
Fragments of Existential Second-Order Logic and
Logics with Team Semantics

Ma�hias Hoelzel

RWTH Aachen

December 10, 2019

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Teams

Let A be a structure.
An assignment is a function s∶ {x1, x2,…}→ A.

Team: a set X of assignments over the same domain

X x1 x2 x3

s1 s1(x1) s1(x2) s1(x3)

s2 s2(x1) s2(x2) s2(x3)

s3 s3(x1) s3(x2) s3(x3)

⋮ ⋮ ⋮ ⋮

A team X can be viewed as a relation X (x1, x2, x3).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Teams

Let A be a structure.
An assignment is a function s∶ {x1, x2,…}→ A.
Team: a set X of assignments over the same domain

X x1 x2 x3

s1 s1(x1) s1(x2) s1(x3)

s2 s2(x1) s2(x2) s2(x3)

s3 s3(x1) s3(x2) s3(x3)

⋮ ⋮ ⋮ ⋮

A team X can be viewed as a relation X (x1, x2, x3).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Dependency Concepts

Let X be a team.
Dependence atoms:
A ⊨X dep(x̄ , y) ⟺ for all s, s′ ∈ X, s(x̄) = s′(x̄) entails s(y) = s′(y)

Independence atoms:
A ⊨X x̄⊥ȳ ⟺ X (x̄ , ȳ) = X (x̄) × X (ȳ)

Inclusion atoms:
A ⊨X x̄ ⊆ ȳ ⟺ X (x̄) ⊆ X (ȳ)

Exclusion atoms:
A ⊨X x̄ | ȳ ⟺ X (x̄) ∩ X (ȳ) = ∅

X (x̄)

X (ȳ)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Dependency Concepts

Let X be a team.
Dependence atoms:
A ⊨X dep(x̄ , y) ⟺ for all s, s′ ∈ X, s(x̄) = s′(x̄) entails s(y) = s′(y)
Independence atoms:
A ⊨X x̄⊥ȳ ⟺ X (x̄ , ȳ) = X (x̄) × X (ȳ)

Inclusion atoms:
A ⊨X x̄ ⊆ ȳ ⟺ X (x̄) ⊆ X (ȳ)

Exclusion atoms:
A ⊨X x̄ | ȳ ⟺ X (x̄) ∩ X (ȳ) = ∅

X (x̄)

X (ȳ)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Dependency Concepts

Let X be a team.
Dependence atoms:
A ⊨X dep(x̄ , y) ⟺ for all s, s′ ∈ X, s(x̄) = s′(x̄) entails s(y) = s′(y)
Independence atoms:
A ⊨X x̄⊥ȳ ⟺ X (x̄ , ȳ) = X (x̄) × X (ȳ)

Inclusion atoms:
A ⊨X x̄ ⊆ ȳ ⟺ X (x̄) ⊆ X (ȳ)

Exclusion atoms:
A ⊨X x̄ | ȳ ⟺ X (x̄) ∩ X (ȳ) = ∅

X (x̄)

X (ȳ)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Dependency Concepts

Let X be a team.
Dependence atoms:
A ⊨X dep(x̄ , y) ⟺ for all s, s′ ∈ X, s(x̄) = s′(x̄) entails s(y) = s′(y)
Independence atoms:
A ⊨X x̄⊥ȳ ⟺ X (x̄ , ȳ) = X (x̄) × X (ȳ)

Inclusion atoms:
A ⊨X x̄ ⊆ ȳ ⟺ X (x̄) ⊆ X (ȳ)

Exclusion atoms:
A ⊨X x̄ | ȳ ⟺ X (x̄) ∩ X (ȳ) = ∅

X (x̄)

X (ȳ)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Team Semantics

It is possible to evaluate FO-formulae (in NNF) with teams.

Disjunctions in Team Semantics

A ⊨X '1 ∨ '2 ⟺ A ⊨Y '1 and A ⊨Z '2 for some Y ∪ Z = X

X

Y Z

De�nitions for ∀, ∃, ∧ are without big surprises!
FO-Literals are checked against all assignments.

