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Modern logics for arguing about dependence and independence are based on team semantics [Vää07].
From a purely logical point of view these logics have clean theoretical properties, as for example in-
clusion and exclusion logic corresponds to independence logic which again is equivalent to existential
second-order logic. However, in these logics data is represented as teams which are sets of assignments,
hence one can only argue about the presence or absence of data. As in many real world applications
the multiplicities are a key factor (e.g. in databases) di�erent logics that incorporate such information
have been proposed [HPV15, HPV17, DHK+18]. In this article we consider multisets of assignments,
called multiteams, which extend teams by the number of occurrences of each assignment. Notions
such as independence in this se�ing only make sense if the multiplicities are natural numbers, hence
we consider only �nite multiteams and structures.

Logics with team semantics without negation are embeddable in existential second-order logic Σ1
1
,

similarly logics with multiteam semantics can be embedded into the second-order logic ESOmts
[+, ⋅]

with built-in features for dealing with arithmetic. Formally, all structures are extended by a numerical
sort and second-order quanti�ers over functions f ∶ Ak → ℕ mapping tuples of elements of the uni-
verseA of a structureA to natural numbers are added to �rst-order logic. Additionally, basic arithmetic
+ and ⋅ is available allowing terms of the kind f x̄ +gȳ . �is note intends to discuss the Presburger frag-
ment ESOmts

[+] of this logic, i.e. the restriction where only addition is allowed, but no multiplication.
As it has turned out on the level of multiteam semantics this logic is equivalent to FOM

[⊆+ , | ], that is
multiteam inclusion / exclusion logic. �e focus of the present work is on multiteam logics, and due
to the space limitations we will not investigate the second-order logic ESOmts

[+]; for the same reason
most proofs are omi�ed, sometimes when we translate a logic into another we present the formula that
expresses an atom of one logics in the other, but do not argue for its correctness. We aim at discussing
the logic FOM

[⊆+ , | ] in more detail which includes �nding an atom � such that FOM
[⊆+ , | ] ≡ FO

M
[�].

In team semantics independence logic is equivalent to inclusion / exclusion logic, which – as we will
discover – is not the case under multiteam semantics, but multiteam inclusion can still express both
multiteam inclusion and exclusion. It turns out that in multiteam logics with a forking atom^=1/2 both
inclusion and exclusion are expressible. �is leads to a further analysis of the di�erent variants of
forking ^≤p and ^≥p for some p ∈ [0, 1].

§1 Multiteam Semantics

A multiset M = (S, n) is a tuple of a (�nite) set S together with a function n∶ S → ℕ>0 assigning
every element its multiplicity. �e additive union of two multisets (S, n) ⊎ (S′, n′) is (S ∪ S′, n + n′).
Inclusion M ⊆+ M

′ means that n(s) ≤ n
′
(s) holds for all s ∈ S. For a number k the multiple kM is

⨄
i<k

M . A multiteam M is a multiset (X, n) such that X is a team. We �x some notation. �e support,
or underlying team, of M is MT

∶= X ; the evaluation of M on a tuple x̄ , wri�en M(x̄), is the multiset
{{s(x̄) ∶ s ∈ M}}, where {{�(s) ∶ s ∈ M}} is a notation for ⨄

s∈M
T n(s){{�(s)}}; the restriction M�

�
is

{{s ∈ M ∶ s � �}}; the probability PrM (x̄ = ā) that the variable x̄ takes value ā in M is de�ned as
|M�

x̄=ā
|/|M |, and the conditional probability PrM (x̄ = ā ∣ ȳ = ̄

b) is de�ned similarly. Moreover, � → �

is a shorthand for ¬� ∨ (� ∧ � ).
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�e dependency concepts known from team semantics or database theory can be understood in a
natural way under multiteam semantics. Further, the access to multiplicities gives rise to additional
notions. �e following lists the most important ones that are considered throughout this abstract.
De�nition 1 (Multidependence Atoms). Let A be a �nite structure and M a multiteam.
Dependence: A �M dep(x̄ , y) ∶⟺ A �

M
T dep(x̄ , y)

Exclusion: A �M x̄ | ȳ ∶⟺ A �
M

T x̄ | ȳ

Inclusion: A �M x̄ ⊆+ ȳ ∶⟺ M(x̄) ⊆+ M(ȳ)

Statistical independence: A �M x̄ � ȳ holds if, and only if, PrM (x̄ = ā) = PrM (x̄ = ā ∣ ȳ =
̄
b) for all

ā ∈ M(x̄) and ̄
b ∈ M(ȳ). An equivalent condition is that M(x̄) ×M(ȳ) = |M | ⋅M(x̄ ȳ).

