 — #21

What kind of memory is needed to win infinitary Muller games? 21

6.3 Muller conditions with finitely many winning sets

We now consider the case of Muller games whose winning conditions are de-
fined by a finite collection of (possibly infinite) sets, F0 = {A1, . . . , Ak}. To
extend the idea presented above to this case we are going to use the memory
FAR(Ai) for each set Ai and additionally we have to remember when the set
Ai is active, as is described below. The property of being active is stored in
a value ai ∈ {0, 1, 2}.

Definition 6.8. For any finite collection {A1, . . . , Ak} of sets Ai ⊆ ω, we
define a 4k-dimensional FAR-memory FAR(A1, . . . , Ak) = (M, init, update).
We denote the FAR-memory of Ai by FAR(Ai) = (Mi, initi, updatei). Then
M = M1 × M2 × . . . × Mk × {0, 1, 2}k. The initialisation function is defined
by

init(v) = (init1(v), . . . , initk(v), 0).

The update function is defined by

update(m1, . . . , mk, a1, . . . , ak, v) =

(update1(m1, v), . . . , updatek(mk, v), a′
1, . . . , a

′
k),

where a′
i is the new activation value for sequence i defined by

a′
i =

0 if v 6∈ Ai and for some j ≤ k upj(mj , v) > 0

min(2, ai + 1) if upi(mi, v) = 2

ai otherwise.

Theorem 6.9. Any Muller game with F0 = {A1, . . . , Ak} can be reduced,
via memory FAR(A1, . . . , Ak), to a parity game.

Proof. The given Muller game G with arena (G, Ω) and Muller condition such
that F0 = {A1, . . . , Ak} is reduced to a parity game G′ with priority function
Ω′ defined as follows.

“memory˙kinds” — 2007/6/6 — 11:40 — page 22 — #22

22 E. Grädel, L. Kaiser

Ω′(v, m, a) =

max{i : Ω(v)∈Ai∧ai=2}(2kpi + 2ri + 2) if exists j such that

Ω(v) ∈ Aj , aj = 2,

upj(mj , v) ∈ {1, 2}

max{i : Ω(v)∈Ai∧ai=2}(2kpi + 2ri + 3) if exists j such that

Ω(v) ∈ Aj , aj = 2,

and upj(mj , v) = 0

for all such j

min(2k max(p1 . . . pk) + 3, 2Ω(v) + 1) otherwise

where pi is the first component of the i-th memory mi = (pi, ci, qi) and for
each Ai ∈ F0 we have ri = |{Aj ∈ F0 : Ai ⊆ Aj}|.

We have to prove that any play π = v0v1v2 . . . of G is won by the same
player as the extended play

π′ = (v0, m10, . . . , mk0, a10, . . . ak0)(v1, m11, . . . , mk1, a11, . . . ak1)

For a given play π of G, we divide the sets A1, . . . , Ak ∈ F0 into three
classes.

The good: Ai is a good set if Ai is active (i.e., ai = 2) only finitely often in π.

The bad: Ai is a bad set, if Ai ⊆ Inf(π) and Ai is not a good set.

The ugly: Ai is an ugly set if there is a priority c ∈ Ai \ Inf(π) and Ai is not
a good set.

Lemma 6.10. If Ai is bad and Aj is ugly, then Ai ⊆ Aj .

Proof. Assume that there is a b ∈ Ai \ Aj . Since Ai ⊆ Inf(π) the visiting
sequence for Ai is updated infinitely often, hence infinitely often with b, and
whenever this happens then aj is reset to 0. By definition there is a c ∈ Aj

that is seen only finitely many times in π. Therefore aj = 0 from some point
onwards. But this contradicts the assumption that Aj is not good. q.e.d.

We first assume that Inf(π) = Ai and prove that either no priority at all
occurs infinitely often in π′ or the minimal such priority is even.

