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Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Teams

Let A be a structure.
An assignment is a function s∶ {x1, x2,…}→ A.

Team: a set X of assignments over the same domain

X x1 x2 x3

s1 s1(x1) s1(x2) s1(x3)

s2 s2(x1) s2(x2) s2(x3)

s3 s3(x1) s3(x2) s3(x3)

⋮ ⋮ ⋮ ⋮

A team X can be viewed as a relation X (x1, x2, x3).
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Dependency Concepts

Let X be a team.
Dependence atoms:
A ⊨X dep(x̄ , y) ⟺ for all s, s′ ∈ X, s(x̄) = s′(x̄) entails s(y) = s′(y)

Independence atoms:
A ⊨X x̄⊥ȳ ⟺ X (x̄ , ȳ) = X (x̄) × X (ȳ)

Inclusion atoms:
A ⊨X x̄ ⊆ ȳ ⟺ X (x̄) ⊆ X (ȳ)

Exclusion atoms:
A ⊨X x̄ | ȳ ⟺ X (x̄) ∩ X (ȳ) = ∅

X (x̄)

X (ȳ)
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Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Team Semantics

It is possible to evaluate FO-formulae (in NNF) with teams.

Disjunctions in Team Semantics

A ⊨X '1 ∨ '2 ⟺ A ⊨Y '1 and A ⊨Z '2 for some Y ∪ Z = X

X

Y Z

De�nitions for ∀, ∃, ∧ are without big surprises!
FO-Literals are checked against all assignments.

FO() is FO extended with -atoms.
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Known Connections between these Logics

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

FO(⊆, |) FO(⊥)

FO
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Existential Second-Order Logic

Σ
1

1
= FO (in negation normal form) + the following quanti�ers:

∃R'(R) where R is a relation symbol

Normalform: ∃R̄'(R̄) where '(R̄) ∈ FO

Comparing Team-Semantics-Logics with Tarski-Logics:

'(x̄) is equivalent to  (X ) , if and only if

A ⊨X '(x̄) ⟺ A ⊨  (X (x̄)).
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Closure Properties

Let '(x̄) be a formula of a logic with team semantics.
Let  (X ) be a sentence with Tarski semantics.
Downwards Closure: Formula is downwards closed, if

A ⊨X ', Y ⊆ X ⟹ A ⊨Y '.

A ⊨  (X ), Y ⊆ X ⟹ A ⊨  (Y ).

Union Closure: Formula is closed under unions, if

A ⊨Xi
' for all i ∈ I ⟹ A ⊨

⋃
i∈I
Xi
'.

A ⊨  (Xi) for all i ∈ I ⟹ A ⊨  (⋃

i∈I

Xi).
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Contributions

1 Syntactic characterisations for closure properties and
model-checking games for Σ1

1

2 Rönnholm’s question regarding the connection between
inclusion logic of bounded arity and greatest �xed-point logics

3 Logics with dependency concepts up to a given equivalence
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Characterisation of the Union Closed Fragment
Joint work with Richard Wilke

Let '(X ) ∈ Σ1
1
. �en the following are equivalent:

1 '(X ) is union closed.
2 '(X ) is equivalent to some myopic Σ1

1
-sentence.

3 '(X ) is equivalent to some x̄-myopic FO(⊆, | )-formula.
4 '(X ) is equivalent to some FO(∪−game)-formula.
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Myopic Σ1
1
-Sentences

Myopic Σ1
1
-sentences are of the form

∀x̄(Xx̄ → ∃R̄ (X, R̄, x̄))

where X occurs only positively in  ∈ FO.

It is easy to prove that Σ1
1
-myopic sentences are closed under unions.

If '(X ) is closed under unions, then '(X ) is equivalent to

∀x̄(Xx̄ → ∃Y (Y ⊆ X ∧ Y x̄ ∧ '(Y ))).
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Inclusion-Exclusion Games
An inclusion-exclusion game is a structure

 = (V , V0, V1, I , E, T , Eex)

where V = V0 ⊍ V1.

T

∈ I

E
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Winning Strategies and Target Sets
Awinning strategy in  for 0 is a subgraph  ∶= (W, F ) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0,  plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1,  plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W ) ∩ Eex = ∅

We de�ne  () ∶=W ∩ T and  () ∶= { () ∶  winning strategy}.

T

 () ∶= {{c, d}, {a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E
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Model-Checking Games for Σ1
1

Let  (X ) ∶= ∃R̄'(X, R̄) ∈ Σ1
1
where '(X, R̄) ∈ FO (is in NNF).