Conditional independence: A �M x̄ �z̄ ȳ if PrM (x̄ = ā ∣ z̄ = c̄) = PrM (x̄ = ā ∣ ȳz̄ = ̄
bc̄) for all ā ∈ A|x̄ |,

̄
b ∈ A

|ȳ | and c̄ ∈ A|z̄|.

First-order operators can be de�ned as either being strict, i.e. using each assignment exactly once,
or lax. In team semantics lax operators turned out to be the correct choice, which intuitively is based
on the fact that only the information whether or not an assignment is present is available in a team. �e
situation is di�erent under multiteam semantics since the multiplicities are accessible and an analysis
has shown that indeed strict semantics should be assumed [GW]. For a set of multiteam dependency
notions Ω, its closure under �rst-order operators is denoted by FOM

[Ω].
De�nition 2 (Multiteam Semantics). Multiteam semantics is de�ned by the following rules. Let Ω be
a set of multidependency atoms, A a structure, M a multiteam over A and  ,  1,  2 ∈ FOM

[Ω].
• A �M  1 ∧  2 if A �M  1 and A �M  2;
• A �M  1 ∨  2 if there are M1 ⊎ M2 = M with A �Mi

 i ;
• A �M ∀x if A �M[x↦A]  ;
• A �M ∃x if A �M[x↦F ]  for some function F ∶ M → A.

Where M[x ↦ A] = {{s[x ↦ a] ∶ s ∈ M, a ∈ A}}, i.e. every assignment in M is updated with every
value ofA, thus |M[x ↦ A]| = |A|⋅|M |. �e function F maps every assignment s ∈ M to a value F (s) ∈ A.
If an assignment s is present more than once in M each copy may or may not receive a di�erent value
from F . Accordingly M[x ↦ F ] denotes {{s[x ↦ F (s)] ∶ s ∈ M}}, especially |M[x ↦ F ]| = |M |.

Downwards- and union closure are de�ned analogously to team semantics, i.e. ' is downwards
closed if A �M ' implies A �R ' for all R ⊆+ M and  is union closed in case A �M  and A �R  

implies A �M⊎R  . To avoid confusion between team and multiteam semantics we write FOT for
�rst-order team logic and accordingly FOM for �rst-order multiteam logic.

§2 Between Inclusion, Exclusion and Independence

Let us start by repeating the picture in team semantics. Independence logic FOT
[⟂] and condi-

tional independence logic FOT
[⟂c] coincide, as was shown by Galliani [Gal12]. �e proof provides

translations of exclusion and inclusion atoms into independence logic and a formula that expresses
conditional independence by means of inclusion / exclusion, i.e. FOT

[⟂c] ⪯ FO
T
[⊆, | ] ⪯ FO

T
[⟂] and

hence FOT
[⟂] ≡ FO

T
[⟂c] ≡ FO

T
[⊆, | ]. We observe that instead of going through this chain of trans-

lations, conditional independence can be de�ned by using just a single independence atom in team
semantics.
Example 3. �e formula '⟂c(x̄ , ȳ, z̄) ∈ FO

T
[⟂] is equivalent to x̄ ⟂z̄ ȳ, where

'⟂c(x̄ , ȳ, z̄) ∶= ∀p̄∃ū∃w̄((z̄ = p̄ → ūw̄ = x̄ ȳ) ∧ (z̄ ≠ p̄ ∨ z̄ū ⟂ p̄w̄)).

Intuitively this formula builds from a given multiteam M an extension M ′ such that M ′�
p̄=z̄=ā

(ū, w̄) =

M�
z̄=ā
(x̄ , ȳ). Further, no restriction on M ′ is imposed whenever p̄ and z̄ di�er, hence all possible com-

binations may be present which implies that M ′ � z̄ū ⟂ p̄w̄ holds if and only if M � x̄ ⟂z̄ ȳ. ♦

2



A similar technique however fails under multiteam semantics. Nevertheless for the special case of
dependence dep(x̄ , y), which is equivalent to y ⟂x̄ y and y �x̄ y, this idea is applicable for multiteams.