Since from some point on there is no priority d 6∈ Ai that occurs infinitely
often, then for all sets Aj that are not subsets of Ai the visiting sequence will

“memory˙kinds” — 2007/6/6 — 11:40 — page 23 — #23

What kind of memory is needed to win infinitary Muller games? 23

not be updated any more, and so the sequence (pjn)n∈ω stabilises at some
value pj. Since the visiting sequence of Ai is updated infinitely often, we get
that from some point on ai = 2. Hence Ai is a bad set. We can now argue
as in the proof of Theorem 6.5: if infinitely many priorities appear in π, then
the sequence (pin)n∈ω diverges and no priority at all will be seen infinitely
often in π′. It remains to consider the case where only finitely many priorities
occur in π. Then the sequence (pin)n∈ω stabilises at some value p, which is
the maximal priority appearing in π. For any Aj (Ai, the sequence (pjn)n∈ω

will then also stabilise at the same value p, and rj > ri. It follows that some
priority of form 2kp + 2rℓ + 2 occurs infinitely often in π′, where rℓ ≥ ri.

Suppose now that some smaller odd priority occurs infinitely often in π′.
Then it would have to be of the form 2kp+2rj+3 with rj < rℓ such that aj = 2
infinitely often. However, only finitely many priorities appear in π. Hence if
there are infinitely many positions v such that Ω(v) ∈ Aj and aj = 2, then
from some point onwards all these positions v satisfy that Ω(v) ∈ Aj ∩Ai and
ai = 2. On infinitely many such positions an update happens, and therefore,
also the priority 2kp+2rj +2 appears infinitely often. Hence Player 0 wins π′.

For the converse, we now assume that Player 1 wins π.

Lemma 6.11. Suppose that some even priority 2kq +2r+2 is seen infinitely
often in π′. Then q is the maximal priority that occurs in π and r = rℓ for
some bad set Aℓ.

Proof. If there are infinitely many occurrences of 2kq + 2r + 2 in π′, then q is
the maximal priority that occurs in π and some Ai is updated infinitely often
(i.e. Ai ⊆ Inf(π)) and active infinitely often. Obviously Ai is bad and r ≥ ri.
If r 6= rℓ for all bad set Aℓ, then r = rj for some other Aj that is active
infinitely often. Thus Aj has to be ugly. But then by Lemma 6.10 Ai ⊆ Aj

and thus ri > rj = r. But r ≥ ri. q.e.d.

Let r = min{rℓ : Aℓ is bad}. To show that Player 1 wins π′ it suffices to
prove that there is an odd priority occurring infinitely often in π′ which, in
case there exists a bound q on all priorities appearing in π, is smaller than
2kq + 2r + 2.

Notice that for any ugly set Ai, the sequence (pin)n∈ω stabilises at some
value pi. Let p = max{pi : Ai is ugly}.

We distinguish two cases. First we assume that there exists some priority

b ∈ Inf(π) \
⋃

{Ai : Ai is bad}.

“memory˙kinds” — 2007/6/6 — 11:40 — page 24 — #24

24 E. Grädel, L. Kaiser

Fix n0 such that, for all n > n0, pin = pi for all ugly sets Ai and ain 6= 2
for all good sets Ai. Since b ∈ Inf(π) there exist infinitely many vn with
n > n0 and Ω(vn) = b. For such vn we have Ω′(vn, mn, an) = 2kp + 2ri + 3 if
there is a set Ai (which has to be ugly) such that b ∈ Ai and ai = 2.

Otherwise Ω′(vn, mn, an) is odd and ≤ 2b + 1. Since Ai is ugly and Aℓ is
bad it follows that Aℓ ⊆ Ai. Thus, ri < r. Further p ≤ q. It follows that
there exists some odd priority s ≤ max(2kp + 2ri + 3, 2b + 1) < 2kq + r + 2
that appears in π′ infinitely often.

