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Abstract. Term rewriting systems provide a versatile model of compu-
tation. An important property which allows to abstract from potential
nondeterminism of parallel execution of the modelled program is con-
fluence. In this paper we prove that confluence of a fairly large class of
systems, namely right ground term rewriting systems, is decidable. We
introduce a labelling of variables with colours and constrain substitutions
according to these colours. We show how right ground rewriting systems
can be reduced to simple systems with coloured variables. Such systems
can be analysed using reduction-automata techniques which leads to an
interesting decision procedure for confluence.

Introduction

Term rewriting systems (TRS) were developed from mathematical logic and
are used in many contexts in computer science. They serve as models for com-
puter programs, abstract mathematical structures and are used in equational
reasoning. Such systems consist of sets of rewriting rules that can be applied to
transform one term into another. There are many interesting properties of TRS
and algorithms working on them used in different fields including functional pro-
gramming languages, where properties like confluence and termination of TRS
are investigated.

Confluence, also called the Church-Rosser property, is a very important prop-
erty of TRS and programs that contain some kind of nondeterminism, for exam-
ple parallel or probabilistic programs. It states that after any possible rewritings
of a term or after a number of steps of program execution on different execution
paths there is always a way to rewrite to a common term or follow the program
execution to the same result, which can eliminate the problem of nondetermin-
ism.

Confluence is known to be undecidable for general TRS. Oyamaguchi studied
confluence of a simple class of ground TRS already in 1987 and showed it to be
decidable [11]. Dauchet et. al. gave a decision procedure for the first order theory
of ground rewrite systems in 1990 [5] using methods related to tree automata
and tree transducers. In 2001, Comon, Godoy and Nieuwenhuis showed that
confluence of ground TRS can be decided in polynomial time [1] and they were
the first to use new methods like analysing top stable symbols to attack the
problem. This line of research was continued by Tiwari [13].



Ordered term rewriting systems were also analysed and Comon, Narendran,
Nieuwenhuis and Rusinowitch proved the decidability of confluence of such sys-
tems for wide classes of orderings [3, 4].

In recent years, there was an active development in the theory of wider classes
of TRS, right ground systems and linear shallow systems. Godoy, Tiwari, and
Verma showed that the confluence of linear shallow term rewrite systems can
be decided in polynomial time [7]. Their article not only extended the methods
of [1] but also simplified and clarified the proofs. Finally the proofs of [7] were
again redone and presented in a clarified form in [6].

When we go outside linear systems, things become undecidable quite fast.
Marcinkowski proved in 1997 that the first order theory of right ground rewriting
is undecidable even for one step rewriting [10]. Also in 2003 Jacquemard proved
that reachability and confluence are undecidable for general flat term rewriting
systems [8].

When we consider the natural syntactic division of rewriting systems based on
whether the rules are ground, linear of flat and we want to analyse reachability,
joinability, confluence and first order theory of such systems then the results
mentioned before, together with the reductions in [15] answer all decidability
questions except for the one we want to investigate here, the confluence of right
ground systems. This was a long standing open problem [16] solved in [9] and
also recently in an independent work by Tiwari, Godoy and Verma in [14], where
authors further developed stability and rewrite closure methods used in [1, 7].

We extend the right ground rewriting system to a system with constraints,
analyse the constrained system and look for constrained substitutions. This al-
lows us to see the methods used before in a different context and use reduction
automata techniques (see [2]) to complete the proof. Combining automata tech-
niques and analysis of rewriting properties has already proved successful many
times and goes back to [5, 11], conditional rewriting systems are also well known
and widely used. Moreover, methods using automata techniques and constrained
rewriting have often been used in different contexts, so we hope that the pre-
sented methods not only give the decision procedure for confluence but can also
be extended to other problems and used in program analysis.

The organisation of this article follows the outline of the proof that con-
fluence of RGTRS is decidable and the reductions done to the system. First we
define the basic notions and tools that will be used for right ground systems
and reduce the rewriting system by naming all ground terms in the rules by
new constants and then by taking a limited rewrite closure. This reduction has
already become a standard starting point when analysing right ground rewriting
systems. Then we prove a technical lemma and reduce the non-confluence prob-
lem to the problem of deep non-joinability of constants and semi non-confluence,
which is also a variation of a well known method.

Later we introduce colour constraints and coloured substitutions and show
how standard unification can be extended to the coloured case. We analyse
stability of terms and reduce semi non-confluence to the existence of stable
terms fulfilling some constraints. We then show how to decide the existence of
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such terms by reducing it to emptiness of reduction automata which is known
to be decidable. Also the deep joinability of constants is reduced to emptiness
of reduction automata, which completes the proof.

Acknowledgement. The result proved in the paper was first proved as
a part of the authors masters thesis [9] written under the direction of Leszek
Pacholski. We also want to thank Jerzy Marcinkowski for helpful comments
and revision. Later Dietmar Berwanger and Erich Grädel helped to prepare the
current version. We also want to thank Christof Löding for references about tree
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1 Basic notions

1.1 Terms and positions in terms

Let us assume that we are given a finite set of symbols Σ called the signature
and a function arity : Σ → N. Symbols with arity 0 will be called constants
(Γ = {c ∈ Σ : arity(c) = 0}) and denoted by letters a, b, c. The other symbols
will be called function symbols and denoted by letters f, g, h. We also assume
that there is an infinite set of variables V which will be denoted by letters x, y, z.
Throughout the paper the signature will be assumed to be constant, also in all
algorithmic problems the maximal arity of function symbols is assumed to be a
constant and not an input parameter.

Terms over Σ are defined inductively as the smallest set T such that:

– T ⊇ V ,
– if f ∈ Σ with arity n and t1, . . . , tn ∈ T then f(t1, . . . , tn) ∈ T .