FO() is FO extended with -atoms.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Known Connections between these Logics

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

FO(⊆, |) FO(⊥)

FO

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Known Connections between these Logics

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

FO(⊆, |) FO(⊥)

FO

FO(⊆) FO(|)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Known Connections between these Logics

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

FO(⊆, |) FO(⊥)

FO

FO(⊆) FO(|)

FO(⊆, |)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Known Connections between these Logics

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

FO(⊆, |) FO(⊥)

FO

FO(⊆) FO(|)

FO(⊆, |) FO(⊥)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Known Connections between these Logics

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

FO(⊆, |) FO(⊥)

FO

FO(⊆) FO(|) FO(dep)

FO(⊆, |) FO(⊥)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Existential Second-Order Logic

Σ
1

1
= FO (in negation normal form) + the following quanti�ers:

∃R'(R) where R is a relation symbol

Normalform: ∃R̄'(R̄) where '(R̄) ∈ FO

Comparing Team-Semantics-Logics with Tarski-Logics:

'(x̄) is equivalent to (X) , if and only if

A ⊨X '(x̄) ⟺ A ⊨ (X (x̄)).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Existential Second-Order Logic

Σ
1

1
= FO (in negation normal form) + the following quanti�ers:

∃R'(R) where R is a relation symbol

Normalform: ∃R̄'(R̄) where '(R̄) ∈ FO

Comparing Team-Semantics-Logics with Tarski-Logics:

'(x̄) is equivalent to (X) , if and only if

A ⊨X '(x̄) ⟺ A ⊨ (X (x̄)).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Existential Second-Order Logic

Σ
1

1
= FO (in negation normal form) + the following quanti�ers:

∃R'(R) where R is a relation symbol

Normalform: ∃R̄'(R̄) where '(R̄) ∈ FO

Comparing Team-Semantics-Logics with Tarski-Logics:

'(x̄) is equivalent to (X) , if and only if

A ⊨X '(x̄) ⟺ A ⊨ (X (x̄)).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

More Known Connections

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

FO

FO(⊆) FO(|) FO(dep)FO(|) FO(dep)

FO(⊆, |) FO(⊥)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

More Known Connections

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

FO

FO(⊆) FO(|) FO(dep)FO(|) FO(dep)

Σ
1

1
FO(⊆, |) FO(⊥)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

More Known Connections

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

FO

FO(⊆) FO(|) FO(dep)FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

More Known Connections

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

FO

FO(⊆)GFP FO(|) FO(dep)FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Closure Properties

Let '(x̄) be a formula of a logic with team semantics.
Let (X) be a sentence with Tarski semantics.
Downwards Closure: Formula is downwards closed, if

A ⊨X ', Y ⊆ X ⟹ A ⊨Y '.

A ⊨ (X), Y ⊆ X ⟹ A ⊨ (Y).

Union Closure: Formula is closed under unions, if

A ⊨Xi
' for all i ∈ I ⟹ A ⊨

⋃
i∈I
Xi
'.

A ⊨ (Xi) for all i ∈ I ⟹ A ⊨ (⋃

i∈I

Xi).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Closure Properties

Let '(x̄) be a formula of a logic with team semantics.
Let (X) be a sentence with Tarski semantics.
Downwards Closure: Formula is downwards closed, if

A ⊨X ', Y ⊆ X ⟹ A ⊨Y '.

A ⊨ (X), Y ⊆ X ⟹ A ⊨ (Y).

Union Closure: Formula is closed under unions, if

A ⊨Xi
' for all i ∈ I ⟹ A ⊨

⋃
i∈I
Xi
'.

A ⊨ (Xi) for all i ∈ I ⟹ A ⊨ (⋃

i∈I

Xi).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Connections and Closure Properties

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Connections and Closure Properties

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

downwards closed

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Connections and Closure Properties

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

myopic frag-
ments of Σ1

1

resp. FO(⊆, |),
FO(∪−game)

one year ago:
unknown

downwards closed

union closed

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Connections and Closure Properties

downwards closed

union closed

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

FO

FO(⊆)GFP FO(|) FO(dep) Σ
1

1
(↓)FO(|) FO(dep) Σ
1

1
(↓)

Σ
1

1
FO(⊆, |) FO(⊥)

myopic frag-
ments of Σ1

1

resp. FO(⊆, |),
FO(∪−game)

myopic frag-
ments of Σ1

1

resp. FO(⊆, |),
FO(∪−game) downwards closed

union closed

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Contributions

1 Syntactic characterisations for closure properties and
model-checking games for Σ1

1

2 Rönnholm’s question regarding the connection between
inclusion logic of bounded arity and greatest �xed-point logics

3 Logics with dependency concepts up to a given equivalence

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Characterisation of the Union Closed Fragment
Joint work with Richard Wilke

Let '(X) ∈ Σ1
1
. �en the following are equivalent:

1 '(X) is union closed.
2 '(X) is equivalent to some myopic Σ1

1
-sentence.