Now we consider the other case: every b ∈ Inf(π) is contained in some
bad set Ai(b). Let A1, . . . , Aℓ be the bad sets. Without loss of generality, we
assume that A1 is a maximal bad set, i.e., A1 6⊆ Ai for i = 2, . . . , ℓ. Since A1 is
a strict subset of Inf(π), we can fix a priority d ∈ Inf(π)\A1; since any priority
d ∈ Inf(π) is contained in some bad set, we can assume that d ∈ A2. Further,
by the maximality of A1, we can fix priorities e2, . . . , eℓ where ei ∈ A1 \ Ai.

We consider a suffix of π that starts at a position where

• all sequences (pin)n∈ω that stabilise at some value pi have already
reached that value;

• all good sets Ai have become inactive for good (i.e. ai 6= 2),

• in the visiting sequence for A1 the prefixes p(e1), . . . p(eℓ) have already
been completed.

Note that A1 is updated infinitely often, and between any two consecutive
points in this suffix at which up1 = 2 all priorities e2, . . . , eℓ are seen at least
once. Since the priority d appears infinitely often in π and A2 is updated
infinitely often, we are going to see infinitely many points vn0

in the considered
suffix of π for which Ω(vn0

) = d and a1 = 0 (since a1 is reset with an update
of A2). Since a1 increases to 2 infinitely often, there are infinitely many tuples
n0 < n1 < n2 such that a1 = i at all positions vn with ni ≤ n < ni+1 and
a1 = 2 at vn2

.
By definition up1 = 2 at vn1

and vn2
and there cannot be any updates on

priority d between vn1
and vn2

, as then a1 would be reset to 0. By our choice
of the considered suffix of π, there are updates on all e2, . . . , eℓ between vn1

and vn2
. Therefore, for any bad set Aj that contains d, we have that aj < 2

between position vn2
and the first position vn with Ω(vn) = d that comes after

vn2
. This is the case because between vn1

and vn2
the value aj was reset to

0 by the update of the visiting sequence for A1 by priority ej , and since then
it has not increased by more than 1 since there was no update on priority d.

“memory˙kinds” — 2007/6/6 — 11:40 — page 25 — #25

What kind of memory is needed to win infinitary Muller games? 25

Let us now consider the new priority at vn. Since all bad sets Aj containing
d are inactive, we have the same situation as in the first case: Ω′(vn, mn, an) =
2kp + 2ri + 3 if there is a set Ai (which has to be ugly) such that d ∈ Ai and
ai = 2. Otherwise Ω′(vn, mn, an) is odd and ≤ 2d + 1. Since Ai is ugly and
Aℓ is bad it follows that Aℓ ⊆ Ai and thus ri < rℓ = r. Further p ≤ q.

There are infinitely many such positions vn. Thus there must exist some
odd priority s ≤ max(2kp + 2ri + 3, 2d + 1) < 2kq + r + 2 that appears in π′

infinitely often. q.e.d.

Of course, the same arguments apply to the case where F1 is finite.

Corollary 6.12. Let (F0,F1) be a Muller winning condition such that either
F0 or F1 is finite. Then every Muller game with this winning condition is
determined via FAR memory.

6.4 Max parity games with bounded moves

We say that a an arena (G, Ω) has bounded moves if there is a natural number
d such that |Ω(v) − Ω(w)| ≤ d for all edges (v, w) of G.

We have shown in Proposition 4.1 that, in general, winning strategies
for max-parity games require infinite memory, but we do not know whether
max-parity games are determined via FAR-memory.

For max-parity games with bounded moves, it is still the case that winning
strategies may require infinite memory, but now we can prove determinacy
via FAR-memory.

Proposition 6.13. There exist max-parity games with bounded moves whose
winning strategies require infinite memory.

Proof. Consider a (solitaire) max-parity game with a single node v0 of pri-
ority 0 from which Player 0 has, for every odd number 2n + 1, the option
to go through a cycle Cn consisting of nodes with priorities 2, 4, . . . , 2n, 2n +
1, 2n, 2n− 2, . . . , 4, 2 and back to the node v0. All these cycles intersect only
at v0. Clearly Player 0 has a winning strategy, namely to go successively
through cycles C1, C2, . . . with the result that there is no maximal priority
occurring infinitely often. However, if Player 0 moves according to a finite-
memory strategy then only finitely many cycles will be visited and there is a
maximal n such that the cycle Cn will be visited infinitely often. Thus the
maximal priority seen infinitely often will be 2n + 1 and Player 0 loses. q.e.d.