The set Var(t) of variables occurring in a term t is also defined inductively by
Var(c) := ∅, Var(x) := {x} and Var(f(t1, . . . , tn)) = Var(t1) ∪ · · · ∪ Var(tn).
When Var(t) = ∅ then the term t is called ground.

The usual intuition behind terms is to view them as labelled trees, therefore
we introduce the notion of positions in terms. The set P of positions in terms is
the set of sequences of positive natural numbers. By λ ∈ P we will denote the
empty sequence or the top (root) position in the term.

For a given term t and position p we either say that p does not exist in t or
define the term at position p in t (denoted by t|p) in the following inductive way:

– λ exists in each term and t|λ = t,
– p = (n, q) exists in t = f(t1, . . . , tm) if m ≥ n and q exists in tn and in such

case t|p = tn|q.

A position p is above some position q if there exists a sequence r of numbers
such that q = (p, r). In this case we also say that q is below p. The height of a
position is its length. The height of a term is the maximal height of a position
existing in this term.

For example in the term f(a, f(b, c)) position 2, 1 exists and f(a, f(b, c))|2,1 =
b, but neither the position 3 nor the position 1, 2 exists. The height of f(a, f(b, c))
is 2, the height of f(b, c) is 1 and the height of a constant is 0.
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1.2 Substitutions and rewritings

Substituting term s in term t at position p yields the term r = t[s]p such that
for all positions q not below p that exist in t, it holds that r|q = t|q and r|p = s.
Less formally r is just t with the subtree at position p replaced by s, for example
substituting f(a, b) at position 1 in f(a, f(b, c)) yields the term f(f(a, b), f(b, c)).

Substituting term s in term t for a variable x is defined as substituting s in
t at all positions p where t|p = x. A substitution (usually denoted with letters
σ, τ, ρ) is a set of pairs, each consisting of a variable and a term (such pairs are
denoted by x ← t). Applying a substitution σ = {x1 ← t1; . . . ; xn ← tn} to a
term t, we obtain a term r = tσ which is the result of substituting each xi by
ti in t. As an example, let us take the term t = f(x, y) and the substitution
σ = {x← a, y ← f(b, c)}. Then tσ = f(x, y)σ = f(a, f(b, c)).

A rewriting rule is a pair of terms t and s denoted by t → s such that
Var(t) ⊇ Var(s). The rule is called ground if both t and s are ground and right
ground if s is ground.

A rewriting rule l → r can be applied to a term t at position p, if there exists
a substitution σ of variables in l such that t|p = lσ. The result of applying the
rule is t[rσ]p - term t rewritten at position p. You should note that there is only
one possible result of applying a rule to a term at a given position and that since
Var(l) ⊇ Var(r), a ground term remains ground after applying a rule to it at
any position. For example we can apply a right ground rule f(x, x) → c to the
term f(c, f(a, a)) at position 2 and obtain the term f(c, c).

A term rewriting system (TRS) is a set of term rewriting rules and throughout
this article we consider only systems with finitely many rules. The system is
ground (GTRS) or right ground (RGTRS), if all rules in the system are ground
or respectively right ground. We say that a term t rewrites to a term r with
respect to a given TRS T , if there is a rule in T and a position p in t such that
r is the result of applying the rule to t at p and we denote it by t →T r. The
relation ∗→T is the transitive and reflexive closure of the relation →T , where
t ∗→T s means that t rewrites to s in a finite number of steps. We will often talk
about successive rewriting steps t →T t1 →T t2 →T . . .→T tn →T s forming a
rewriting path t ∗→ s. When the system is clear from the context we will omit
the index T .

Continuing our previous example, if we take a RGTRS with only one rule
T = {f(x, x) → c} then f(c, f(a, a)) →T f(c, c) and since f(c, c) →T c, we can
say that f(c, f(a, a)) ∗→T c on the rewriting path f(c, f(a, a))→ f(c, c)→ c.

Given a term rewriting system T and two terms s and t we will say that s

is reachable from t if t ∗→T s and that s is joinable with t if there exists a term
u such that both s ∗→T u and t ∗→T u. Any such term u that both s ∗→T u

and t ∗→T u will be called a joinability witness for s and t. In our example
f(c, f(a, a)) and f(b, b) are joinable, since both can be rewritten to c, and c is
the only joinability witness of these two terms.

We say that t and s are deeply joinable, if all pairs of terms to which these
two respectively rewrite are joinable. More formally when t ∗→T t1 and s ∗→T s1

then t1 and s1 have to be joinable. If the two terms are not deeply joinable then
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there exist two non-joinable terms t1 and s1 such that t ∗→T t1 and s ∗→T s1

which will be called witnesses of deep non-joinability. A term t is confluent with
respect to T , if it is deeply joinable with itself and the witnesses of deep non-
joinability of t with t will then be called the witnesses of non-confluence. A TRS
T is confluent if all terms are confluent with respect to T .

Example 1. Let us take a right ground rewriting system

R = {c→ f(c, c), c→ g(c, c), f(x, f(x, x))→ c}.

Let us now look at the term t = f(c, c). We can rewrite it at position 2 to
s = f(c, g(c, c)) and it is easy to see that s can not be rewritten to c, since the g

symbol at position 2 will not be reduced by any of the rewriting rules as it is too
near to the root position to be destroyed inside the variable in the third rule.

Also please note that t = f(c, c) can be rewritten also as position 2 but with
a different rewrite rule obtaining f(c, f(c, c)), which can be further reduced to
c. So t is not confluent with respect to R and one possible pair of witnesses of
non-confluence is f(c, g(c, c)) and c.

All mentioned properties (reachability, joinability, deep-joinability, conflu-
ence of a term and of a TRS) can also be analysed as algorithmic decision
problems: given the TRS and possibly the terms as arguments, decide if the
property holds or not.