3 '(X) is equivalent to some x̄-myopic FO(⊆, |)-formula.
4 '(X) is equivalent to some FO(∪−game)-formula.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Σ1
1
-Sentences

Myopic Σ1
1
-sentences are of the form

∀x̄(Xx̄ → ∃R̄ (X, R̄, x̄))

where X occurs only positively in ∈ FO.

It is easy to prove that Σ1
1
-myopic sentences are closed under unions.

If '(X) is closed under unions, then '(X) is equivalent to

∀x̄(Xx̄ → ∃Y (Y ⊆ X ∧ Y x̄ ∧ '(Y))).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Σ1
1
-Sentences

Myopic Σ1
1
-sentences are of the form

∀x̄(Xx̄ → ∃R̄ (X, R̄, x̄))

where X occurs only positively in ∈ FO.

It is easy to prove that Σ1
1
-myopic sentences are closed under unions.

If '(X) is closed under unions, then '(X) is equivalent to

∀x̄(Xx̄ → ∃Y (Y ⊆ X ∧ Y x̄ ∧ '(Y))).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Σ1
1
-Sentences

Myopic Σ1
1
-sentences are of the form

∀x̄(Xx̄ → ∃R̄ (X, R̄, x̄))

where X occurs only positively in ∈ FO.

It is easy to prove that Σ1
1
-myopic sentences are closed under unions.

If '(X) is closed under unions, then '(X) is equivalent to

∀x̄(Xx̄ → ∃Y (Y ⊆ X ∧ Y x̄ ∧ '(Y))).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Inclusion-Exclusion Games
An inclusion-exclusion game is a structure

 = (V , V0, V1, I , E, T , Eex)

where V = V0 ⊍ V1.

T

∈ I

E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Inclusion-Exclusion Games
An inclusion-exclusion game is a structure

 = (V , V0, V1, I , E, T , Eex)

where V = V0 ⊍ V1.

T

∈ I

E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Inclusion-Exclusion Games
An inclusion-exclusion game is a structure

 = (V , V0, V1, I , E, T , Eex)

where V = V0 ⊍ V1.

T

∈ I

E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Inclusion-Exclusion Games
An inclusion-exclusion game is a structure

 = (V , V0, V1, I , E, T , Eex)

where V = V0 ⊍ V1.

T

∈ I

E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Inclusion-Exclusion Games
An inclusion-exclusion game is a structure

 = (V , V0, V1, I , E, T , Eex)

where V = V0 ⊍ V1.

T

∈ I

E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Inclusion-Exclusion Games
An inclusion-exclusion game is a structure

 = (V , V0, V1, I , E, T , Eex)

where V = V0 ⊍ V1.

T

∈ I

E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Inclusion-Exclusion Games
An inclusion-exclusion game is a structure

 = (V , V0, V1, I , E, T , Eex)

where V = V0 ⊍ V1.

T

∈ I

E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

 () ∶= {{c, d}, {a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

1

 () ∶= {{c, d}, {a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

1

 () ∶= {{c, d}, {a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

1

 () ∶= {{c, d}, {a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

1

 () ∶= {{c, d}, {a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

1

 () ∶= {{c, d}, {a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

1

 (1)

 () ∶= {{c, d}, {a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

1

 (1)

 () ∶= {{c, d},

{a, c, d}}

 () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Winning Strategies and Target Sets
Awinning strategy in for 0 is a subgraph ∶= (W, F) ⊆ (V , E) s.t.

1 For every v ∈ W ∩ V0, plays at least one outgoing edge of v.
2 For every v ∈ W ∩ V1, plays all outgoing edges of v.
3 I ⊆ W

4 (W ×W) ∩ Eex = ∅

We de�ne () ∶=W ∩ T and () ∶= { () ∶ winning strategy}.