Lemma 6.14. Let π be a play of a max-parity game G with bounded moves
such that infinitely many different priorities occur in π. Then max(Inf(π))
does not exist, so π is won by Player 0.

“memory˙kinds” — 2007/6/6 — 11:40 — page 26 — #26

26 E. Grädel, L. Kaiser

Proof. Assume that moves of G are bounded by d and Inf(π) 6= ∅ and let q

be any priority occurring infinitely often on π. Since infinitely many different
priorities occur on π it must happen infinitely often that from a position with
priority q the play eventually reaches a priority larger than q+d. Since moves
are bounded by d, this means that on the way the play has to go through at
least one of the priorities q+1, . . . , q+d. Hence at least one of these priorities
also occurs infinitely often, so q cannot be maximal in Inf(π). q.e.d.

Theorem 6.15. Every max-parity game with bounded moves can be reduced
via a one-dimensional FAR-memory to a parity game. Hence max-parity
games are determined via strategies with one-dimensional FAR-memory.

Proof. The FAR-memory simply stores the maximal priority m that has been
seen so far. To reduce a max-parity game G with bounded moves, via this
memory, to a parity game G′ we define the priorities of G′ by

Ω′(v, m) = 2m− Ω(v).

Let π be a play of G and let π′ be the extended play in G′. We distinguish
two cases. First, we assume that on π the sequence of values for m is un-
bounded. This means that infinitely many different priorities occur on π, so
by Lemma 6.14, Player 0 wins π. But since m ≤ Ω′(v, m) and m never sta-
bilises there is no priority that occurs infinitely often on π, so π′ is also won
by Player 0.

In the second case there exists a suffix of π on which m remains fixed
on the maximal priority of π. In that case Inf(π) is a non-empty subset
of {0, . . . , m} and Inf(π′) is a non-empty subset of {m, . . . , 2m}. Further,
Ω′(v, m) is even if, and only if Ω(v) is even, and Ω′(v1, m) < Ω′(v2, m) if, and
only if, Ω(v1) > Ω(v2). Thus, min(Inf(π′)) is even if, and only if, max(Inf(π))
is even. Hence π is won by the same Player as π′. q.e.d.

7 Conclusion

We have introduced a new memory structure for strategies in infinite games,
called FAR-memory, which is approproiate for games with infinitely many
priorites and which generalises the LAR-memory for finitary Muller games.
We have shown that there are a number of infinitary Muller winning conditions
with the following two properties.

(1) There exist Muller games with these winning conditions all whose winning
strategies require infinite memory.

“memory˙kinds” — 2007/6/6 — 11:40 — page 27 — #27

What kind of memory is needed to win infinitary Muller games? 27

(2) All Muller games with such winning conditions can be reduced via FAR-
memory to parity games. Therefore all these games are determined via
FAR-memory.

The class of these Muller conditions includes:

• Downward cones,

• Singleton conditions,

• Finite unions of upwards cones,

• Winning conditions with finitely many winning sets.

Further we have shown that the same property holds for max-parity games
with bounded moves. It is open whether arbitrary max-parity games are
determined via FAR-memory. It would also be desirable to obtain a complete
classification of the infinitary Muller conditions with this property.

References

[1] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer, Dag-
width and parity games, in STACS 2006, Proceedings of the 23rd Sym-
posium on Theoretical Aspects of Computer Science, vol. 3884 of Lecture
Notes in Computer Science, Springer-Verlag, 2006, pp. 424–436.

[2] D. Berwanger and E. Grädel, Fixed-point logics and solitaire games,
Theory of Computing Systems, 37 (2004), pp. 675–694.