2 Basic tools for right ground TRS

It is a well known (see [12]) fact that reachability and joinability are decidable
for right ground TRS.

Fact 1. Reachability and joinability problems are decidable for RGTRS.

2.1 Naming ground terms with constants

We consider an arbitrary RGTRS

R = {l1 → r1, l2 → r2, . . . , ln → rn}.

Let us now take any ground term of height one f(c1, . . . , cn) appearing as a
sub-term of any right side ri and introduce a constant to name it. So for the
term f(c1, . . . , cn) we add a new constant cf(c1,...,cn) and two new rewrite rules

cf(c1,...,cn) → f(c1, . . . , cn),

f(c1, . . . , cn)→ cf(c1,...,cn).

Then we replace each occurrence of f(c1, . . . , cn) in R with cf(c1,...,cn).
Let us notice that the new term rewriting system R1 obtained in this way

is confluent if, and only if, R is confluent, since the relations ∗→R and ∗→R1
are

identical on terms without the constant cf(c1,...,cn) and this constant can always
be replaced with f(c1, . . . , cn). Therefore we can repeat this procedure until the
resulting RGTRS R′ has only the following types of rules:
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>: rules in the form c→ f(c1, . . . , cn),
≤: rules t→ c, where t is any term.

Of course, here f stands for different function symbols and c for different con-
stants. Further, we will call the rules of type > increasing, those of type ≤
non-increasing, since the first ones increase the height of the term and the sec-
ond ones do not. This extension allows us to restrict our attention to RGTRS
that have only the two types of rules given above, and for a given RGTRS T

with such rules we will denote by T > the rules of the first kind in T and by T≤

the rules of the second kind. More detailed description of this method and the
proof that it preserves confluence can be found in [1].

Since we know that reachability for right ground systems is decidable, we can
extend R′ to a new system R′′ in the following way: for each constants c and c′

and each term f(c1, . . . , cn) of height one, we have

c→ c′ ∈ R′′ if c ∗→R′ c′,

c→ f(c1, . . . , cn) ∈ R′′ if c ∗→R′ f(c1, . . . , cn),

f(c1, . . . , cn)→ c ∈ R′′ if f(c1, . . . , cn) ∗→R′ c.

Therefore, if a constant rewrites to a term of height one or a term of height
one rewrites to a constant, or constant rewrites to another constant, then the
rewriting can be done in one step. If RGTRS is in this form, we will call it
reduced.

The following simple lemma will be used very often.

Lemma 1. For ground terms t1, t2, . . . , tn, s and reduced RGTRS T we have

t := f(t1, . . . , tn) ∗→T s

if and only if one of the following conditions holds:

(1) s = f(s1, . . . , sn) and for each i we have ti
∗→T si,

(2) there is a constant c such that t ∗→T c and c ∗→T > s.

Proof. In any TRS, if any of these two conditions hold, then obviously t ∗→T s.
The converse is true in any reduced RGTRS since if there is a rewriting at the
root position in t somewhere on the path t ∗→T s, then it has to go through
a constant because all non-increasing rules rewrite to a constant. Also, when
rewriting from a constant we do not need to use the decreasing rules any more
since, if a constant rewrites to a term of height one, then the rewriting can be
done in one step without decreasing rules.

Definition 1. A ground term t is stable with respect to a rewriting system T if
no sub-term of t that is not a constant rewrites (is in ∗→T relation) to a constant.

Stability is a very important property in connection with Lemma 1, since
intuitively in stable terms the rewriting needs to be done only at leaf positions.
One can think of stability as a normal form with respect only to non-increasing
rules. Stability is also useful when analysing joinability, which is expressed by
the following lemma.
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Lemma 2. A stable term f(t1, . . . , tn) is not joinable with a constant c with
respect to a reduced RGTRS T if and only if for any term f(c1, . . . , cn) such
that c ∗→T f(c1, . . . , cn) there is some sub-term ti not joinable with ci.

Proof. Indeed, the term f(t1, . . . , tn) is stable, so it does not rewrite to any
constant and it can be joined with c only if c ∗→T f(c1, . . . , cn) and f(c1, . . . , cn)
will be joined with f(t1, . . . , tn) without rewriting to a constant, so each constant
ci must be joined with the appropriate sub-term ti.

2.2 Reduction of the confluence problem

Let us now reduce the problem of confluence to a more tractable problem. First
we have to define when a RGTRS T is semi non-confluent.

Definition 2. Rewriting system T is semi non-confluent if there exists a term
s and a constant c such that s is an instance of the left hand side of some rule
l → c ∈ R and on the other hand s can be rewritten to a term r and r is not
joinable with c.

Please note that if T is semi non-confluent then it clearly is not confluent, but
there can also be other reasons for a system not to be confluent. The following
lemma reduces the general confluence case for reduced RGTRS to semi non-
confluence and the confluence of constants.

Lemma 3. If a reduced right ground term rewriting system T is not conflu-
ent then either there exists a constant that is not confluent or T is semi non-
confluent.

The prove this lemma, we look at the smallest term that is not confluent
with respect to T and analyse possible rewriting paths to the witnesses of non-
confluence relying on Lemma 1. The proof is given in detail in appendix A.

3 Coloured terms

Let us now define a set of constraints that we will call colours and show some ba-
sic properties of coloured terms and coloured rewritings. This can be interpreted
as a simple form of conditional rewriting systems, but we will not introduce the
general definitions of conditional systems and only concentrate on our simple
case.