Proposition 4. FOM
[dep] ⪯ FO

M
[ �].

Proof. As already stated dep(x̄ , y) ≡ y �x̄ y which we claim to be equivalent to

 ∶= ∀p̄∃u((x̄ = p̄ → u = y) ∧ x̄y � p̄u).

Assume A 2 dep(x̄ , y). �us there are s, s′ ∈ MT with s(x̄) = s′(x̄) = ā but b = s(y) ≠ s′(y) = c. Towards
a contradiction assert that A �M  . Let R be the multiteam M[p̄ ↦ A

k
][u ↦ F ] for an appropriate F

such that R � (x̄ = p̄ → u = y). Observe that 0 = PrR(x̄y = āb ∣ p̄u = āc) < PrR(x̄y = āb).
On the other hand assume A �M dep(x̄ , y), i.e. f ∶ MT

(x̄)→ A exists such that for all assignments
s ∈ M holds s(y) = f (s(x̄)). We describe how the values for u can be chosen such that we witness A �M
 . �e choice is clear for all assignments in which x̄ and p̄ agree. If s(x̄) ≠ s(p̄) we put s(u) = f (s(p̄)), in
case s(p̄) is a value occurring in M(x̄) and s(u) = c for an arbitrary �xed value c ∈ A otherwise. Let S
be the resulting multiteam. Certainly PrS(x̄y = āb) = PrS(x̄y = āb ∣ p̄u = c̄d) for all ā, c̄, b, d ∈ A∗.

In our favour we can prove that multiteam inclusion is expressible in statistical independence logic by
a slight modi�cation of the formula that de�nes inclusion via independence in team semantics [Gal12].

Proposition 5. FOM
[⊆+] ⪯ FO

M
[ �].

Proof. Without going into detail we claim that x̄ ⊆+ ȳ is equivalent to the formula '⊆+ (x̄ , ȳ), where
'⊆+ (x̄ , ȳ) ∶= ∀a, b, z̄((z̄ ≠ x̄ ∧ z̄ ≠ ȳ) ∨ (z̄ ≠ ȳ ∧ a ≠ b) ∨ (z̄ = ȳ ∧ a = b) ∨ ((z̄ = ȳ ∨ a = b)) ∧ z̄ � ab).

Hence, similarly to team semantics multiteam independence can express dependence (and hence
exclusion) and inclusion. However, multiteam inclusion and exclusion logic is less expressive than sta-
tistical independence logic as is demonstrated by the upcoming theorem that we state without proof
(cf. [GW]). In fact we �nd that no combination of downwards closed and union closed atomic depen-
dency notions is able to express independence under multiteam semantics.

�eorem 6. Let �̄ be any collection of downwards closed atoms and ̄
� be any collection of union

closed atoms. �ere is no formula  ∈ FO
M
[�̄ ,

̄
�] with x � y ≡  (x, y).

�is leaves open two questions, �rst: Can statistical independence logic FOM
[ �] express condi-

tional independence x̄ �z̄ ȳ? As the previous statements demonstrate the methods applicable in team
semantics that show FO

T
[⟂] ≡ FO

T
[⟂c] do not translate to multiteam semantics. �e second issue is

whether there is a (natural) atomic formula � such that FOM
[⊆+ , | ] ≡ FO

M
[�]? We leave open the �rst

question and give a positive answer to the second question in the following paragraph.

§3 Forking / Anonymity

We now turn our a�ention to atoms that can count assignments by their forking degree, i.e. such
an atom may state that depending on a variable the values of another one all occur with probability
at least (at most) a given threshold. Grädel and Hegselmann [GH16] investigated the notion of fork-
ing in context of team semantics. To do so they augmented each structure by a number sort which
enabled writing formulae such as x^≤�y which states that depending on x at most � di�erent values
for y occur, where � is a variable over the number sort. Since handling natural numbers is a built-in
feature of multiteam semantics we do not need to consider two sorted structures in order to de�ne a
meaningful concept. For technical reasons we assume all structures to contain at least two elements
in the following.
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De�nition 7 (Forking). Let M a multiteam over some �nite set A and p ∈ [0, 1]. For ⊲ ∈ {≤, =, ≥} the
forking atom ^⊲p is de�ned via M � x̄^⊲pȳ, if PrM (ȳ = ̄

b ∣ x̄ = ā) ⊲ p for all ā, ̄b ∈ A∗.