[3] D. Berwanger and E. Grädel, Entanglement - A measure for the
complexity of directed graphs with applications to logic and games, in
Proceedings of LPAR 2004, Montevideo, Uruguay, vol. 3452 of LNCS,
Springer-Verlag, 2005, pp. 209–223.

[4] A. Bouquet, O. Serre, and I. Walukiewicz, Pushdown games with
unboundedness and regular conditions, in Proceedings of FSTTCS’03,
vol. 2914 of Lexture Notes in Computer Science, 2003, pp. 88–99.

[5] T. Cachat, J. Duparc, and W. Thomas, Solving pushdown games
with a Σ3 winning cndition, in Computer Science Logic, CSL 2002, Lec-
ture Notes in Computer Science Nr. 2471, Springer-Verlag, 2002, pp. 322–
336.

“memory˙kinds” — 2007/6/6 — 11:40 — page 28 — #28

28 E. Grädel, L. Kaiser

[6] S. Dziembowski, M. Jurdziński, and I. Walukiewicz, How much
memory is needed to win infinite games?, in Proceedings of 12th Annual
IEEE Symposium on Logic in Computer Science (LICS 97), 1997, pp. 99–
110.

[7] A. Emerson and C. Jutla, Tree automata, mu-calculus and determi-
nacy, in Proc. 32nd IEEE Symp. on Foundations of Computer Science,
1991, pp. 368–377.

[8] A. Emerson, C. Jutla, and P. Sistla, On model checking for the
µ-calculus and its fragments, Theoretical Computer Science, 258 (2001),
pp. 491–522.

[9] H. Gimbert, Parity and exploration games on infinite graphs, in Pro-
ceedings of CSL 2004, vol. 3210 of Lecture Notes in Computer Science,
Springer, 2004, pp. 56–70.

[10] E. Grädel, Finite model theory and descriptive complexity, in Finite
Model Theory and Its Applications, Springer-Verlag, 2007, pp. 125–230.

[11] E. Grädel and I. Walukiewicz, Positional determinacy of games with
infinitely many priorities, Logical Methods in Computer Science, vol. 2
(4:6), 2006.

[12] Y. Gurevich and L. Harrington, Trees, automata and games, in
Proceedings of the 14th Annual ACM Symposium on Theory of Com-
puting, STOC ’82, 1982, pp. 60–65.

[13] M. Jurdziński, Deciding the winner in parity games is in UP ∩ Co-UP,
Information Processing Letters, 68 (1998), pp. 119–124.

[14] M. Jurdziński, Small progress measures for solving parity games, in
STACS 2000, 17th Annual Symposium on Theoretical Aspects of Com-
puter Science, Proceedings, vol. 1770 of Lecture Notes in Computer Sci-
ence, Springer, 2000, pp. 290–301.

[15] N. Klarlund, Progress measures, immediate determinacy, and a subset
construction for tree automata, Annals of Pure and Applied Logic, 69
(1994), pp. 243–268.

[16] D. Martin, Borel determinacy, Annals of Mathematics, 102 (1975),
pp. 336–371.

“memory˙kinds” — 2007/6/6 — 11:40 — page 29 — #29

What kind of memory is needed to win infinitary Muller games? 29

[17] A. Mostowski, Games with forbidden positions, Tech. Rep. Tech. Re-
port 78, University of Gdansk, 1991.

[18] J. Obdrzalek, Fast mu-calculus model checking when tree-width is
bounded, in Proceedings of CAV 2003, vol. 2752 of LNCS, Springer, 2003,
pp. 80–92.

[19] J. Obdrzalek, DAG-width - connectivity measure for directed graphs,
in SODA 2006, Proceedings of the 17th Annual ACM-SIAM Symposium
on Discrete Algorithms, ACM Press, 2006, pp. 814–821.

[20] E. Zermelo, über eine Anwendung der Mengenlehre auf die Theorie
des Schachpiels, in Proc. 5th Internat. Congr. Mathematicians, vol. 2,
Cambridge, 1913, pp. 501–504.

[21] W. Zielonka, Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees, Theoretical Computer Science, 200
(1998), pp. 135–183.