The colour constraints are defined in a very simple way, a colour K is a set
of constants K = {c1, . . . , cm}. We say that a ground term t has colour K with
respect to a TRS T if each ci

∗→T t. We will omit the TRS T if it is fixed in
the context. Please note that with this definition each term t has a number of
colours, actually one biggest colour

K(t) := {c : c ∗→T t}

and all its sub-colours. Each term has ∅ as its colour.
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Definition 3. A coloured term is a term t with each variable x ∈ Var(t) labelled
with a colour Cx. A correct ground substitution for a coloured term with respect
to a TRS T is a substitution σ such that only ground terms are substituted for
variables and a ground term s is substituted for a given variable x only if Cx is
a colour of s w.r.t T , i.e. Cx ⊆ K(s).

Definition 4. A coloured (right ground) rewrite rule is a pair consisting of a
coloured term and a constant. A coloured rewrite rule l → c can be applied to a
ground term t at position p if there exists a correct ground substitution σ for l

such that t|p = lσ.

We will now fix a reduced RGTRS with respect to which the colourings are
defined and extend it with a set of coloured rewrite rules so that on any rewriting
path of a ground term the increasing rewritings can take place only at the end.

Example 2. Let us continue our example for

R = {c→ f(c, c), c→ g(c, c), f(x, f(x, x))→ c}

and the colour K = {c}. Let us take any term t such that c ∗→ t and look at the
rewriting path

f(t, c)→ f(t, f(c, c)) ∗→ f(t, f(t, t))→ c. (1)

Please note that using the second rewrite rule in the last step was possible
because c ∗→ t, e.g. for t = f(c, c). Also please note that such rewriting could be
done for each term t with colour K.

This suggests a new coloured rewriting rule

f(x : K, f(c, c))→ c,

where x : K denotes that the variable x is coloured with K. Looking at the
rewriting (1) it is also evident that the coloured rule

f(x : K, c)→ c (2)

can also be added to the system without changing the semantics or rewriting.
What we will do next is to show how using coloured rules we can eliminate

the need to change increasing and non-increasing rules on a rewriting path with
respect to a reduced RGTRS.

Please look at the rewriting (1) and follow it again for t = f(c, c), so

f(f(c, c), c) ∗→R> f(f(c, c), f(f(c, c), f(c, c)))→R≤ c.

As you can see we have to interchange rewriting with R> and with R≤ to rewrite
the term to c. But if we add the rule (2) to the non-increasing rules (R≤) then
we do not have to use the increasing rules any more.

We will generalise this example to an arbitrary reduced RGTRS T by taking
all possible positions in the left sides of rewriting rules in T and substituting there
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all possible constants and looking if appropriate colouring for the remaining
variables can be found. First let us introduce a notation and define what an
appropriate colouring is.

We will say that a term s grows from a term t if t ∗→T > s. Please note that
in such case all rewritings on the rewriting path take place in the leafs of the
term (viewed as a tree).

Let us now take a term l (possibly a left side of a rewriting rule) and a
sequence of different positions P = p1, . . . , pn existing in l and a sequence of
constants A = c1, . . . , cn. We will be interested in the term l with each constant
ci substituted at the corresponding position pi and we will use the notation

l(A, P ) := (((l[c1]p1
)[c2]p2

) . . .)[cn]pn
.

Definition 5. Given a term l a sequence P of positions in l and a sequence A

of constants with the same length as P we will say that a colouring

{x1 : K1, . . . , xn : Kn}

of variables in l is appropriate w.r.t. A and P if there exists a term s that fulfils
the following properties. The term s grows from l(A, P ) and contains exactly the
same positions as l and at all positions where there is no variable in l it has
the same symbols as l. Then the colouring is appropriate if for each variable xi

the assigned colour Ki is equal to the set of constants that appear in s at the
positions at which xi appears in l.

Please note that in this definition we assume that the positions P are incompa-
rable with the prefix ordering of positions, so all constants can be put in parallel
and the order of positions in P does not matter.

Let us analyse this definition looking at the example presented before. We
can take the term l = f(x, f(x, x)) and choose to insert the constant c at position
2, so A = c and P = 2 and l(A, P ) = f(x, c). Although f(x, c) can grow either to
f(x, g(c, c)) or to f(x, f(c, c)), according to the definition we will consider only
the second case, as the first one has g at position 1, which is different from f at
position 1 in l. We can see that x : {c} is the appropriate colouring in this case.

Let us now take all possible rules l → c ∈ T≤, all possible sequences of
different positions P in l and for each P take all sequences of constants A with
the same length.

Let us now colour each rewrite rule

l(A, P )→ c.

Let us take all possible appropriate colourings of the variables from l with respect
to A and P . To obtain colourings of variables from l(A, P ) we can just cast each
colouring of variables of l, but we will exclude some of them. Namely, if in a
colouring of variables of l there are coloured variables that does not appear in
l(A, P ) and they are coloured with K1, . . . , Km then we will allow the cast of
this colouring only if each colour Ki is satisfiable, i.e. there exists a term u such
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that all constants in Ki rewrite to u. Please note that it is decidable whether
a colour is satisfiable as it is a simple extension of joinability (see [12]) and we
will call u the satisfiability witness for Ki.

Let us denote the set of all coloured rewrite rules obtained in this way with
respect to T coloured with all allowed colourings by T c. Since we have defined
correct ground substitutions for coloured rewrite rules we define the relation→T c

and ∗→T c on ground terms in the same way as we did for uncoloured rewrite rules,
only using correct ground substitutions.

Lemma 4. For any reduced RGTRS T with T c defined as above and for any
two terms t and s if t ∗→T c s then also t ∗→T s.

The proof of this lemma follows the construction presented above and is given
in detail in appendix B. As we see from the above lemma the extension of T

with coloured rules is correct in the sense that it does not change the semantic
of rewriting. Moreover, we do not need any more to grow constants in order to
match a sub-term in a rewriting rule, since a coloured rule can be used instead,
as stated in the following lemma, which is proved in similar way in appendix B.