�e forking atom ^≤1/2 resembles a multiteam version of the anonymity atom that was introduced by
Väänänen [GKKV19]. It states that the values a certain variable takes do not su�ce to determine the
value of another. More formally, xΥy is satis�ed in a team X whenever for every value a that x takes
in X there are (at least) two assignments s and s′ such that s(x) = s′(x) = a but s(y) ≠ s′(y). �is atom
is in fact equivalent to non-dependence [Gal15]. In multiteam semantics we may further impose the
degree p of anonymity in ^≤p giving us a natural atom de�ning the concept of anonymity.

Let us start the analysis of the forking atoms by examining the closure properties of the di�erent
forking variants.

Proposition 8. Let p ∈ (0, 1), q ∈ (0, 1/2] and r ∈ { 1
n
∶ n > 1}. ^≤p is union- but not downwards

closed, while ^≥q and ^=r are neither of both.

�ere are two conspicuousnesses of this proposition. First, the thresholds for which the statements
hold exclude certain cases. For some of these values the forking atoms trivialise; indeed we observe
that x̄^≤0y ≡ x̄^=0y ≡ false, x̄^≤1y ≡ x̄^≥0y ≡ true and furthermore x̄^=pȳ ≡ false for all p ≠ 1/n. �e
remaining atoms, i.e. x̄^=1ȳ and x̄^≥pȳ for p > 1/2, all coincide with the dependence atom dep(x̄ ; ȳ).

�is explains the choice of the thresholds. Secondly, one might expect a symmetry between ^≤p
and ^≥p like, for example, one being union closed and the other downwards closed. While this is not
true we �nd that ^≥p is in fact weakly downwards closed for all p ∈ [0, 1].

De�nition 9. A formula ' is weakly downwards closed, or downwards closed in the team semantical
sense, if A �(X,n) ' implies A �(Y ,m) ' for all (Y ,m) ⊆+ (X, n) such that n(s) = m(s) for all s ∈ Y .

Since the other forking atoms are not weakly downwards closed we obtain the following relationship.

Corollary 10. �e logics FOM
[^≤p] and FOM

[^≥q] are incomparable for all p ∈ (0, 1) and q ∈ (0, 1].

Let us continue our analysis by comparing forking logics to more well known logics with multiteam
semantics. Because of the severe space limitations and since the formulae arising in the upcoming
proofs are too long and di�cult to parse we state the relationships without presenting even the formu-
lae used in the translations. However, we hope that the closure properties provide enough intuition
for the reader to believe the statements.

�eorem 11. (1) FOM
[dep] ⪯ FO

M
[^≥1/2], FOM

[^=1/2].
(2) FOM

[⊆+] ⪯ FO
M
[^≤1/2], FOM

[^=1/2].
(3) FOM

[^≤1/2] ⪯ FOM
[⊆+].

Corollary 12. FOM
[^≤1/2] ≡ FOM

[⊆+].

�is enables us to identify^=1/2 as the atom equivalent to inclusion / exclusion in multiteam semantics.

�eorem 13. FOM
[^≥1/2] ⪱ FOM

[dep, ⊆+] ≡ FO
M
[^=1/2].

Proof. By �eorem 11 we may use ^≤1/2 as it is available in FOM
[⊆+]. �en x̄^=1/2ȳ ≡ (dep(x̄ , ȳ) ∨

dep(x̄ , ȳ)) ∧ x̄^≤1/2ȳ.
x̄^≥1/2ȳ ≡ dep(x̄ , ȳ) ∨x̄ x̄^=1/2ȳ, where A �M ' ∨x̄  ⟺ there are R ⊎ S = M such that A �R ',

A �S  and for all s, s′ ∈ M if s(x̄) = s
′
(x̄) then both s and s′ belong either to R or to S. It is easy to

de�ne this kind of disjunction using dependence atoms.

Notice that FOM
[^=1/2] ≡ FOM

[^≤1/2,^≥1/2] follows as a corollary. Let us end this section by demon-
strating that using ^=1/2 one can express ^=1/n for all n ∈ ℕ>0.
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Proposition 14. FOM
[^=1/n] ⪯ FOM

[^=1/2] for all n ∈ ℕ>0.

