
A Counting Logic for Structure Transition Systems
Łukasz Kaiser1 and Simon Leßenich∗2

1 LIAFA, CNRS & Université Paris Diderot – Paris 7, France
2 Mathematische Grundlagen der Informatik, RWTH Aachen

Abstract
Quantitative questions such as “what is the maximum number of tokens in a place of a Petri
net?” or “what is the maximal reachable height of the stack of a pushdown automaton?” play a
significant role in understanding models of computation. To study such problems in a systematic
way, we introduce structure transition systems on which one can define logics that mix temporal
expressions (e.g. reachability) with properties of a state (e.g. the height of the stack). We propose
a counting logic Qµ[#MSO] which allows to express questions like the ones above, and also many
boundedness problems studied so far. We show that Qµ[#MSO] has good algorithmic properties,
in particular we generalize two standard methods in model checking, decomposition on trees and
model checking through parity games, to this quantitative logic. These properties are used to
prove decidability of Qµ[#MSO] on tree-producing pushdown systems, a generalization of both
pushdown systems and regular tree grammars.

1998 ACM Subject Classification F.4.1, I.2.4

Keywords and phrases Logic in Computer Science, Quantitative Logics, Model Checking

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.366

1 Introduction

Models of computation describe temporal changes of a state of a system or a machine.
For example, pushdown automata describe transformations of the stack, term rewriting
systems capture modifications of terms, and Turing machines specify changes of the tape.
Questions about computations of systems often ask about temporal events intertwined with
properties of the state, e.g. reachability (temporal) of an empty stack (state property) or
never encountering a tree of height less than one. We propose an abstract definition which
distinguishes temporal transitions from the state of the system and allows to investigate
properties of such systems and the corresponding logics in a uniform and systematic way.

▸ Definition 1. A structure transition system (STS) is a labeled transition system (Kripke
structure) with an additional assignment m of finite relational structures to the nodes of the
system. Formally, given a set of transition labels R and a relational signature τ , an STS is
a tuple S = (S,∆,m) where S is a set of states, ∆ ⊆ S ×R × S is a set of transitions, and
m ∶ S → FinStr(τ) assigns a finite τ -structure to each state.

Computing machines of various kinds can be viewed as finite objects which represent and
generate infinite structure transition systems. Let us consider a few prominent examples.

Pushdown automata induce structure transition systems in which the relational structures
assigned to the nodes represent the current stack of the automaton, i.e. are words over
the stack alphabet. The transition relation in the STS copies the one in the automaton.

∗ This author was supported by the ESF Research Networking Programme GAMES and the DFG Research
Training Group 1298 (AlgoSyn).

© Ł. Kaiser, S. Leßenich;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 366–380

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.366
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Ł. Kaiser and S. Leßenich 367

Turing machines generate STSs in a similar way to pushdown automata: the structure
assigned to each node of the STS is again a word, and it represents the tape of the
machine at that time. Transitions are induced from the ones of the machine.
Petri nets give rise to STSs in which elements of the relational structures correspond to
tokens in the net. Elements labeled by a predicate Pl correspond to tokens in place l in
the net and firing of the net results in transitions of the STS.
Term rewriting systems (TRSs) produce STSs in which one assigns a term to each node,
i.e. the relational structure m(s) is always a labeled tree, representing the term in s. The
transition relation ∆ is derived from the application of rewriting rules.
Graph rewriting systems induce STSs in a similar way as TRSs, but the structures assigned
to nodes are arbitrary graphs, or even hypergraphs in case of hypergraph rewriting.

Interesting properties of structure transition systems mix temporal events with state
attributes. To specify them, we thus compose a temporal logic with another logic for the
states. In such composition, the predicates of the temporal logic are replaced by sentences of
the state logic, which in turn are evaluated on the relational structure assigned by m.

Consider the logic LTL[MSO], which allows to use MSO sentences in place of predicates
in LTL. For example, the formula G(∃xa(x)) expresses that an a-labeled element exists in
the relational structure assigned to each reachable state of an STS. Since MSO sentences
define regular languages of words and trees, one can express in LTL[MSO] over an STS
the reachability of a state in which the stack belongs to a regular language (for pushdown
systems) or in which a regular configuration appears on the tape (for Turing machines) or
in which the term belongs to a regular tree language (for TRSs). Note that a LTL[MSO]
formula defines a property in a uniform way, for pushdown systems, Turing machines and
TRSs at the same time. Moreover, we can systematically inspect which temporal logic and
which state logic can be combined to an efficient formalism on which classes of STS.

If the state logic is trivial, i.e. consists only of the two formulas true and false, one obtains
classical action-based temporal logics like LTL or the µ-calculus Lµ. Model-checking these
logics is decidable on pushdown systems [13] and for linear-time logics (e.g. LTL) it is
also decidable on Petri nets [5]. On the other hand, already model-checking action-based
branching-time logics, e.g. Lµ, is undecidable on Petri nets [5].
One can consider the logic Reach[MSO] in which formulas have the form Reach(ψ) for
some ψ ∈ MSO and express that an MSO-definable configuration is reachable. Model-
checking this logic is decidable on pushdown systems [13] and also on Petri nets [14].
Model-checking LTL[MSO] is decidable on STSs generated by pushdown systems [6], but
the use of MSO makes it undecidable on STSs corresponding to Petri nets [5].
For Lµ[MSO], the modal µ-calculus with MSO sentences as predicates, the model checking
problem is decidable on context-free and prefix-recognizable rewrite systems, and thus
also on pushdown systems [13]. It is also decidable on some classes of graph or structure
rewriting systems, e.g. for separated structure rewriting [11].

Combinations of temporal and state logics, as the ones above, allow to express interesting
properties of structure transition systems, but, since the formulas of these logics are Boolean,
they are limited to yes-or-no answers. For example, it is not possible to ask “how high will the
stack get on all runs?” of a pushdown automaton or “how many tokens will there maximally
be in a place?” of a Petri net. Such questions are often very important for understanding
the behavior of the system. Note also that the answer to a question of this kind might be
either an integer or ±∞, in case the stack size or the number of tokens is unbounded. Such
boundedness problems have been studied extensively for many models.

CSL’12



368 A Counting Logic for Structure Transition Systems

The question whether the maximal stack size on runs of a pushdown system is bounded
or not, intertwined with temporal properties, has been studied in [2, 9], and is a special
case of the problem solved in this work.
The boundedness problem for Petri nets was shown to be decidable in [12] and became
one of the most important tools in Petri net analysis.
On Turing machines, establishing the bound on the size of the tape during a computation
is the same as determining its space complexity.
Graph rewriting systems are used to model e.g. biochemical processes and one often asks
for the number of particles of certain kind produced in the process.

In the next section, we introduce a counting logic Qµ[#MSO] which allows to express
queries like the ones discussed above. Fundamental algorithmic techniques from model
checking generalize to this logic, as we show in Section 3. We apply these methods in
Section 4 to compute the value of Qµ[#MSO] formulas on tree-producing pushdown systems.
In the proof, we use two key lemmas, proved in Section 5 and Section 6.