Definition 6. Term s grows from a term t in bounds of a term l with respect
to a reduced RGTRS T if t ∗→T > s and all rewritings either take place on the
positions that exist in l or at (new) positions that do not exist in t.

Lemma 5. Given a reduced RGTRS T let us take a rule l → c ∈ T and two
ground terms u and w such that w grows from u in bounds of l and w is an
instance of l. Then any rewriting path in T in the form

u ∗→T > w →{l→c} c

can be reduced to one step rewriting in the system T c defined above, so u→T c c.

The construction of such coloured closure of the rewriting system will be
later used to show that stability of a term with respect to a reduced RGTRS t

can be replaced by a property analogous to being a normal form with respect to
T c and therefore that stable terms can be recognised by a reduction automaton.

Before we proceed to analyse confluence we need one more tool to handle
unification in the coloured case. Let us assume that we are given a coloured
term t and a coloured rewrite rule l → c and we want to describe the set of
substitutions σ for variables of t such that tσ is an instance of l, i.e. there is a
correct substitution τ for l such that tσ = lτ .

If we forget about colours then we can take the most general unifier α of t and
l and denote u = tα = lα. As the colours are only constrains on the non-coloured
case then obviously all substitutions σ we are looking for will just constrain
the most general unifier α. It can also be noted that the right substitutions σ

impose exactly such constraints, that guarantee, that on positions where coloured
variables appeared in t and l, there will only appear ground terms with the right
colour in u. Unluckily, to propagate the constraints from positions in u where
there were coloured variables in t and l down to the variables in u we will have
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to increase the number of unifiers with colour constraints. Let us fix a reduced
RGTRS T and state the following lemma.

Lemma 6. For two coloured terms t and s with disjoint variables there exists
a set u1, . . . , ul of terms such that for correct ground substitutions σ, ρ it holds
tσ = sρ if, and only if, there exists an i and a correct ground substitution τ for
which

tσ = uiτ = sρ.

Moreover, for each i there exists a coloured substitution µi (substituting coloured
terms for variables) such that ui = tµi = sµi. The set {µ1, . . . , µl} is called the
most general unifier of t and s and is computable.

Proof. Let α be the most general unifier of t and s forgetting about the colour
constraints and let u = tα = sα. It should be noted that there are correct ground
substitution σ and ρ such that tσ = sρ exactly then, when there is a ground
substitution β for variables in u for which

uβ = tσ = sρ

and if there was a variable coloured with colour K at position p in t or in s, then
the term substituted at this position has the colour K.

As we see we can describe all the substitutions we are looking for by giving
the term u and the set of constraints consisting of a position and a colour. Such
constraints can be propagated to lower positions and finally be checked for con-
stants and set as new colours for variables, but for the price of creating multiple
copies of u with different constraint sets. The details of how the constraints are
propagated are given in appendix B.

4 Stability of coloured terms

According to Lemma 3 we know that we only need to decide deep non-joinability
of constants and the semi non-confluence property. We will reduce semi non-
confluence to a set of instances of the coloured stability problem. We assume
that a reduced RGTRS T is fixed.

Definition 7. The coloured stability problem asks given a coloured term t and
a constant c to decide if there exists a correct substitution σ such that tσ is stable
and not joinable with c.

Lemma 7. The problem to decide for a given term s and a constant c if there
exists a substitution σ and a stable term t such that sσ ∗→ t and t is not joinable
with c, can be reduced to a finite set of instances of the coloured stability problem.

Please note that if there exists any such term t then there also exists a stable
one. Hence, we can assume that t is stable.

11



Proof. Let us analyse the reduction path sσ ∗→ t. We can restrict our attention
to substitutions σ such that there are no rewritings in the substituted variables,
since if there is a need to rewrite, we could have substituted already the rewritten
form. Therefore we can also assume that the rewritings are done in the appro-
priate bounds and use Lemma 5 to describe the rewriting path. First let us
divide the rewritings on the path into segments of increasing and non-increasing
rewritings (the increasing segments may have length 0)

sσ = s1
∗→T > s′2 →T≤ s2

∗→T > s′3 →T≤ s3 . . .→T≤ sn
∗→T > s′n+1 = t.

Then using Lemma 5 we can describe this path with coloured rewritings in the
following way:

sσ = s1 →T c s2 →T c . . .→T c sn
∗→T > t.

Since s is given and the number of positions in s is bounded, we can enumerate
all positions in s at which these non-increasing rewritings take place together
with the rules applied there. Let us denote these positions by p1, . . . , pn and
the coloured rules used at these positions by l1 → c1, . . . , ln → cn. For given
positions and rules we will enumerate all coloured terms t1, . . . , tm such that if
there exists a ground substitution σ satisfying

sσ = s1 →{l1→c1} s2 →{l2→c2} . . .→{ln→cn} sn

then there exists a correct ground substitution ρ for some ti such that sn = tiρ.
If we find such terms ti then we can substitute for each constant a in ti a

new variable coloured with {a} obtaining a terms t′i and then we will know that
t = t′iρ for some correct ground substitution ρ and in this way the problem will
be reduced.

We will now show how to enumerate the requested coloured terms ti using
the unifiers we defined before. We will proceed inductively with respect to n

(the length of the rewriting path s1
∗→ sn) starting with s and we will show

how to proceed one step, generating for one coloured term the appropriate set
of coloured terms.

In an intermediate step let us consider the coloured term u such that si = uρ

for some correct ground substitution ρ and let si be rewritten to si+1 by the
coloured non-increasing rule li → ci used at position p in u. It is now enough to
enumerate the terms v1, . . . , vm such that if for some correct ground substitution
σ the term uσ can be rewritten with li → ci at position p, then v = vjρ for some
1 ≤ j ≤ m and some correct substitution ρ. In such case u|pσ = liτ for some
correct τ and from Lemma 6 we know that there exists the set

{µ1, . . . , µm} = mgu(u|p, li).