T

2

 (2)

 () ∶= {{c, d}, {a, c, d}} () ∶= {{c, d}, {a, c, d}}

∈ I

a b c d
E

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Model-Checking Games for Σ1
1

Let (X) ∶= ∃R̄'(X, R̄) ∈ Σ1
1
where '(X, R̄) ∈ FO (is in NNF).

�e game X (A,) is de�ned as in the following picture:

∙ 0 moves at ∃, ∨
∙ 1 moves at ∀, ∧

Xā ¬Xā R1ū ¬R1ū ¬X
̄
d X

̄
d e ≠ e

'

T ∶= A
ar(X)

ā … ̄
d

… …

∈ I

∙ Player 0 moves at ∨, ∃
∙ Player 1 moves at ∧, ∀

E EE

A ⊨ (Y) ⟺ Y ∈ (X (A,))

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Model-Checking Games for Σ1
1

Let (X) ∶= ∃R̄'(X, R̄) ∈ Σ1
1
where '(X, R̄) ∈ FO (is in NNF).

�e game X (A,) is de�ned as in the following picture:

∙ 0 moves at ∃, ∨
∙ 1 moves at ∀, ∧

Xā ¬Xā R1ū ¬R1ū ¬X
̄
d X

̄
d e ≠ e

'

T ∶= A
ar(X)

ā … ̄
d

… …

∈ I

∙ Player 0 moves at ∨, ∃
∙ Player 1 moves at ∧, ∀

E EE

A ⊨ (Y) ⟺ Y ∈ (X (A,))

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Model-Checking Games for Myopic Σ1
1
-Sentences

Let '(X) ∶= ∀x̄(Xx̄ → ∃R̄ (X, R̄, x̄)) be a myopic Σ1
1
-sentence.

�e model-checking game (A, ') has the following form:

T ∶= A
ar(X)

I ∶= ∅
 (ā)

ā

 (
̄
b)

̄
b

 (c̄)

c̄

 (
̄
d)

̄
d …

…

X
̄
b X ā X

̄
b X c̄ X

̄
d

E

E

E E E

E

E

A ⊨ '(Y) ⟺ Y ∈ ((A, '))

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Union Games
An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

T

I ∶= ∅

t1

⋮

t2

⋮

t3

⋮

t4

⋮

…

…

Ein ∶= E ∩ (V × T)

E
E

E

E

E E
EE E

E

Observation: () is closed under unions, because we can reassemble
the components of winning strategies.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

From Union Games to Inclusion-Exclusion-Logic

Associate
∙ Game! Formula
∙ Strategy! Team

�is association leads to the following questions:

∙ What are the components of a team?
∙ How can we restrict a formula “to these components”?

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Components of a Team
Let X be a team with dom(X) = {x̄ , ȳ}.

X x̄ ȳ

v̄1

v̄2

v̄3

v̄4

v̄5

v̄6

v̄7

v̄8

s1

s2

s3

s4

s5

s6

s7

s8

X�x̄=ā

X�
x̄=

̄
b

X�x̄=c̄

ā

ā

ā

̄
b

̄
b

c̄

c̄

c̄

v̄1

v̄2

v̄3

v̄4

v̄5

v̄6

v̄7

v̄8

s1

s2

s3

s4

s5

s6

s7

s8

�e x̄-components of X are subteams of the form

X�x̄=v̄ ∶= {s ∈ X ∶ s(x̄) = v̄}.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Components of a Team
Let X be a team with dom(X) = {x̄ , ȳ}.

X x̄ ȳ

v̄1

v̄2

v̄3

v̄4

v̄5

v̄6

v̄7

v̄8

s1

s2

s3

s4

s5

s6

s7

s8

X�x̄=ā

X�
x̄=

̄
b

X�x̄=c̄

ā

ā

ā

̄
b

̄
b

c̄

c̄

c̄

v̄1

v̄2

v̄3

v̄4

v̄5

v̄6

v̄7

v̄8

s1

s2

s3

s4

s5

s6

s7

s8

�e x̄-components of X are subteams of the form

X�x̄=v̄ ∶= {s ∈ X ∶ s(x̄) = v̄}.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Atoms

A ⊨X v̄ | w̄ ⟺ for all s, s′ ∈ X, s(v̄) ≠ s′(w̄).