2 Counting µ-Calculus on Structure Transition Systems

To express questions of the above form, we propose the counting µ-calculus, a quantitative
logic in which each formula has not just a Boolean value, but it evaluates to a number in
Z∞ ∶= Z ∪ {−∞,∞}. This logic, denoted Qµ[#MSO], allows to use counting terms on state
structures and maximum, minimum and fixed-point operations in the temporal part. This
suffices to express all the example questions presented above and to query for boundedness.
Note that it is not a probabilistic logic, and we do not introduce operators for sums over
different paths. Qµ[#MSO] is composed of the quantitative µ-calculus [7], and for quantitative
predicates uses counting terms on top of MSO formulas, defined as follows.

▸ Definition 2. An MSO counting term has the form #x1⋯xnϕ(x1,⋯, xn), where {x1,⋯, xn}
is the set of all free variables of the MSO formula ϕ. On a finite structure A, the term
represents the number of tuples a1,⋯, an such that A ⊧ ϕ(a1,⋯, an),

⟦#x ϕ(x)⟧A ∶= ∣{a ∣ A ⊧ ϕ(a)}∣.

For a formula ϕ without free variables, we set #ϕ = 1 if ϕ holds and #ϕ = 0 in the other case.

Using the above counting terms as predicate symbols, formulas of Qµ[#MSO] are built
according to the following grammar, analogous to [7].

ψ ∶∶= #xϕ(x) ∣X ∣ ¬ψ ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣ ◻r ψ ∣ ◇r ψ ∣ µX.ψ ∣ νX.ψ,

where r ∈ R are labels of the transitions and each X ∈ Var is a fixed point variable and must
appear positively in ϕ, i.e. under an even number of negations. We will often write ◇ for
the disjunction of ◇r over all r ∈ R for a finite R, and ◻ analogously. The semantics of
Qµ[#MSO] combines the quantitative µ-calculus [7] with MSO counting terms.

▸ Definition 3. Let S = (S,∆,m) be a structure transition system and F ∶= {f ∶ S → Z∞} the
set of quantitative assignments to the states of S. Given an evaluation of fixed point variables
ε ∶ Var→ F we define the evaluation of a Qµ[#MSO] formula ψ, denoted ⟦ψ⟧Sε ∶ S → Z∞, in
the following inductive way.

⟦X⟧Sε = ε(X)
⟦#xϕ(x)⟧Sε (s) = ⟦#xϕ(x)⟧m(s) = ∣{a ∣ m(s) ⊧ ϕ(a)}∣



Ł. Kaiser and S. Leßenich 369

⟦¬ψ⟧Sε = −1 ⋅ ⟦ψ⟧Sε
⟦ψ1 ∧ ψ2⟧Sε = min(⟦ψ1⟧Sε , ⟦ψ2⟧Sε ), ⟦ψ1 ∨ ψ2⟧Sε = max(⟦ψ1⟧Sε , ⟦ψ2⟧Sε )
⟦◇rψ⟧Sε (s) = sup{s′ ∣ (s,r,s′)∈∆} ⟦ψ⟧

S
ε (s′), ⟦◻rψ⟧Sε (s) = inf{s′ ∣ (s,r,s′)∈∆} ⟦ψ⟧Sε (s′)

⟦µX.ψ⟧Sε is the least and ⟦νX.ψ⟧Sε the greatest fixed point of the operator f ↦ ⟦ψ⟧Sε[X←f]
To compute the fixed point, we consider F as a complete lattice with pointwise order, i.e.
f ≤ g if and only if f(s) ≤ g(s) for all states s ∈ S.

Note that the above definition is very similar to the classical, Boolean µ-calculus. As
in the standard case, one can evaluate fixed points inductively, e.g. the least fixed point
starting from a function which assigns −∞ to all states. The Boolean logic Lµ[MSO] can in
fact be embedded in Qµ[#MSO] as follows: take a formula ψ of Lµ[MSO] in negation normal
form and replace each literal ¬ϕ by #¬ϕ and each ϕ by #ϕ. These terms have now value 1
if ϕ holds and 0 in the other case, and since the semantics coincide, the Qµ[#MSO] formula
obtained in this way will evaluate to ∞ or 1 if ψ holds and to 0 or −∞ otherwise. In this sense
the logic Qµ[#MSO] subsumes Lµ[MSO], and therefore also several other Boolean logics, e.g.
LTL[MSO] and CTL[MSO]. But, of course, in addition to Boolean ones, Qµ[#MSO] allows
to express quantitative properties, e.g. the following.

The formula ψ# = µX.(#x(x = x) ∨◇X) calculates the bound on the size of structures
appearing on all runs of the STS from where it is evaluated. Therefore ϕ#(s) ≠∞ if and
only if there is a bound on the size of the structures on all runs from s, and checking if
ϕ#(s) ≠∞ answers the boundedness problems mentioned before.
The formula ψ× = νX.(#x,y(a(x) ∧ b(y)) ∧ ◻X) computes the minimal product of the
number of a-labeled elements and b-labeled ones on all paths from the node in which it is
evaluated.
For two atoms ϕ1 and ϕ2, we will denote the formula µX.(ϕ2 ∨ (ϕ1 ∧◇X)) by ϕ1 untilϕ2,
as it is the standard Lµ formula expressing the LTL until modality. In the quantitative
setting, this formula calculates the maximal value of ϕ1 at the last node in which ϕ1 > ϕ2
on all paths. If we set ϕ1 = #xa(x) and ϕ2 = #xb(x) then ϕ1 untilϕ2, on words, computes
the maximal number of as reached on prefixes of runs on which there are more as than bs.

3 Model Checking Games and Decomposition

The logic Qµ[#MSO] is a composition of a quantitative extension of the µ-calculus Lµ and
a counting extension of MSO. Good algorithmic properties of Lµ stem from its connection
to parity games, and decidability of MSO on linear orders and trees has its roots in the
decomposition property. It is therefore natural to ask whether these basic methods generalize
to Qµ[#MSO]. We give a positive answer, showing both model-checking games for Qµ on
structure transition systems and a decomposition theorem for #MSO. These two tools will
be crucial in the decidability proof in the next section.

3.1 Model-Checking Games
To model-check Qµ one can use quantitative parity games, as shown in [7]. We use an almost
identical notion (except for discounts) for Qµ[#MSO] on structure transition systems.

▸ Definition 4. A quantitative parity game (QPG) G is a tuple G = (V,Vmax, Vmin,E, λ,Ω)
such that (V,E) is a directed graph whose vertices V are partitioned into positions Vmax
of Maximizer and positions Vmin of Minimizer. Every vertex is assigned a color by Ω ∶ V →
{0,⋯, d} and terminal vertices T = {v ∈ V ∣ vE = ∅} are labeled by the payoff function
λ ∶ T → Z.

CSL’12



370 A Counting Logic for Structure Transition Systems

How to play. Every play starts at some vertex v ∈ V . For every vertex in Vmax, Maximizer
chooses a successor vertex and the play proceeds from that vertex (analogously for Minimizer).
If the play reaches a terminal vertex, it ends. We denote by π = v0v1 . . . the (possibly infinite)
play through vertices v0v1 . . ., given that (vn, vn+1) ∈ E for every n. The outcome p(π) of a
finite play π = v0 . . . vk is given by λ(vk). The outcome of an infinite play depends only on
the lowest priority seen infinitely often. We will assign the value −∞ to every infinite play
where the lowest priority seen infinitely often is odd, and ∞ to those where it is even.