Then it is sufficient to take vi = uµi[ci]p to get the desired terms.

5 Reduction automata

We have reduced the confluence problem to the coloured stability problem and
to the problem of confluence of constants. We will now show how to solve these
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problems using reduction automata. The definitions, facts and theorems pre-
sented here can be found in [2] in the chapter about automata with equality and
disequality constraints. Since we are using exactly the same objects as presented
in that chapter, we do not present all the terminology with the same level of
detail as presented there.

Reduction automata are a special kind of automata with equality and dise-
quality constraints (AWEDC). An equality (disequality) constraint is an expres-
sion p1 = p2 (p1 6= p2), where p1 and p2 are positions and is satisfied by a term t

if t|p1
= t|p2

(t|p1
6= t|p2

). An automaton with equality and disequality constraints
is a tuple

(Q, Σ, Qf , ∆),

where Σ is the signature, Q is a finite set of states, Qf ⊆ Q and ∆ is a set of
rewrite rules in the form

f(q1, . . . , qn)→α q,

where q1, . . . , qn, q ∈ Q and α is a boolean combination of equality and disequal-
ity constraints.

The language accepted by an automaton and the run of an automaton on
a term is defined in an analogous way to the standard automata, only by each
application of a rule the corresponding constraint must hold. The automaton
is deterministic if for every term t there is at most one state q such that there
exists a run of the automaton on t ending in the state q, and it is complete if
there is at least one such state.

A reduction automata is a member of AWEDC such that there is a ordering
on Q such that for each rule f(q1, . . . , qn)→α q, where α is not trivial (empty)
the state q is strictly smaller than each state qi. The most important facts about
reduction automata (see [2]) that we will use are the following.

Fact 2. The class of reduction automata is closed under union and intersection.
There is a construction for the union that preserves determinism.

Fact 3. With each reduction automaton we can associate a complete reduction
automaton that accepts the same language. This construction preserves deter-
minism. The class of complete deterministic reduction automata is closed under
complement.

Fact 4. The emptiness of a language accepted by a reduction automata is de-
cidable.

Fact 5. It is possible to construct a deterministic complete reduction automaton
accepting the set of terms that are correct ground substitutions of a given term
with coloured variables. It is also possible to construct a deterministic complete
reduction automaton encompassing such correct ground substitutions.

From these facts only Fact 5 is not a literal copy of facts from [2], since there
the construction is presented for uncoloured terms. But since colour constraints
can be expressed as tree automata, deterministic and without constraints, we
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can use the same construction as presented in [2] for uncoloured terms only
adding the states of automata recognising coloured constraints and substituting
accepting states of these automata for q> used in the uncoloured construction
to denote all non-special terms.

Using these facts and the relation between stability with respect to T and
being a normal form with respect to T c that is proved in Lemma 5 we can prove
the following lemma (see appendix C for details).

Lemma 8. The coloured stability problem for a term t and constant c with re-
spect to a reduced RGTRS T is decidable.

The analysis of deep joinability of constants relies on a technical lemma
similar to Lemma 2 that concerns joinability. To use reduction automata for deep
joinability of constants we have to analyse pairs and construct the automaton
for terms with signature extended to cope with pairs. The technical details are
given in appendix C together with the proof of the following lemma.

Lemma 9. Deep joinability of constants with respect to a RGTRS is decidable.

From the results proved in lemmas 3, 7, and 8 and 9 follows our main theorem.

Theorem 1. Confluence of right ground term rewriting systems is decidable.

6 Conclusions and remarks

We showed how to analyse confluence of right ground term rewriting systems.
Our results provide a method to reduce confluence to satisfiability of a con-
strained stability of terms. Although the presented techniques rely heavily on
the fact that the analysed TRS is right ground, it could be interesting to try to
extend them to other classes of TRS. The use of reduction automata for solving
constrained stability and its extension to deep joinability of constants might be
transferred to other cases. It might also be used to prove more refined results
concerning right ground or non-increasing systems.

These methods might also be used to analyse special classes of RGTRS in
order to get complexity results. Finding an optimised algorithm for coloured
stability for linear TRS would open the way to show that left linear right ground
TRS are in coNP. If there is no such algorithm then due to the tight integration
with automata methods there is a chance that the strict complexity bounds for
automata might be translated to show that this problem is not in coNP.

The presented technique of colouring variables with automatic constraints
and using more powerful automata to analyse the resulting constrained programs
can certainly be used also in other contexts for program analysis.
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A Proof of Reduction of Confluence

Lemma 10. If a right ground term rewriting system R is not confluent then
either there exists a constant that is not confluent or the following semi non-
confluence property is fulfilled. A RGTRS R is semi non-confluent if there exists
a term s and a constant c such that s is an instance of a left hand side of a rule
l → c ∈ R and on the other hand s can be rewritten to a term r and r is not
joinable with c.

Proof. Let us assume that R is not confluent, so there exists a lowest term t

that is not confluent. If there exist a few such lowest witnesses of non-confluence
with equal height, we can take any of them. If t is a constant then the proof is
complete. Assume t = f(t1, . . . , tn). Since t is not confluent, we know that there
exist witnesses u, v of non-confluence, so t ∗→ u, t ∗→ v and u and v are not
joinable. We can assume that u is the first term on the rewriting path t ∗→ u

that is not joinable with v and v is the first on the path t ∗→ v not joinable with
u, otherwise we could just take the terms appearing before on the paths.