Problem: �e whole team X is considered, not just the x̄-components!
Solution: Allow only exclusion atoms with x̄ on both sides.

A ⊨X x̄ v̄ | x̄w̄ ⟺ A ⊨X�x̄=ā v̄ | w̄ for all ā ∈ X (x̄)

Similarly, we have

A ⊨X x̄ v̄ ⊆ x̄w̄ ⟺ A ⊨X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Atoms

A ⊨X v̄ | w̄ ⟺ for all s, s′ ∈ X, s(v̄) ≠ s′(w̄).

Problem: �e whole team X is considered, not just the x̄-components!

Solution: Allow only exclusion atoms with x̄ on both sides.

A ⊨X x̄ v̄ | x̄w̄ ⟺ A ⊨X�x̄=ā v̄ | w̄ for all ā ∈ X (x̄)

Similarly, we have

A ⊨X x̄ v̄ ⊆ x̄w̄ ⟺ A ⊨X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Atoms

A ⊨X v̄ | w̄ ⟺ for all s, s′ ∈ X, s(v̄) ≠ s′(w̄).

Problem: �e whole team X is considered, not just the x̄-components!
Solution: Allow only exclusion atoms with x̄ on both sides.

A ⊨X x̄ v̄ | x̄w̄ ⟺ A ⊨X�x̄=ā v̄ | w̄ for all ā ∈ X (x̄)

Similarly, we have

A ⊨X x̄ v̄ ⊆ x̄w̄ ⟺ A ⊨X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Atoms

A ⊨X v̄ | w̄ ⟺ for all s, s′ ∈ X, s(v̄) ≠ s′(w̄).

Problem: �e whole team X is considered, not just the x̄-components!
Solution: Allow only exclusion atoms with x̄ on both sides.

A ⊨X x̄ v̄ | x̄w̄ ⟺ A ⊨X�x̄=ā v̄ | w̄ for all ā ∈ X (x̄)

Similarly, we have

A ⊨X x̄ v̄ ⊆ x̄w̄ ⟺ A ⊨X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Atoms

A ⊨X v̄ | w̄ ⟺ for all s, s′ ∈ X, s(v̄) ≠ s′(w̄).

Problem: �e whole team X is considered, not just the x̄-components!
Solution: Allow only exclusion atoms with x̄ on both sides.

A ⊨X x̄ v̄ | x̄w̄ ⟺ A ⊨X�x̄=ā v̄ | w̄ for all ā ∈ X (x̄)

Similarly, we have

A ⊨X x̄ v̄ ⊆ x̄w̄ ⟺ A ⊨X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Atoms

A ⊨X v̄ | w̄ ⟺ for all s, s′ ∈ X, s(v̄) ≠ s′(w̄).

Problem: �e whole team X is considered, not just the x̄-components!
Solution: Allow only exclusion atoms with x̄ on both sides.

A ⊨X x̄ v̄ | x̄w̄ ⟺ A ⊨X�x̄=ā v̄ | w̄ for all ā ∈ X (x̄)

Similarly, we have

A ⊨X x̄ v̄ ⊆ x̄w̄ ⟺ A ⊨X�x̄=ā v̄ ⊆ w̄ for all ā ∈ X (x̄).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Formulae
A formula '(x̄ , ȳ) ∈ FO(⊆, |) is x̄-guarded, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ .

2 �e variables x̄ are never quanti�ed in '.

�e (un)guarded version of a formula is obtained as follows:

x̄ v̄ | x̄w̄ x̄ v̄ ⊆ x̄w̄ v̄ | w̄ v̄ ⊆ w̄

' '
′

Removing x̄

Adding x̄

Lemma: A ⊨X ' ⟺ A ⊨Y '
′ for every x̄-component Y of X .

Problem: Deleting x̄-components preserves satisfaction.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Formulae
A formula '(x̄ , ȳ) ∈ FO(⊆, |) is x̄-guarded, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ .

2 �e variables x̄ are never quanti�ed in '.
�e (un)guarded version of a formula is obtained as follows:

x̄ v̄ | x̄w̄ x̄ v̄ ⊆ x̄w̄ v̄ | w̄ v̄ ⊆ w̄

' '
′

Removing x̄

Adding x̄

Lemma: A ⊨X ' ⟺ A ⊨Y '
′ for every x̄-component Y of X .