Goals. The two players have opposing objectives regarding the outcome of the play.
Maximizer wants to maximize the outcome, while Minimizer wants to minimize it.

Strategies. A strategy of Maximizer (Minimizer) is a function s ∶ V ∗Vmax → V (s ∶
V ∗Vmin → V ) with (v, s(hv)) ∈ E for each h, v. A play π = v0v1 . . . is consistent with a
strategy s of Maximizer if vn+1 = s(v0 . . . vn) for every n such that vn ∈ Vmax, and dually
for strategies of Minimizer. For strategies f, g of the two players, we denote by αf,g(v) the
unique play starting at v which is consistent with both f and g.

Determinacy. A game is determined if, for each position v, the highest outcome Maximizer
can assure from this position and the lowest outcome Minimizer can assure coincide,

sup
f∈Σmax

inf
g∈Σmin

p(αf,g(v)) = inf
g∈Σmin

sup
f∈Σmax

p(αf,g(v)) =∶ valG(v),

where Σmin,Σmax are the sets of all possible strategies for Minimizer and Maximizer and the
achieved outcome is called the value of G at v.

As shown in [7], quantitative parity games are determined and can be used for model-
checking. We adapt the construction from [7] and construct a model-checking game satisfying
the following properties.

▸ Theorem 5 (c.f. [7]). For every ψ ∈ Qµ[#MSO] and every STS S one can construct the
quantitative parity game MC (S, ψ) = (V,Vmax, Vmin,E, λ,Ω) which is a model-checking game
for ψ and S, i.e. it satisfies the following properties:

(1) V = (S × Sub(ψ)) ∪ {(∞), (−∞)}, where Sub(ψ) is the set of subformulas of ψ.
(2) In terminal positions (s,ψ) the formula ψ has the form #xϕ(x) or ¬#xϕ(x).
(3) If ((s,ψ), (s′, ψ′)) ∈ E then either s = s′ or (s, s′) ∈ ∆.
(4) Ω(s,ψ) depends only on ψ, not on s.
(5) val MC (S, ψ) (s,ψ) = ⟦ψ⟧S(s).

The construction of the model-checking game corresponds to the one in [7], only that in
the setting of STS, discounts are not needed and have thus been removed.

In this work, we will be especially interested in pushdown quantitative parity games. For
a finite stack alphabet Γ, bottom symbol � /∈ Γ and a finite state set Q, we define a pushdown
process A = (Q,↪) in the standard way (see Definition 1 in [16]) and we denote by E↪ the
corresponding one-step transition relation. We say that a QPG is a pushdown game over
A if it has positions from A, i.e. of the form (q, s) for s ∈ Γ∗ and q ∈ Q, moves given by
E↪, and the partition into Vmax and Vmin and the color Ω of a position (q, s) depend only
on q and not on s. We say that a pushdown process or QPG is pop-free if ↪ contains no
pop-rules, equivalently if for each edge in E = E↪ from (q, s) to (q′, s′) it holds that ∣s′∣ ≥ ∣s∣.
In Section 5 we adapt the ideas from [19] to prove the following reduction.

▸ Theorem 6. For every pushdown QPG G over A = (Q,↪) one can compute a finite set
Q′, q′0 ∈ Q′, a pop-free pushdown process A′ = (Q ×Q′,↪′) and a QPG G′ over A′ such that
valG(q, ε) = valG′((q, q′0), ε) for each q ∈ Q.



Ł. Kaiser and S. Leßenich 371

3.2 #MSO Decomposition on Trees
The technique above allows us to reduce model-checking of the temporal part of a Qµ[#MSO]
formula to solving a QPG. But to provide algorithms for Qµ[#MSO] we also need a method
to handle the counting terms, at least on structures such as words and trees. For MSO, e.g.
on trees, this can be done by decomposing a formula: instead of checking ϕ on the whole
tree, one can compute tuples of formulas to check on the subtrees. Here we show that this
method can be extended to MSO counting terms.

Trees. We consider at most k-branching finite trees with nodes labeled by symbols
from a finite alphabet Γ. We accordingly represent them by relational structures over the
signature τ = {S1,⋯, Sk} ∪ {P ∶ P ∈ Γ}, where each Si is a binary relation representing the
i-th successor. We use Pi and Qj for the symbols from Γ and write P − t1⋯ tl for the tree
with P -labeled root and subtrees ti. We write tQ for the tree of height 1 consisting of only
the root labeled by Q.

Types. Recall that an m-type in n variables τm,n ⊆ MSO is a maximal satisfiable set of
formulas with quantifier rank at most m and free variables among x1, . . . , xn. We will use
Hintikka formulas to finitely represent types, as in the following lemma.

▸ Lemma 7 (Hintikka Lemma [10]). Given m ∈ N and variables x = x1,⋯, xn, one can compute
a finite set Hm,n of formulas with quantifier rank m and free variables x such that:

For every tree t and vertices v1,⋯, vn ∈ t there is a unique τ ∈Hm,n such that t ⊧ τ(v).
If τ1, τ2 ∈Hm,n and τ1 ≠ τ2 then τ1 ∧ τ2 is unsatisfiable.
If τ ∈ Hm,n and ϕ(x) is a formula with qr(ϕ) ≤ m, then either τ ⊧ ϕ or τ ⊧ ¬ϕ.
Furthermore, given such τ and ϕ, it is computable which of these two possibilities holds.

Elements of Hm,n are called (m,n)-Hintikka formulas and Hm,≤n = ⋃i≤nHm,i.

Let us fix a counting term #xϕ(x), which we will decompose. In this section, if we omit
the quantifier rank m, we mean m = qr(ϕ). For a tuple x = (x1,⋯, xn) of variables we write
[x]l = (x0,⋯, xl) for a partition of x into l + 1 disjoint sets, and {[x]l} for the set of all such
partitions. Let us first recall the standard MSO decomposition theorem on trees.

▸ Theorem 8 ([18, 8]). Let t = Q − t1⋯ tl be a tree and ϕ(x) an MSO formula. One can
compute a finite set Φ = {(ϕ0(x0), ϕ1(x1),⋯, ϕl(xl)) ∣ (x0,⋯, xl) ∈ {[x]l}}, where all ϕi have
a quantifier rank not exceeding that of ϕ, such that

t ⊧ ϕ(x) ⇐⇒ there ex. a ϕ ∈ Φ with tQ ⊧ ϕ0(x0) and ti ⊧ ϕi(xi) for all i ∈ {1, . . . , l}.

Observe that the condition above is a disjunction over the (l+1)-tuples in Φ of conjunctions
over each tuple. We prove a similar decomposition theorem for #MSO in which, intuitively,
the disjunctions are replaced by sums and the conjunctions by products. Note that counting
terms can count, e.g., the product of the number of as in the left subtree and the number of
bs in the right one. But in such case, the free variables in the decomposition are split, and
thus the number of terms in a product is limited by the number of free variables. To ensure
that assignments are not counted twice, we decompose to Hintikka formulas.