Let us now show that there has to be a constant on the rewriting path t ∗→ u

or t ∗→ v. Indeed, if there was no constant on these paths then we know by
Lemma 1 that u = f(u1, . . . , un) and v = f(v1, . . . , vn) and for each i ti

∗→ ui

and ti
∗→ vi. But since u and v are not joinable so there exists an i such that ui

and vi are not joinable, and for this i the term ti would not be confluent itself,
which contradicts the assumption that t was the lowest not confluent term. We
can now assume without loss of generality, that there is a constant c on the
rewriting path t ∗→ u. Even more, we can assume that this is the first constant
on this path and that each term on the path before c is joinable with v, since
any term on the path before u was joinable with v.

We know that
t ∗→ s→ c ∗→ u

and that t ∗→ v and u is not joinable with v. Let us assume that v and c are
joinable and let v1 be a joinability witness for v and c. Then c ∗→ v1, c ∗→ u

and v1 is not joinable with u hence c is not confluent, which contradicts the
assumption that all constants are confluent. Therefore we know that not v is not
joinable with c. Also since s is on the rewriting path before c we know that s is
joinable with v and we can denote a witness of their joinability by r. Then we
have all the terms required in our assertion, since s ∗→ r and r is not joinable
with c because v is not joinable with c and v ∗→ r.

B Proofs of Properties of Coloured Closure

Lemma 11. For any reduced RGTRS T with T c defined before and for any two
terms t and s if t ∗→T c s then also t ∗→T s.

Proof. Let a rule l(A, P )→ c ∈ T c be applied to some ground term w at position
p with w|p = u. So there is a correct substitution σ such that u = l(A, P )σ.
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Since l(A, P ) in the rule is appropriately coloured so there exists the term s that
witnesses that the colouring is appropriate and s grows with respect to T from
l(A, P ) and differs from l only at positions with variables. We can rewrite u in
the same way as l(A, P ) grows since u is an instance of l(A, P ). Therefore we
obtain a term v such that u ∗→T > v and at all positions p in l where there are
no variables v|p = l|p.

Let us now take a variable x appearing in l and consider all terms appearing
in v at positions where x appears in l. At positions that also appear in l(A, P )
there is the term xσ and at the other we have some constants c1, c2, . . . , cn. But
since the colouring is appropriate, then x is coloured with K = {c1, . . . , cn} and
since σ is correct then for each ci we have ci

∗→T xσ. If we do this rewriting for
each variable in l, it becomes clear that v ∗→T lσ and therefore u ∗→T c. You
should note that if the variable x does not appear in l(A, P ) then we have to
rewrite each ci to the satisfiability witness for K instead of rewriting to xσ.

Lemma 12. Given a reduced RGTRS T let us take a rule l → c ∈ T and two
ground terms u and w such that w grows from u in bounds of l and w is an
instance of l. Then any rewriting path in T in the form

u ∗→T > w →{l→c} c

can be reduced to one step rewriting in the system T c defined before, so u→T c c.

Proof. Since u grows to an instance of l, there is a sequence of positions in u

where there are constants and these positions can grow first to a term s that is
identical to l except for the positions where l has variables and later to w being
an instance of l. Let us denote the sequence of positions in u mentioned above
by P and the sequence constant appearing at respective positions in u by A.

Let us then consider the rule l(A, P )→ c ∈ T c with the appropriate colouring
for variables of l that comes from s. Please note that since s grows to an instance
of l then in the appropriate colouring all colours of variables of l that are not
variables of l(A, P ) must be satisfiable as the witnesses appear in w, so the
mentioned rule indeed is in T c with the casted colouring. Then it is clear that u

rewrites with this rule to c, since the colour constraints are fulfilled in u as they
were in w.

We will now repeat literally a part of the proof presented in the paper to be
sure that the notation is consistent.

Lemma 13. For two coloured terms t and s with disjoint variables there exists
a set u1, . . . , ul of terms such that for correct ground substitutions σ, ρ it holds
tσ = sρ if, and only if, there exists an i and a correct ground substitution τ for
which

tσ = uiτ = sρ.

Moreover, for each i there exists a coloured substitution µi (substituting coloured
terms for variables) such that ui = tµi = sµi. The set {µ1, . . . , µl} is called the
most general unifier of t and s and is computable.
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Proof. Let α be the most general unifier of t and s forgetting about the colour
constraints and let u = tα = sα. It should be noted that there are correct ground
substitution σ and ρ such that tσ = sρ exactly then, when there is a ground
substitution β for variables in u for which

uβ = tσ = sρ

and if there was a variable coloured with colour K at position p in t or in s, then
the term substituted at this position has the colour K.

As we see we can describe all the substitutions we are looking for by giving
the term u and the set of constraints consisting of a position and a colour. We
will now show how such constraint can be propagated to lower positions but for
the price of creating multiple copies of u with different constraint sets.

If we have a colour

K = {c1, . . . , cm}

at a position in u where the sub-term at this position is f(w1, . . . , wn) then the
constraint can be satisfied only if for each ci ∈ K there is at least one rule in
the form

ci → f(ai
1, . . . , a

i
n) ∈ T.

Let us now take all possible ways to choose one such rule for each ci ∈ K. Then
for each wj we have a new colour constraint defined by

Kj = {a1
j , a

2
j , . . . , a

m
j }.

In this way we reduced a colour constraint to lower positions, but for each way
of choosing the rules from the system we had to create a separate instance of the
term u with coloured positions. Since for all constants we took into account all
possible ways to satisfy the colour constraint, all possible correct substitutions
will be taken into account.

If we repeat the above procedure then all colours will be propagated to con-
stants, where they can be checked for satisfiability and either accepted or re-
jected, and to variables. Taking into account only the cases where the colour
constraints were accepted at positions with constants we are left with a set of
coloured terms u1, . . . ul that we were looking for and since these are just differ-
ently coloured copies of u then we can define µi to be the most general unifier
β with the same colours as the variables in ui.