Problem: Deleting x̄-components preserves satisfaction.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Formulae
A formula '(x̄ , ȳ) ∈ FO(⊆, |) is x̄-guarded, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ .

2 �e variables x̄ are never quanti�ed in '.
�e (un)guarded version of a formula is obtained as follows:

x̄ v̄ | x̄w̄ x̄ v̄ ⊆ x̄w̄ v̄ | w̄ v̄ ⊆ w̄

' '
′

Removing x̄

Adding x̄

Lemma: A ⊨X ' ⟺ A ⊨Y '
′ for every x̄-component Y of X .

Problem: Deleting x̄-components preserves satisfaction.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Guarded Formulae
A formula '(x̄ , ȳ) ∈ FO(⊆, |) is x̄-guarded, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ .

2 �e variables x̄ are never quanti�ed in '.
�e (un)guarded version of a formula is obtained as follows:

x̄ v̄ | x̄w̄ x̄ v̄ ⊆ x̄w̄ v̄ | w̄ v̄ ⊆ w̄

' '
′

Removing x̄

Adding x̄

Lemma: A ⊨X ' ⟺ A ⊨Y '
′ for every x̄-component Y of X .

Problem: Deleting x̄-components preserves satisfaction.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Fragment of FO(⊆, |)
A formula '(x̄) ∈ FO(⊆, |) is called x̄-myopic, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ or
∙ v̄ ⊆ x̄ but not below disjunctions.

2 �e variables x̄ are never quanti�ed in '.

How can we prove that these formulae are closed under unions?
Let be a subformula of ' and A ⊨Xi

 for every i.
Idea: Reassemble these Xi like winning strategies in a union game:

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Fragment of FO(⊆, |)
A formula '(x̄) ∈ FO(⊆, |) is called x̄-myopic, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ or
∙ v̄ ⊆ x̄ but not below disjunctions.

2 �e variables x̄ are never quanti�ed in '.

How can we prove that these formulae are closed under unions?

Let be a subformula of ' and A ⊨Xi
 for every i.

Idea: Reassemble these Xi like winning strategies in a union game:

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Fragment of FO(⊆, |)
A formula '(x̄) ∈ FO(⊆, |) is called x̄-myopic, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ or
∙ v̄ ⊆ x̄ but not below disjunctions.

2 �e variables x̄ are never quanti�ed in '.

How can we prove that these formulae are closed under unions?
Let be a subformula of ' and A ⊨Xi

 for every i.

Idea: Reassemble these Xi like winning strategies in a union game:

X1 x̄ ȳ X2 x̄ ȳ X3 x̄ ȳ

s1

s2

s3

s4

s5

ā

ā

̄
b

̄
b

̄
b

ū1

ū2

ū3

ū4

ū5

s
′

1

s
′

2

s
′

3

s
′

4

s
′

5

ā

ā

ā

ā

c̄

v̄1

v̄2

v̄3

v̄4

v̄5

s
′′

1

s
′′

2

s
′′

3

s
′′

4

s
′′

5

̄
b

̄
b

c̄

c̄

c̄

w̄1

w̄2

w̄3

w̄4

w̄5

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Fragment of FO(⊆, |)
A formula '(x̄) ∈ FO(⊆, |) is called x̄-myopic, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ or
∙ v̄ ⊆ x̄ but not below disjunctions.

2 �e variables x̄ are never quanti�ed in '.

How can we prove that these formulae are closed under unions?
Let be a subformula of ' and A ⊨Xi

 for every i.
Idea: Reassemble these Xi like winning strategies in a union game:

X1 x̄ ȳ X2 x̄ ȳ X3 x̄ ȳ

s1

s2

s3

s4

s5

ā

ā

̄
b

̄
b

̄
b

ū1

ū2

ū3

ū4

ū5

s
′

1

s
′

2

s
′

3

s
′

4

s
′

5

ā

ā

ā

ā

c̄

v̄1

v̄2

v̄3

v̄4

v̄5

s
′′

1

s
′′

2

s
′′

3

s
′′

4

s
′′

5

̄
b

̄
b

c̄

c̄

c̄

w̄1

w̄2

w̄3

w̄4

w̄5

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Fragment of FO(⊆, |)
A formula '(x̄) ∈ FO(⊆, |) is called x̄-myopic, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ or
∙ v̄ ⊆ x̄ but not below disjunctions.