▸ Theorem 9. Let t = Q − t1⋯ tl be a tree and let #xϕ(x) be a counting term. Then, for
every partition [x]l = (x0,⋯, xl) of x, one can compute a finite set Ψ[x]l

of (l + 1)-tuples of
Hintikka formulas from Hqr(ϕ),≤∣x∣ such that

⟦#xϕ(x)⟧t = ∑
[x]l∈{[x]l}

∑
τ∈Ψ[x]

⟦#x0τ0(x0)⟧tQ ⋅ ⟦#x1τ1(x1)⟧t1 ⋅ . . . ⋅ ⟦#xl
τl(xl)⟧tl .

CSL’12



372 A Counting Logic for Structure Transition Systems

4 Qµ[#MSO] on Tree-Producing Pushdown Systems

In this section we show our main result, namely that Qµ[#MSO] can be effectively evaluated
on STSs generated by tree-producing pushdown systems, which generalize both pushdown
processes and regular tree grammars with control states and universal application. This
is therefore an extension of the classical decidability results for MSO and Lµ on pushdown
systems and regular trees to the quantitative setting.

▸ Definition 10. An increasing tree-rewriting rule for P ∈ Γ has the form P ← t, where t is
a Γ-labeled tree of height ≤ 2, i.e. t = Q −Q1⋯Qk or t = tQ.

Note that increasing tree-rewriting rules are exactly the same as productions in a normal-
ized regular tree grammar. But we apply these rules universally, i.e. always to all leaves to
which a rule can be applied. Formally, for two Γ-labeled trees t1, t2 and a rule r ∶ P ← t, we
write t1

rÐ→ t2, or r(t1) = t2, if t2 is obtained from t1 by replacing every P -labeled leaf by t.
We denote the set of all increasing tree-rewriting rules for Γ-labeled trees by RΓ, or just R.

Let us take a starting tree, say tQ, and apply a sequence of rules r = r1, . . . , rn resulting
in the tree t = rn⋯ r1(tQ). In the qualitative setting, given an MSO sentence ϕ, one asks
which sequences of rules lead to a tree t such that t ⊧ ϕ. The set of such sequences of rules
turns out to be regular (c.f. [11] Theorem 2) and one can effectively construct an automaton
to recognize it. Our main technical result, stated below, generalizes this to the quantitative
setting of MSO counting terms using integer counters and affine update functions. Recall
that a function f ∶ Nk → Nk is affine if f(c) = Ac +B for some matrix A ∈ Nk×k and B ∈ Nk.

▸ Theorem 11. For all Q ∈ Γ, ϕ ∈ MSO, one can compute k ∈ N, an initial value I ∈ Nk, an
evaluation vector E ∈ N1×k and an affine update function upr ∶ Nk → Nk for each r ∈R such
that, for all finite sequences r1,⋯, rn ∈R∗,

⟦#xϕ(x)⟧rn⋯ r1(tQ) = E ⋅ (upr1 ○ ⋯ ○ uprn
)(I) = E ⋅ (uprn

(. . . (upr1(I))) . . . ).

Also, k,E and the functions upr depend only on the quantifier rank and free variables of ϕ.

The proof of this theorem is given in Section 6, but we will first show how it can be
applied to evaluate Qµ[#MSO] on tree-producing pushdown systems.

▸ Definition 12. A tree-producing pushdown system (TPPDS) T = (Q,E) is a directed graph
with (R ∪ {�}) × (R ∪ {pop, ε})-labeled edges, i.e. E ⊆ Q × (R ∪ {�}) × (R ∪ {pop, ε}) ×Q.

A TPPDS T = (Q,E) with initial tree tP gives rise to the infinite structure transition
system S(T) = (S,∆,m) with states S = Q ×R∗, the structure assignment m(q, r) = r(tP )
and transitions as in a pushdown process:

∆ = {((q, ε), r′, (q′, r′)) ∣ q, q′ ∈ Q, (q,�, r′, q′) ∈ E}
∪ {((q, rr), r′, (q′, rrr′)) ∣ q, q′ ∈ Q, (q, r, r′, q′) ∈ E}
∪ {((q, rr), ε, (q′, rr)) ∣ q, q′ ∈ Q, (q, r, ε, q′) ∈ E}
∪ {((q, rr),pop, (q′, r)) ∣ q, q′ ∈ Q, (q, r,pop, q′) ∈ E}.

Observe that standard pushdown systems are subsumed by TPPDS. To obtain the stack
in the corresponding STS one uses rules where the right-hand side is a tree of branching
degree 1, i.e. a word. Properties like stack unboundedness can be formulated in Qµ[#MSO]
as was shown in Section 2.



Ł. Kaiser and S. Leßenich 373

q0 q1

q2

r01

r10

r 0
2 r20

r12

r01 = P ← P − PPP
r02 = P ← Q − PP
r10 = pop
r12 = P ← P

r20 = P ← Q − PP

run q0q1q0q2 q0q1q2

tree Q

P P

P

P P P

Figure 1 Example of a TPPDS with 2 initial runs from (q0, tP ).

▸ Example 13. Consider the TPPDS in Figure 1. The resulting trees of two initial runs,
starting in state q0 with initial tree tP , are given in the table on the right.

Let us remark that the underlying transition graph of the STS generated by a TPPDS
is always a pushdown graph, no matter whether one uses rules that generate trees or only
words. But there is a substantial difference when quantitative questions are asked, e.g. about
the size of the structure generated by a run. Trees allow to model richer classes of systems
(c.f. Corollary 16), but their size can grow exponentially in the number of rewriting steps
and thus they require more refined counting techniques than words.

Our main decidability result, stated below, is a consequence of Theorem 11, the existence
of model-checking games (Theorem 5), pop elimination (Theorem 6), and an algorithm to
solve counter parity games [1].

▸ Theorem 14. Given a formula ψ ∈ Qµ[#MSO], a TPPDS T = (Q,E), a state q ∈ Q and a
starting symbol P ∈ Γ, one can compute ⟦ψ⟧S(T)(q, tP ).

Proof. First, we transform ψ to negation normal form. By Theorem 5, to compute
⟦ψ⟧S(T)(q, tP ) it suffices to determine the value of the game MC = MC(S(T), (q, tP )) =
(V,Vmax, Vmin,E, λ,Ω) from ((q, ε), ψ). By Theorem 5 (1), the vertices in V have the form
((q, r), ψ) or (±∞), and V can be infinite. Observe that MC is a pushdown QPG with states
Q × Sub(ψ). By Theorem 6, MC can be transformed into an equivalent pop-free pushdown
QPG MC′ with states Q′. We define a finite game M̂C with labeled edges which removes
the dependence of moves on the top stack symbol and still represents MC′ in the sense
that the payoff of a play in MC′ can be computed from the sequence of visited labels in
M̂C ∶= (V̂ , V̂max, V̂min, Ê, Ω̂). The positions V̂ ∶= (Q′×(R∪{ε}))∪{(∞), (−∞)} have generally
the form (q, r) and simply omit all but the last rule r from the stack in the position in MC′.
The (R ∪ {ε})-labeled edge relation:

Ê ∶= {((q, r), r′, (q′, r′)) ∣ ((q, rr), (q′, rrr′)) ∈ E′}
∪ {((q, r), ε, (q′, r)) ∣ ((q, rr), (q′, rr)) ∈ E′}
∪ {((q, r), r, (±∞)) ∣ ((q, rr), (±∞)) ∈ E′}.