Proof. �e special case n = 1 was handled in �eorem 11 which also allows us to make use of depen-
dence atoms. Let n > 1 (of course n = 2 is trivial but also covered by the upcoming construction). We
claim that x̄^=1/nȳ is equivalent to the formula �:

∃ȳ1⋯ ∃ȳn(⋀

i<n

dep(x̄ , ȳi) ∧⋀

i≠j

ȳi ≠ ȳj ∧ (⋁

i<n

ȳ = ȳi) ∧⋀

i≠j

(ȳ = ȳi ∨ ȳ = ȳj → x̄^=1/2ȳ)).

Before we start the analysis, notice that the formula � is x̄-guarded, that is A �M � holds if, and only
if, A �M�

x̄=ā
� for all ā ∈ MT

(x̄). In fact, instead of � one may consider its unguarded version, that is
the formula �, where dep(x̄ , ȳi) is exchanged by dep(ȳi) and x̄^=1/2ȳ by ^=1/2ȳ. Since x̄^=1/nȳ is also
x̄-guarded we will for the sake of simplicity in the following consider ^=1/nȳ and multiteams M with
domain ȳ . AssumeA �M ^=1/nȳ. �us, PrM (ȳ = ̄

b) = 1/n for each ̄
b ∈ M

T
(ȳ), implying that |MT

(ȳ)| = n.
Let us write this set as { ̄b1,… ,

̄
bn}. To show the claim A �M �, let M ′ be the extension of M by values

for ȳ1,… , ȳn such that for all s ∈ MT holds s(ȳi) = ̄
bi . By construction A �M ′ ⋀

i<n
dep(ȳi) ∧⋀i≠j

ȳi ≠

ȳj ∧ (⋁i<n
ȳ = ȳi). Hence it remains to verify A �M ′ ⋀

i≠j
(ȳ = ȳi ∨ ȳ = ȳj → ^=1/2ȳ), which is the

case if for all i ≠ j holds PrR(ȳ = ̄
bi) = PrR(ȳ =

̄
bj) = 1/2 where R = M

′�
ȳ∈{

̄
bi ,

̄
bj}
. �is is equivalent to

|M
′�
ȳ=

̄
bi
| = |M

′�
ȳ=

̄
bj
|. By assumption the probability that ȳ takes any value equals 1/n. �us all values

for ȳ must be equally distributed whence |M
′�
ȳ=

̄
bi
| = |M

′�
ȳ=

̄
bj
| and hence A �M � follows.

Conversely let A �M �. �us there is an extension M ′ of M by (constant) values ̄
b1,… ,

̄
bn for ȳ1

through ȳn such that M ′ � ⋀
i<n
dep(ȳi) ∧ ⋀

i≠j
ȳi ≠ ȳj ∧ (⋁i<n

ȳ = ȳi). Hence |M
T
(ȳ)| ≤ n. Moreover

M
′ � ⋀

i≠j
(ȳ = ȳi ∨ ȳ = ȳj → ^=1/2ȳ), implying that for all i ≠ j we have |M�

ȳ=
̄
bi
| = |M�

ȳ=
̄
bj
|. �erefore

|M
T
(ȳ)| = n (if there are less than n values one of these multisets is empty and hence not equivalent

to another non empty one, which must exist). Since M contains the same amount of assignments that
map ȳ to ̄

bi as those that map ȳ to ̄
bj we conclude that PrM (ȳ = ̄

bi) = 1/n for i ∈ {1,… , n}.

§4 Summary

Figure 1 displays the relationships of the various logics considered in this note and shows the
corresponding relations for logics with team semantics.

FO
T
≡ FO

M

FO
T
[ | ] ≡ FO

M
[dep]FO

T
[⊆]

FO
T
[⟂] ≡ FO

T
[⊆, | ]

Σ
1

1

FO
M
[^=1/n]

FO
M
[^≥1/2]

FO
M
[^≤1/2,^≥1/2] ≡ FOM

[^=1/2] ≡ FOM
[⊆+ , | ]

FO
M
[⊆+] ≡ FO

M
[^≤1/2]

ESO
mts
[+]

FO
M
[ �]

FO
M
[ �c]

ESO
mts
[+, ⋅]

?

Figure 1: An arrow L→ R means L ⪱ R and L↔ R stands for L ≡ R. �e precise relationship between
statistical independence and conditional independence logic remains open.
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