2 �e variables x̄ are never quanti�ed in '.

How can we prove that these formulae are closed under unions?
Let be a subformula of ' and A ⊨Xi

 for every i.
Idea: Reassemble these Xi like winning strategies in a union game:

X1 x̄ ȳ X2 x̄ ȳ X3 x̄ ȳ

s1

s2

s3

s4

s5

ā

ā

̄
b

̄
b

̄
b

ū1

ū2

ū3

ū4

ū5

s
′

1

s
′

2

s
′

3

s
′

4

s
′

5

ā

ā

ā

ā

c̄

v̄1

v̄2

v̄3

v̄4

v̄5

s
′′

1

s
′′

2

s
′′

3

s
′′

4

s
′′

5

̄
b

̄
b

c̄

c̄

c̄

w̄1

w̄2

w̄3

w̄4

w̄5

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Myopic Fragment of FO(⊆, |)
A formula '(x̄) ∈ FO(⊆, |) is called x̄-myopic, if

1 Inclusion-exclusion atoms in ' are always of the form
∙ x̄ v̄ | x̄w̄ or
∙ x̄ v̄ ⊆ x̄w̄ or
∙ v̄ ⊆ x̄ but not below disjunctions.

2 �e variables x̄ are never quanti�ed in '.

How can we prove that these formulae are closed under unions?
Let be a subformula of ' and A ⊨Xi

 for every i.
Idea: Reassemble these Xi like winning strategies in a union game:

X1 x̄ ȳ X2 x̄ ȳ X3 x̄ ȳ X x̄ ȳ

s1

s2

s3

s4

s5

ā

ā

̄
b

̄
b

̄
b

ū1

ū2

ū3

ū4

ū5

s
′

1

s
′

2

s
′

3

s
′

4

s
′

5

ā

ā

ā

ā

c̄

v̄1

v̄2

v̄3

v̄4

v̄5

s
′′

1

s
′′

2

s
′′

3

s
′′

4

s
′′

5

̄
b

̄
b

c̄

c̄

c̄

w̄1

w̄2

w̄3

w̄4

w̄5

s1

s2

s
′′

1

s
′′

2

s
′

5

ā

ā

̄
b

̄
b

c̄

ū1

ū2

w̄1

w̄2

v̄5

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(X) ∈ Σ1

1
be a myopic sentence.

Task: Construct equivalent, x̄-myopic �(x̄) ∈ FO(⊆, |).
Let A be a structure and Y be a team with dom(Y) = {x̄}.

A ⊨ '(Y (x̄))

Y (x̄) ∈ ((A, '))

(A, ') ⊨Y # (y)

A ⊨
ℎ
−1
(Y) #

 (ȳ)

A ⊨Y �(x̄)
By construction of
the union game (A, ').

(y) ∈ FO(⊆, |) is a
y-myopic formula that
de�nes ((A, ')).
YG (y) ∶= Y (x̄)

Use a logical inter-
pretation with
(A) ≅ (A, ') for
some coordinate map ℎ.

Repair the damage
done by to the
myopic shape and
extract values for x̄
from their encodings.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(X) ∈ Σ1

1
be a myopic sentence.

Task: Construct equivalent, x̄-myopic �(x̄) ∈ FO(⊆, |).
Let A be a structure and Y be a team with dom(Y) = {x̄}.

A ⊨ '(Y (x̄))

Y (x̄) ∈ ((A, '))

(A, ') ⊨Y # (y)

A ⊨
ℎ
−1
(Y) #

 (ȳ)

A ⊨Y �(x̄)
By construction of
the union game (A, ').

(y) ∈ FO(⊆, |) is a
y-myopic formula that
de�nes ((A, ')).
YG (y) ∶= Y (x̄)

Use a logical inter-
pretation with
(A) ≅ (A, ') for
some coordinate map ℎ.

Repair the damage
done by to the
myopic shape and
extract values for x̄
from their encodings.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(X) ∈ Σ1

1
be a myopic sentence.

Task: Construct equivalent, x̄-myopic �(x̄) ∈ FO(⊆, |).
Let A be a structure and Y be a team with dom(Y) = {x̄}.