Note that from each position (q, r) in M̂C there are exactly the same possible moves as from
each position (q, rr) in MC′. Since the stack in a position in MC′ is a function of the starting
tree tP and the observed rules r, there is a one-to-one correspondence between plays and
strategies in both games.

We define the coloring function Ω̂(q, r) = Ω′(q, rr) for any tree r, and it is well defined
since in a QPG the value Ω(q, rr) depends only on q, not on the stack. The payoff of an
infinite play in M̂C depends on the minimal color seen infinitely often, exactly as in MC′, and
is thus equal to the payoff of the corresponding play in the original model-checking game.
For a finite play π = v0 ⋅ r1 ⋅ v1 ⋅ r2 ⋅ ⋯ ⋅ rn ⋅ vn, the last position, by Theorem 5 (2), either

CSL’12



374 A Counting Logic for Structure Transition Systems

corresponds to a formula #xϕ(x), or to a formula ¬#xϕ(x), or to (±∞). In the first case we
set the payoff in M̂C to ⟦#xϕ(x)⟧rn⋯ r1(tP ), in the second one to −1 ⋅ ⟦#xϕ(x)⟧rn⋯ r1(tP ) and
for (±∞) to ±∞. This definition of payoffs clearly ensures that corresponding plays in MC′

and M̂C result in the same outcome, and due to the one-to-one correspondence mentioned
above, the value of MC′ from ((q, ε), ψ) is the same as the value of M̂C from ((q, ε), ψ),
which we compute below, thus also solving MC.

Let {ϕ1, . . . , ϕl} be an enumeration of the MSO formulas in ψ which are counted, i.e.
of {ϕ ∣ #x ϕ(x) ∈ Sub(ψ)}. By Theorem 11, for each such ϕi there is the corresponding
dimension ki, initial values Ii, evaluation vector Ei and update functions upir. We combine
the initial values to an aggregate initial I = ⟨I1, . . . , I l⟩, which is a vector of dimension
k = k1 + . . . + kl. The aggregate update functions are also composed component-wise:

upr(⟨c1, . . . , cl⟩) = ⟨up1
r(c1), . . .uplr(cl)⟩,

and we extend each evaluation vector Ei to a vector Êi of dimension k by filling it with 0s
on all dimensions except for the ki ones. By Theorem 11, we have that

⟦#xϕi(x)⟧rn⋯ r1(tP ) = Êi ⋅ (upr1 ○ ⋯ ○ uprs
)(I). (1)

Let us thus use the aggregate functions to transform M̂C into a game M̃C, played on the
same arena, in which in each move an affine function is applied to a vector of k integers.
To construct M̃C, we replace every edge label r in M̂C by the function upr and the payoff
function λ in M̃C, depending on the current value of the vector c, is given by

λ(s, c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

±∞ if s = (±∞),
Ei ⋅ c if s = (p, #xϕi(x)),
−Ei ⋅ c if s = (p, ¬#xϕi(x)).

By (1), the payoffs of corresponding plays in M̂C and in M̃C are the same, and due to the
one-to-one correspondence of moves, plays and strategies we also get that the value of M̃C
from ((q, ε), ψ) starting with vector I is the same as the value of M̂C from this position, and
thus equal to ⟦ψ⟧S(T)(q, tP ). But the game M̃C is a special case of a counter parity game
with k counters [1], and, as proved in [1], its value can be computed. ◂

The above theorem demonstrates that Qµ[#MSO] indeed allows to apply the methods
known for qualitative logics to the quantitative case. As TPPDS subsume pushdown systems,
we obtain the following corollary.

▸ Corollary 15. Given a formula ψ ∈ Qµ[#MSO], a pushdown process A = (Q,↪) generating
an STS P, and a state q0 ∈ Q, one can compute ⟦ψ⟧P(q0,�).

Furthermore, the class of tree-producing pushdown systems includes finite systems and,
as shown in [11], MSO formulas on separated structure rewriting systems can also be reduced
to formulas to be checked on a TPPDS.

▸ Corollary 16. Given a formula ψ ∈ Qµ[#MSO], a separated structure rewriting system
(c.f. [11]) generating an STS S, and an initial state s ∈S, one can compute ⟦ψ⟧S(s).

Before, we reduced model-checking Lµ[MSO] to computing the values of Qµ[#MSO]
formulas. Thus, we can say that Corollary 15 strictly generalizes previous results on model-
checking LTL[MSO] and Lµ[MSO] on pushdown systems [13, 6] and Corollary 16 subsumes the
result from [11] for Lµ[MSO] on separated structure rewriting systems. On the quantitative
side, these corollaries also subsume the result from [7] for Qµ on finite systems and model-
checking parity conditions with unboundedness on pushdown systems [2, 9].



Ł. Kaiser and S. Leßenich 375

5 Eliminating pop from Pushdown QPGs

In this section, we prove Theorem 6 using methods similar to the ones developed in [19] and
later in [3] and [15], but with a construction symmetric with respect to the players.

▸ Theorem 6. For every pushdown QPG G over A = (Q,↪) one can compute a finite set
Q′, q′0 ∈ Q′, a pop-free pushdown process A′ = (Q ×Q′,↪′) and a QPG G′ over A′ such that
valG(q, ε) = valG′((q, q′0), ε) for each q ∈ Q.

Construction of the game G′. Intuitively, G′ simulates G, but in each push-move the
player makes claims about minimal colors that will be seen in G until the stack pops back to
the same content, if it does. The opponent is then asked to either proceed as if the claim
happened – moving to a claimed state with one of the claimed colors – or to allow the push
and accept to lose if a pop satisfying the claim occurs later.

To construct the set Q′, let d be the maximal color assigned by Ω in G and [d] = {0, . . . , d}.
We consider the set of claims defined as C = {C ∶ Q → P([d])}, i.e. a claim C assigns to
each state a set of colors. We define Q′ as the disjoint union of three kinds of states,
Q′ = {�} ∪Q′

0 ∪Q′
1: the state � for the empty stack, Q′

0 = [d] × C × {max,min} for positions
where players make claims, and the set Q′

1 = Γ × C × {max,min} × ({�} ∪Q′
0) for positions

where players answer to claims.
We construct the relation ↪′ and the game G′ in the following way. Positions (q,�,�) and

(q,m,C, p, s) belong to the same player to whom q belongs in G. The epsilon-moves from
↪, i.e. the ones which do not change the stack, are preserved in G′ and lead to (q′,�,�) or,
respectively, to (q′,min(m,Ω(q′)),C, p, s) updating the minimal color for C. The pop-moves
do not occur in G′, but, if a pop-move to q′ was allowed in G from (q, s), then in G′ there is
a move from (q,m,C, p, s) to a sink position. This sink position is winning for player p who
made the claim if the claim was true, and winning for the opponent otherwise. Formally,
it has payoff +∞ if p = max and min(m,Ω(q′)) ∈ C(q′) (true claim) or if p = min and
min(m,Ω(q′)) /∈ C(q′) (false claim), and −∞ otherwise. The payoff at a terminal position
(q, x, s) in G′ is the same as the payoff in (q, s) in G.