C Reduction Automata Constructions and Proofs

Let us first concentrate on the coloured stability problem and start with a simple
fact about possible automata construction.

Fact 6. There is a reduction automata accepting all the normal forms with re-
spect to a given set of coloured rewrite rules.
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Proof. Construct the sum of the automata encompassing the coloured rewrite
rules which have a deterministic reduction automata by Fact 5. This construction
can be done so that the resulting automata is deterministic (see Fact 2 or [2]) and
according to Fact 3 it can also be made complete. Therefore we can construct
it’s complement using Fact 3.

Lemma 14. The coloured stability problem for a term t and constant c with
respect to a reduced RGTRS T is decidable.

Proof. According to Lemma 5 we can check the stability of a given term t by
creating a reduction automata accepting all normal forms with respect to the
coloured rewrite system T c. When we know that the term is stable we can use
Lemma 2 to construct a tree automaton without constraints that will accept
only terms that are not joinable with the constant c. This automata works in
the described way only on stable terms, but stability is assured by intersecting it
with the reduction automata recognising stable terms. Intersecting it again with
the automata that accepts only correct ground substitutions of t and checking
the emptiness yields a decision procedure according to Fact 4.

We will start analysing deep joinability of constants by exhaustively checking
if any two constants have deep non-joinability witnesses of depth zero (other
constants). For other cases we will observe the following lemma.

Lemma 15. Two constants a, b are deeply non-joinable if, and only if, they
have witnesses of deep non-joinability of height zero or one of the following
holds:

(1) There exists a term t for which b ∗→ t and t is not joinable with a or a
constant c such such that a→ c, or vice versa (swapping a and b).

(2) There exist terms of height one f(c1, . . . , cn) and g(d1, . . . , dm) with f 6= g

for which a → f(c1, . . . , cn) and b → g(d1, . . . , dm). Moreover, there exist
stable terms f(u1, . . . , un) and g(v1, . . . , vm) with each ui having colour {ci}
and each vj having colour {dj}.

(3) There exist terms f(a1, . . . , an) and f(b1, . . . , bn for which a ∗→ f(a1, . . . , an)
and b ∗→ f(b1, . . . , bn). Moreover, stable terms u = f(u1, . . . , un) and v =
f(v1, . . . , vn) exist with each ui having colour {ci} and each vj having colour
{di} and for some 1 ≤ i ≤ n the terms ui and vi are witnesses of deep
non-joinability of the constants ai and bi.

Proof. It is evident that if any of these conditions holds then the constants are
deeply non-joinable.

For the converse we need to look at the paths from constants to the witnesses
of deep non-joinability of which at least one is of height at least one. If one of the
witnesses is of height one then it is covered by the first case taking into account
the the fact that the considered RGTRS is reduced

In the other case you note that there exist stable witnesses of deep non-
joinability. If these have different function symbols at the root position then
stability is enough for them to be witnesses of deep non-joinability. If they have
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the same function symbol in the head then since they are stable and not joinable
then according to lemma 2 they have to have some non-joinable children, which
are then witnesses of deep non-joinability for other constants.

Since we are now analysing pairs of terms let us extend our signature by new
function symbols P, Pl, Pr with arity two. We will later say that P (t, s) denotes
t and s, Pl(t, s) denotes the left term t and Pr(t, s) the right term s. Let us also
extend our set of coloured rewrite rules so that for each rule l → c and each
position p in l we add the rules

(1) l[P (l|p, x)]p → c,
(2) l[P (x, l|p]p → c,
(3) l[Pr(x, l|p)]p → c,
(4) l[Pl(l|p, x)]p → c,

where x is a new variable x 6∈ Var(l). We repeat this process as long as possible
without having two P ′s one after another on any path in the term l considered
as a tree. Please note that a term t with a P symbol is stable with respect to
the new set of rules if all terms that it denotes are stable.

Fact 7. For each pair of constants a and b there exists a tree automaton A[a,b]

that accepts a stable term if it denotes the pair of witnesses of deep non-joinability
of a and b.

Proof. For constants a, b we will denote by qa the state for all terms with the
extended signature for which the denoted term is reachable from a, and by qa,b

the state when the denoted term is reachable from a and not joinable with b.
We will denote the state which is reached by a stable term if the term denotes

a pair of deep non-joinability witnesses of a and b by q[a,b] and we will also use
ql[a,b] and qr[a,b] for the left and right witness. This defines our set of states and
by Lemma 15 we can construct A[a,b] with the following rules:

(1) P (qa, qb,a)→ q[a,b] and P (qa,b, qb)→ q[a,b],
(2)

P (f(qa1
, . . . , qan

), g(qb1 , . . . , qbm
))→ q[a,b]

for each f(a1, . . . , an) ∗← a and g(b1, . . . , bm) ∗← b with f 6= g,
(3)

P (f(qa1
, . . . , ql[aj ,bj ], . . . , qan

), f(qb1 , . . . , qr[aj ,bj ], . . . , qbn
))→ q[a,b]

for each f(a1, . . . , an) ∗← a and f(b1, . . . , bn) ∗← b,
(4) all above items repeated with Pl or Pr instead of the first P on the left side

and ql[] or qr[] on the right side accordingly,
(5) ε-transitions from qa,b to qa.

The correctness of the construction follows from Lemma 15.

Lemma 16. Deep joinability of constants with respect to a RGTRS is decidable.

Proof. We showed that we can construct an automaton accepting the witnesses
of deep non-joinability of two constants when the terms are stable and we showed
before that we can construct an reduction automaton accepting only stable terms
(only now we use an extended signature and other set of coloured rewrite rules).
Then we can use Fact 4 to decide the emptiness of intersection of these automata.
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