�e game X (A,  ) is de�ned as in the following picture:

∙ 0 moves at ∃, ∨
∙ 1 moves at ∀, ∧

Xā ¬Xā R1ū ¬R1ū ¬X
̄
d X

̄
d e ≠ e

'

T ∶= A
ar(X )

ā … ̄
d

… …

∈ I

∙ Player 0 moves at ∨, ∃
∙ Player 1 moves at ∧, ∀

E EE

A ⊨  (Y ) ⟺ Y ∈  (X (A,  ))
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∙ Player 1 moves at ∧, ∀

E EE

A ⊨  (Y ) ⟺ Y ∈  (X (A,  ))
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Model-Checking Games for Myopic Σ1
1
-Sentences

Let '(X ) ∶= ∀x̄(Xx̄ → ∃R̄ (X, R̄, x̄)) be a myopic Σ1
1
-sentence.

�e model-checking game (A, ') has the following form:

T ∶= A
ar(X )

I ∶= ∅
 (ā)

ā

 (
̄
b)

̄
b

 (c̄)

c̄

 (
̄
d)

̄
d …

…

X
̄
b X ā X

̄
b X c̄ X

̄
d

E

E

E E E

E

E

A ⊨ '(Y ) ⟺ Y ∈  ((A, '))
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Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T )

E
E

E

E

E E
EE E

E

Observation:  () is closed under unions, because we can reassemble
the components of winning strategies.
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From Union Games to Inclusion-Exclusion-Logic

Associate
∙ Game! Formula
∙ Strategy! Team

�is association leads to the following questions:

∙ What are the components of a team?
∙ How can we restrict a formula “to these components”?
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Components of a Team
Let X be a team with dom(X ) = {x̄ , ȳ}.

X x̄ ȳ

v̄1

v̄2

v̄3

v̄4

v̄5

v̄6

v̄7

v̄8

s1

s2

s3

s4

s5

s6

s7

s8

X�x̄=ā

X�
x̄=

̄
b

X�x̄=c̄

ā

ā

ā

̄
b

̄
b

c̄

c̄

c̄

v̄1

v̄2

v̄3

v̄4

v̄5

v̄6

v̄7

v̄8

s1

s2

s3

s4

s5

s6

s7

s8

�e x̄-components of X are subteams of the form

X�x̄=v̄ ∶= {s ∈ X ∶ s(x̄) = v̄}.
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Guarded Atoms

A ⊨X v̄ | w̄ ⟺ for all s, s′ ∈ X, s(v̄) ≠ s′(w̄).

Problem: �e whole team X is considered, not just the x̄-components!
Solution: Allow only exclusion atoms with x̄ on both sides.

A ⊨X x̄ v̄ | x̄w̄ ⟺ A ⊨X�x̄=ā v̄ | w̄ for all ā ∈ X (x̄)

Similarly, we have

A ⊨X x̄ v̄ ⊆ x̄w̄ ⟺ A ⊨X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄).
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Guarded Formulae
A formula '(x̄ , ȳ) ∈ FO(⊆, | ) is x̄-guarded, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ .

2 �e variables x̄ are never quanti�ed in '.

�e (un)guarded version of a formula is obtained as follows:

x̄ v̄ | x̄w̄ x̄ v̄ ⊆ x̄w̄ v̄ | w̄ v̄ ⊆ w̄

' '
′

Removing x̄

Adding x̄

Lemma: A ⊨X ' ⟺ A ⊨Y '
′ for every x̄-component Y of X .

Problem: Deleting x̄-components preserves satisfaction.
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A formula '(x̄ , ȳ) ∈ FO(⊆, | ) is x̄-guarded, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ .

2 �e variables x̄ are never quanti�ed in '.
�e (un)guarded version of a formula is obtained as follows:

x̄ v̄ | x̄w̄ x̄ v̄ ⊆ x̄w̄ v̄ | w̄ v̄ ⊆ w̄

' '
′

Removing x̄

Adding x̄

Lemma: A ⊨X ' ⟺ A ⊨Y '
′ for every x̄-component Y of X .

Problem: Deleting x̄-components preserves satisfaction.



Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Formulae
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Myopic Fragment of FO(⊆, | )
A formula '(x̄) ∈ FO(⊆, | ) is called x̄-myopic, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ or
∙ v̄ ⊆ x̄ but not below disjunctions.

2 �e variables x̄ are never quanti�ed in '.

How can we prove that these formulae are closed under unions?
Let  be a subformula of ' and A ⊨Xi

 for every i.
Idea: Reassemble these Xi like winning strategies in a union game:
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X1 x̄ ȳ X2 x̄ ȳ X3 x̄ ȳ

s1

s2

s3

s4

s5

ā

ā

̄
b

̄
b

̄
b

ū1

ū2

ū3

ū4

ū5

s
′

1

s
′

2

s
′

3

s
′

4

s
′

5

ā

ā

ā

ā

c̄

v̄1

v̄2

v̄3

v̄4

v̄5

s
′′

1

s
′′

2

s
′′

3

s
′′

4

s
′′

5

̄
b

̄
b

c̄

c̄

c̄

w̄1

w̄2

w̄3

w̄4

w̄5
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ā

̄
b

̄
b

̄
b

ū1
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ū4

ū5
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s
′′

1

s
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Capturing the Union-Closed Fragment
Let '(X ) ∈ Σ1

1
be a myopic sentence.