The push-moves from G translate to claims made in G′ as depicted in Figure 2. If ↪
allowed to push a ∈ Γ in G from (q, s) leading to a state q′, then in G′ we add the moves from
(q, x, s), for x = � or x ∈ Q′

0, to (q′, a,C, p, x, s), where C is any claim and p is the player to
whom q belongs in G, i.e. the one who makes the claim.

Positions where claims are answered, i.e. of the form (q′, a,C, p, x, s), belong to the
opponent of the player p who just made the claim. From each such position there is exactly
one possible push-move leading to (q′,Ω(q′),C, p, sa), i.e. the push is made as intended.
Additionally, for each color dc and state qc ∈ Q such that dc ∈ C(qc), there is a move
to the position (qc, x′, s) which corresponds to playing as in the claim. In this case, if
x = � then x′ = � as well and we set Ω(qc,�,�) = min(Ω(qc), dc). If x = (m,C0, p0), then
x′ = (min(m,dc),C0, p0), i.e. the minimal color is updated, and we again set Ω(qc, x′, s) =
min(Ω(qc), dc).

Correctness of the construction. Let σ be a strategy of one of the players in G. We
define the corresponding truthful strategy σ′ in G′ by induction on the length of play prefixes.
Also, to each play prefix π′ consistent with σ′ we assign a corresponding play prefix π in
G consistent with σ. Intuitively, when the player is supposed to make a claim in G′, he
considers all plays extending π in G and consistent with σ and, in σ′, chooses a claim with
the colors that really occur. When the opponent makes a claim in G′ and indeed there is
an extension consistent with σ which returns to the same stack in the claimed state and

CSL’12



376 A Counting Logic for Structure Transition Systems

q, m, C0, p0, s

q′, a, C, p, m, C0, p0, s

push a→ q′; claim C

q′, Ω(q′), C, p, sa

push a

qc, min(m, dc), C0, p0, s

dc ∈ C(qc)

Figure 2 Claims and moves corresponding to push operations.

color, then σ′ accepts this claim, and the corresponding play in G is prolonged to the point
in which the stack pops back to the claimed state. If no play is consistent with the claim of
the opponent, i.e. it is false, then the push-move is made. A formal proof of correctness is
similar to the one in Chapter 5 of [17].

6 #MSO Evaluation Using Counters

In this section we prove Theorem 11. Let us therefore fix a symbol P ∈ Γ and an MSO formula
ϕ. This also fixes the quantifier rankm = qr(ϕ) and x as the free variables of ϕ. We will prove,
for an arbitrary sequence r1, . . . , rn ∈R∗, that ⟦#xϕ(x)⟧rn⋯ r1(tP ) = E ⋅ (upr1 ○⋯ ○ uprn

)(I).
The proof will be by induction on the length of the sequence r1, . . . , rn; the appropriate

I,E and upr will be constructed in the process. For clarity, we omit the easy case of rules
P ← tQ and we first assume that the types of the subtrees rn⋯ ri+1(tP ) are known. In
subsection 6.1 we show how these types can be guessed and checked afterwards, and in 6.2
we provide the final construction and proof of Theorem 11.

Notation. We consider the sequence of rules r1, . . . , rn and denote the tree after i
rewritings by ti, i.e. the rewriting sequence can be written as tP

r1Ð→ t1
r2Ð→ ⋯ rnÐ→ tn. We

will also evaluate terms on the subtrees which result from rewriting a symbol P ∈ Γ from the
i-th step on, i.e. on rn⋯ ri+1(tP ). For a Hintikka formula τ ∈Hm,≤∣x∣ and a symbol P ∈ Γ we
write ⟦τ(y), P ⟧i ∶= ⟦#y τ(y)⟧rn⋯ ri+1(tP )

, i.e. ⟦τ,P ⟧i is the number of tuples a such that τ(a)
holds on the subtree generated from P in the last n − i rewriting steps.

By Λ we denote the set of all unordered sequences (τ,P) = {(τ1(y1), P1) ,⋯, (τk(yk), Pk)} ,
where Pi ∈ Γ, (y1,⋯, yk) is a partition into nonempty sets yi ≠ ∅ of a subset y ⊆ x of free
variables of ϕ, and each τi ∈Hm,≤∣x∣ is a Hintikka formula with free variables yi. We will use
elements of Λ as indices, i.e. we will operate on a vector c ∈ N∣Λ∣ and we will write c [(τ,P)]
for the number in c corresponding to position (τ,P). Let us prove the first induction step.

▸ Lemma 17 (First step). There exists a c ∈ N∣Λ∣ such that

⟦#xϕ(x)⟧rn⋯ r1(tP ) = ∑
(τ,P )∈Λ

c [(τ,P)] ⋅ ∏
(τ,P )∈(τ,P )

⟦τ,P ⟧1
.

Proof. Assume that r1 = P ← Q −Q1⋯Ql. By Lemma 9, ⟦#xϕ(x)⟧rn⋯ r1(tP ) equals

∑
[x]l∈{[x]l}

∑
τ∈Ψ[x]l

⟦#x0τ0(x0)⟧tQ ⋅ ⟦#x1τ1(x1)⟧rn⋯ r2(Q1) ⋅ . . . ⋅ ⟦#xl
τl(xl)⟧rn⋯ r2(Ql).

Using the notation introduced above, each product in the inner sum can be written as
⟦τ0(x0)⟧tQ ⋅∏l

i=1⟦τi(xi),Qi⟧1.



Ł. Kaiser and S. Leßenich 377

In each inner product ∏l
i=1⟦τi(xi),Qi⟧1, the factors ⟦τi(xi),Qi⟧1 in which τi is a sentence

are known to be either 0 or 1. If they are 1, they can safely be omitted, otherwise the whole
product becomes 0. Furthermore, if, after the removal, two inner products coincide for two
different τ0 and τ ′0, then the sum of the two outer products can be written as

⟦τ0(x0)⟧tQ ⋅
l

∏
i=1

⟦τi(xi),Qi⟧1 + ⟦τ ′0(x0)⟧tQ ⋅
l

∏
i=1

⟦τi(xi),Qi⟧1

= (⟦τ0⟧tQ + ⟦τ ′0⟧
tQ) ⋅

l

∏
i=1

⟦τi(xi),Qi⟧1.

We set c [(τ,P)] to the sum of the ⟦τ0(x0)⟧tQ over all products where the inner products
coincide with (τ,P), i.e. to the sum of those where {(τi,Qi) ∣ 1 ≤ i ≤ l, xi ≠ ∅} = (τ,P). ◂

Note that the vector c constructed above depends only on the first rule r1 and which
sentences τi hold in rn⋯ r2(tP ), for each P . We will remove the dependence on the types τi
in subsection 6.1. First, we show that the sum of the above form can be maintained further
into the rewriting sequence and that the vector c only needs to be updated in a linear way.

▸ Lemma 18 (Induction step). Let c ∈ N∣Λ∣ be a vector such that

(S) ∶= ⟦#xϕ(x)⟧rn⋯ r1(tP ) = ∑
(τ,P )∈Λ

c [(τ,P)] ⋅ ∏
(τ,P )∈(τ,P )

⟦τ,P ⟧i−1
.

Then there exists a vector c̃ ∈ N∣Λ∣ such that

(S) = ∑
(τ,P )∈Λ

c̃ [(τ,P)] ⋅ ∏
(τ,P )∈(τ,P )

⟦τ,P ⟧i,

and each c̃ [(τ,P)] can be computed as a linear combination of the numbers c [(τ,P)].
Proof. Let ri = R ← Q −Q1⋯Ql be the i-th rule. By applying Lemma 17 to the sequence
rn⋯ ri(tR), we get that for all τ there exists c′ such that:

⟦τ(y),R⟧i−1 = ∑
(τ,P )∈Λ

c′ [(τ,P)] ∏
(τ,P )∈(τ,P )

⟦τ,P ⟧i. (2)

For symbols P ≠ R, the trees rn⋯ ri(tP ) and rn⋯ ri+1(tP ) coincide, thus ⟦τ,P ⟧i−1 = ⟦τ,P ⟧i.
Recall the sum for position i− 1. This sum can be split into two parts, namely over those

(τ,P) where R does not occur, and those where it does:

(S) = ∑
(τ,P )∈Λ,R/∈P

c [(τ,P)] ⋅ ∏
(τ,P )∈(τ,P )

⟦τ,P ⟧i−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(A)

+ ∑
(τ,P )∈Λ,R∈P

c [(τ,P)] ⋅ ∏
(τ,P )∈(τ,P )

⟦τ,P ⟧i−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(B)

.

For (A), it holds that all ⟦τ,P ⟧i−1 are equal to their corresponding ⟦τ,P ⟧i. For (B), the
sum is updated: when considering a summand c [(τ,P)]∏τ,P ⟦τ,P ⟧i−1 with R ∈ P , each
factor ⟦τ,R⟧i−1 is replaced by the corresponding sum from (2), resulting in:

c [(τ,P)]
⎛
⎝ ∏
τ,P,P≠R

⟦τ,P ⟧i
⎞
⎠
⋅
⎛
⎝∏τ,R

⎛
⎝ ∑

(τ,P )′
c′ [(τ,P)′] ∏

τ ′,P ′
⟦τ ′, P ′⟧i

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
right-hand side of (2) for ⟦τ,R⟧i−1

⎞
⎠
.

CSL’12



378 A Counting Logic for Structure Transition Systems

As in the decomposition for a ⟦τ,R⟧i−1 the only free variables z are those of τ , it follows that
c′ [(τ,P)] = 0 for all (τ,P) where some (τ,P ) ∈ (τ,P) has free variables other than z. Note
that, for all ⟦τ,P ⟧i with R ≠ P that already were there before inserting the right-hand sides
of (2), the τ have free variables disjoint from z. Thus, when multiplied out after omitting all
summands with c′[(τ,P)] = 0, we obtain a sum over Λ of c-weighted products. This can be
joined with (A) to obtain (S) = ∑(τ,P )∈Λ c̃ [(τ,P)] ⋅∏(τ,P )∈(τ,P ) ⟦τ,P ⟧i, where c̃ is as follows.

Calculating c̃. We show now how to linearly combine different entries of c to get the
entries of c̃. To this end, we create, for all σ ∈ Hm,≤∣x∣, a set Dσ, collecting all (τ,P) from
the right-hand side of (2) for ⟦σ,R⟧i−1 along with the respective c′ [(τ,P)].

Dσ = { ((τ,P) , c′ [(τ,P)]) ∣ (τ,P)occurs in right-hand side of (2) for ⟦σ,R⟧i−1}.

Since only positive values of c′ [(τ,P)] are of interest, we collect all Dσ in the following set:

D = {(σ, (τ,P) , d) ∣ σ ∈Hm,≤∣x∣, ((τ,P) , d) ∈ Dσ, d > 0} .

To determine the value of c̃ [(τ,P)], all those c [(τ,P)′] have to be considered in which a
factor ⟦σ,R⟧i−1 is replaced, and, when multiplying out, a product over (τ,P) results. We do
this by adding — for every subset (τ,P)′ of (τ,P) and every τ such that c′ [(τ,P)′] appears
on the right-hand side of (2) for ⟦σ,R⟧i−1 — the entries in c for the set obtained from (τ,P)
by replacing (τ,P)′ with (σ,R), weighted with the respective c′ [(τ,P)′]. This amounts to
a sum over the set D defined above. In addition, if R /∈ P , we have to copy the old counter
value, as in the respective subtrees nothing was changed. Thus, let old [(τ,P)] = c [(τ,P)] if
R /∈ P and old [(τ,P)] = 0 otherwise. We obtain the following equation.

c̃ [(τ,P)] = old [(τ,P)] + ∑
(τ,P )′⊆(τ,P )

∑
(σ,(τ,P )′,d)∈D

d ⋅ c [(τ,P) ∖ (τ,P)′ + (σ,R)] . (3)

◂

Note that the construction of c̃ above depends only on the vectors c′ from the right-hand
sides of (2), which are in turn obtained from Lemma 17 and depend only on the rule ri and
which Hintikka sentences hold in rn⋯ ri+1(tP ), for each P .

6.1 Guessing Types of Subtrees
In this subsection, we remove the dependency on the Hintikka sentences described above
by correctly guessing the types of the subtrees. To this end, we will extend the vector c we
operate on by additional entries, corresponding to type functions which guess the types.

We represent types by Hintikka sentences: for any tree t, the m-type tpm(t) is the unique
τ ∈Hm,0 such that t ⊧ τ .

▸ Definition 19. For a set of symbols Γ and a natural numberm, a type function L ∶ Γ→Hm,0
assigns an m-type to every symbol from Γ.

Notice that, for every finite Γ and every m, there are only finitely many type functions,
thus the set L = {L ∶ Γ → Hm,0} (for our fixed Γ and m = qr(ϕ)) is finite. Denote by LF
the unique type function that assigns to every P the type of tP . For a sequence r1, . . . , rn
of rules from R we say that L0, . . . , Ln is the compatible sequence of type functions if
Li(P ) = tpm(rn⋯ ri+1(tP )) for all P. Note that Ln = LF . We show that compatible type
functions can be computed backwards and in a uniform way.



Ł. Kaiser and S. Leßenich 379

▸ Lemma 20. There exists a computable function pre ∶ L×R→ L such that for all sequences
r1, . . . , rn of rules, pre together with LF induces a compatible sequence, i.e. L0,⋯, Ln with
Ln = LF and Li−1 = pre(Li, ri) is compatible.