Task: Construct equivalent, x̄-myopic �(x̄) ∈ FO(⊆, | ).
Let A be a structure and Y be a team with dom(Y ) = {x̄}.

A ⊨ '(Y (x̄))

Y (x̄) ∈  ((A, '))

(A, ') ⊨Y # (y)

A ⊨
ℎ
−1
(Y) #


 (ȳ)

A ⊨Y �(x̄)
By construction of
the union game (A, ').

# (y) ∈ FO(⊆, | ) is a
y-myopic formula that
de�nes  ((A, ')).
YG (y) ∶= Y (x̄)

Use a logical inter-
pretation  with
(A) ≅ (A, ') for
some coordinate map ℎ.

Repair the damage
done by  to the
myopic shape and
extract values for x̄
from their encodings.
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Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, | ) be closed under unions.

Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [y ↦ F ] Y �
x̄=

̄
d
⊨ '(ȳ)abc

X ⊨ '(X )
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 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
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Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to
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Y �x̄=ā(ȳ)
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Y �x̄=ā(ȳ)
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�en '(x̄) is equivalent to
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X ⊨ '(x̄)



Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

�e Game Atom

∙ Union games are complete for the union-closed fragment

∙ We can encodes such games in a team using a lot of variables
∙ An atom ∪−game could check whether a speci�ed set is a target
set of the encoded union game

∙ Why is ∪−game union-closed?
∙ Answer: Make sure that unions of satisfying teams cannot
encode a di�erent game.

For X ≠ ∅, de�ne

A ⊨X ∪−game(k , x̄)∶⟺ X is complete and
if X encodes a union game A

X
,

then X (x̄) ∈  (A
X
).
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Rönnholm’s �estion

FO(⊆k): FO + inclusion atoms ū ⊆ v̄ with |ū| = |v̄| ≤ k.

Rönnholm’s �estion:
What fragment of GFP+ corresponds to FO(⊆k)?

GFP
+

k
: fragment of greatest �xed-point logic where �xed-point

relations are of arity ≤ k
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Answering Rönnholm’s �estion

1 For every FO(⊆k)-formula '(x̄) there exists an equivalent myopic
GFP

+

k
-sentence  (X ).

2 For every myopic GFP+
k
-sentence  (X ) there exists an equivalent

FO(⊆k′)-formula '(x̄) where k′ ∶= max{k, ar(X )}.
3 For every GFP+

k
-formula  (x̄) there exists a (downwards closed)

FO(⊆k)-formula  (x̄) s.t. for every A, X ,

A ⊨X  (x̄)⟺ A ⊨s  (x̄) for every s ∈ X.



Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences
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Dependencies Concepts up to Equivalences

Let
∙ ≈ be an equivalence relation of the structure A
∙ ā ≈

̄
b ∶⟺ ai ≈ bi for all i

A ⊨X dep(x̄ , y) ⟺ for every s, s′ ∈ X : s(x̄) = s′(x̄)
implies s(y) = s′(y)

A ⊨X x̄ ⊆ ȳ ⟺ for every s ∈ X there exists some s′ ∈ X
holds s(x̄) = s(ȳ)

A ⊨X x̄ | ȳ ⟺ for every s, s′ ∈ X holds s(x̄) ≠ s′(ȳ)
A ⊨X x̄⊥ȳ ⟺ for every s, s′ ∈ X there exists some s′′ ∈ X

with s(x̄) = s′′(x̄) and s′(ȳ) = s′′(ȳ)
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Expressive Powers in Comparison

FO

FO(⊆≈)GFP+(≈) FO(|≈) FO(dep
≈
)

FO(⊆≈, |≈) FO(⊥≈)Σ
1

1
(≈)

Σ
1

1
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FO(⊆) FO(∣)

FO(⊆, ∣)

GFP+ FO(dep)

FO(⊥)Σ
1

1

>
<

<
>

≡

≡≡

≡
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Results for these Logics
Joint work with Erich Grädel

1 Σ
1

1
(≈) ≡ FO(⊆≈, |≈ ) (on the level of sentences).

2 Σ
1

1
(≈) < Σ

1

1
(on the level of sentences).

3 For every '(X ) ∈ Σ1
1
(≈) where X occurs only ≈-guarded there

exists an equivalent  (x̄) ∈ FO(⊆≈, |≈ ) that cannot distinguish
between ≈-equivalent teams and vice versa.

4 FO(⊆≈) ≡ GFP
+

≈
(on the level of sentences).

≈-guarded occurrence of X : X≈v̄ ∶= ∃w̄(v̄ ≈ w̄ ∧ Xw̄).
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