Instead of updating the vector c depending on the correct types, we will now maintain
a separate vector cL for every type function L. Each vector cL will be updated as if the
types given by L were the correct ones, and the types will be updated by pre, i.e. we define
c̃L [(τ,P)] exactly as in (3) but using cpre(L,ri) [(τ,P)] for c [(τ,P)]. At the end, the correct
L = LF will be chosen and the above lemma guarantees correctness, as proved below.

6.2 Proof of Theorem 11
▸ Theorem 11. For all Q ∈ Γ, ϕ ∈ MSO, one can compute k ∈ N, an initial vector I ∈ Nk, an
evaluation vector E ∈ N1×k and an affine update function upr ∶ Nk → Nk for each r ∈R such
that, for all finite sequences r1,⋯, rn ∈R∗,

⟦#xϕ(x)⟧rn⋯ r1(tQ) = E ⋅ (upr1 ○ ⋯ ○ uprn
)(I).

Also, E,k and the functions upr depend only on the quantifier rank and free variables of ϕ.

Proof. Let m be the quantifier rank of ϕ and Λ and L as defined above. We set k ∶= ∣L∣ ⋅ ∣Λ∣.
To define the initial vector I, we compute the Hintikka disjunction τ1 ∨⋯∨ τs ≡ ϕ. For every
L ∈ L, we define the vector IL ∈ N∣Λ∣ in which all positions are set to 0, except for those where
(τ,P) = (τi,Q), for 1 ≤ i ≤ s, which are set to 1. We fix an enumeration L1,⋯, L∣L∣ of L, and
set I ∶= ⟨IL1 ,⋯, IL∣L∣⟩ ∈ Nk.

Let pre be the function from Lemma 20. For every r ∈R, we define the update function
upr(⟨c1,⋯, c∣L∣⟩) ∶= ⟨c̃1,⋯, c̃∣L∣⟩, where c̃L [(τ,P)] is set as in (3) but with cpre(L,ri) used in
place of c. By Lemmas 18 and 20, after the last step, the vector cLF

contains the entries
evaluated for the compatible type sequence, and thus the value of the counting term

⟦#xϕ(x)⟧rn⋯ r1(tQ) = ∑
(τ,P )∈Λ

cLF
[(τ,P)] ⋅ ∏

(τ,P )∈(τ,P )
⟦τ⟧tP .

Note that every ⟦τ⟧tP is a constant and so is π(τ,P ) ∶= ∏(τ,P )∈(τ,P ) ⟦τ⟧
tP for every (τ,P).

Thus, the above sum is equal to the product of the updated vector c with the row vector E,
which has π(τ,P ) in the component corresponding to cLF

[(τ,P)] and 0 everywhere else. ◂

7 Conclusion

The question how well-known methods used for regular languages can be extended to the
quantitative setting has been approached recently from several angles. From the side of
automata, this problem has been investigated in [4] and related papers with focus on counting,
and from the logic side, progress has been made in the study of quantitative temporal logics
[7]. The counting logic Qµ[#MSO] introduced in this work is the first formalism which
exhibits the desirable properties of a well-behaved quantitative temporal logic and allows
at the same time to apply decomposition techniques, the logical counterpart of automata.
As we show, the value of a Qµ[#MSO] formula is computable on an important class of
infinite structure transition systems which generalize both pushdown systems and regular
tree grammars. This raises interesting new questions whether this result can be extended,
e.g. if the value of a Qµ[#MSO] formula is computable on higher-order pushdown systems or
recursion schemes, and in general which results for Boolean logics can be generalized to the

CSL’12



380 A Counting Logic for Structure Transition Systems

counting case. The decomposition theorem we proved for Qµ[#MSO] allows us to conjecture
that many results which rely on automata techniques can indeed be extended to Qµ[#MSO],
and that it may lead to a canonical quantitative counting logic for regular languages.

Acknowledgment. We are very grateful to Igor Walukiewicz for pointing out that the
methods from [19] can also be applied in the quantitative setting, as is done in Section 5.

References
1 D. Berwanger, Ł. Kaiser, and S. Lessenich. Solving counter parity games. In Proc. of

MFCS’12, LNCS. Springer, 2012. To appear.
2 A.-J. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness and

regular conditions. In Proc. of FSTTCS’03, vol. 2914 of LNCS, pp. 88–99. Springer, 2003.
3 A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre. Winning regions of higher-

order pushdown games. In Proc. of LICS’08, pp. 193–204. IEEE Computer Society, 2008.
4 T. Colcombet. The theory of stabilisation monoids and regular cost functions. In

Proc. of ICALP’09, Part II, vol. 5556 of LNCS, pp. 139–150. Springer, 2009.
5 J. Esparza. On the decidability of model checking for several µ-calculi and Petri nets. In

Proc. of CAAP’94, vol. 787 of LNCS, pp. 115–129. Springer, 1994.
6 J. Esparza, A. Kučera, and S. Schwoon. Model checking LTL with regular valuations for

pushdown systems. Inf. Comput., 186(2):355 – 376, 2003.
7 D. Fischer, E. Grädel, and Ł. Kaiser. Model checking games for the quantitative µ-calculus.

Theory Comput. Syst., 47(3):696–719, 2010.
8 T. Ganzow and Ł. Kaiser. New algorithm for weak monadic second-order logic on inductive

structures. In Proc. of CSL’10, vol. 6247 of LNCS, pp. 366–380. Springer, 2010.
9 H. Gimbert. Parity and exploration games on infinite graphs. In Proc. of CSL’04, vol. 3210

of LNCS, pp. 56–70. Springer, 2004.
10 J. Hintikka. Distributive normal forms in the calculus of predicates. Acta Philosophica

Fennica, 6, 1953.
11 Ł. Kaiser. Synthesis for structure rewriting systems. In Proc. of MFCS’09, vol. 5734 of

LNCS, pp. 415–427. Springer, 2009.
12 R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst. Sci., 3(2):147–

195, 1969.
13 O. Kupferman and M. Y. Vardi. An automata-theoretic approach to reasoning about

infinite-state systems. In Proc. of CAV’00, vol. 1855 of LNCS, pp. 36–52. Springer, 2000.
14 E. W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. of

STOC’81, pp. 238–246. ACM, 1981.
15 S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In Proc. of

ICALP’11 (2), vol. 6756 of LNCS, pp. 162–173. Springer, 2011.
16 O. Serre. Note on winning positions on pushdown games with ω-regular conditions. Inf.

Process. Lett., 85(6):285–291, 2003.
17 O. Serre. Contribution à l’étude des jeux sur des graphes de processus à pile. PhD thesis,

Université Paris 7, 2004.
18 S. Shelah. The monadic theory of order. Ann. Math., 102:379–419, 1975.
19 I. Walukiewicz. Pushdown processes: Games and model checking. In Proc. of CAV ’96,

vol. 1102 of LNCS, pp. 62–74. Springer, 1996.


	Introduction
	Counting -Calculus on Structure Transition Systems
	Model Checking Games and Decomposition
	Model-Checking Games
	#MSO Decomposition on Trees

	 Q[#MSO] on Tree-Producing Pushdown Systems
	Eliminating pop from Pushdown QPGs
	#MSO Evaluation Using Counters
	Guessing Types of Subtrees
	Proof of Theorem 11

	Conclusion