A ⊨ '(Y (x̄))

Y (x̄) ∈ ((A, '))

(A, ') ⊨Y # (y)

A ⊨
ℎ
−1
(Y) #

 (ȳ)

A ⊨Y �(x̄)
By construction of
the union game (A, ').

(y) ∈ FO(⊆, |) is a
y-myopic formula that
de�nes ((A, ')).
YG (y) ∶= Y (x̄)

Use a logical inter-
pretation with
(A) ≅ (A, ') for
some coordinate map ℎ.

Repair the damage
done by to the
myopic shape and
extract values for x̄
from their encodings.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(X) ∈ Σ1

1
be a myopic sentence.

Task: Construct equivalent, x̄-myopic �(x̄) ∈ FO(⊆, |).
Let A be a structure and Y be a team with dom(Y) = {x̄}.

A ⊨ '(Y (x̄))

Y (x̄) ∈ ((A, '))

(A, ') ⊨Y # (y)

A ⊨
ℎ
−1
(Y) #

 (ȳ)

A ⊨Y �(x̄)
By construction of
the union game (A, ').

(y) ∈ FO(⊆, |) is a
y-myopic formula that
de�nes ((A, ')).
YG (y) ∶= Y (x̄)

Use a logical inter-
pretation with
(A) ≅ (A, ') for
some coordinate map ℎ.

Repair the damage
done by to the
myopic shape and
extract values for x̄
from their encodings.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(X) ∈ Σ1

1
be a myopic sentence.

Task: Construct equivalent, x̄-myopic �(x̄) ∈ FO(⊆, |).
Let A be a structure and Y be a team with dom(Y) = {x̄}.

A ⊨ '(Y (x̄))

Y (x̄) ∈ ((A, '))

(A, ') ⊨Y # (y)

A ⊨
ℎ
−1
(Y) #

 (ȳ)

A ⊨Y �(x̄)
By construction of
the union game (A, ').

(y) ∈ FO(⊆, |) is a
y-myopic formula that
de�nes ((A, ')).
YG (y) ∶= Y (x̄)

Use a logical inter-
pretation with
(A) ≅ (A, ') for
some coordinate map ℎ.

Repair the damage
done by to the
myopic shape and
extract values for x̄
from their encodings.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.

Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [y ↦ F] Y �
x̄=

̄
d
⊨ '(ȳ)abc

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .

�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [y ↦ F] Y �
x̄=

̄
d
⊨ '(ȳ)abc

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [y ↦ F] Y �
x̄=

̄
d
⊨ '(ȳ)abc

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [y ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abc

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [y ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abc

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abc

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y �x̄=ā(ȳ)Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abc

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y �x̄=ā(ȳ)Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abcY �x̄=ā ⊨ '(ȳ)

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y �
x̄=

̄
b
(ȳ)Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abcY �

x̄=
̄
b
⊨ '(ȳ)

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y �x̄=c̄(ȳ)Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abcY �x̄=c̄ ⊨ '(ȳ)

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y �
x̄=

̄
d
(ȳ)Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abcY �

x̄=
̄
d
⊨ '(ȳ)

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abcY ⊨ '(ȳ)

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abcY ⊨ '(ȳ)

X ⊨ '(X)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Capturing the Union-Closed Fragment
Let '(x̄) ∈ FO(⊆, |) be closed under unions.
Let '⋆(x̄ , ȳ) be the x̄-guarded version of '(ȳ) .
�en '(x̄) is equivalent to

 (x̄) ∶= ∃ȳ(ȳ ⊆ x̄ ∧ x̄ x̄ ⊆ x̄ȳ ∧ '
⋆
(x̄ , ȳ)).

Y �x̄=ā(ȳ)

X (x̄)Y (ȳ) =

Y = X [ȳ ↦ F]

ā ̄
b c̄ ̄

d

Y �
x̄=

̄
d
⊨ '(ȳ)abcY ⊨ '(ȳ)

X ⊨ '(x̄)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

�e Game Atom

∙ Union games are complete for the union-closed fragment

∙ We can encodes such games in a team using a lot of variables
∙ An atom ∪−game could check whether a speci�ed set is a target
set of the encoded union game

∙ Why is ∪−game union-closed?
∙ Answer: Make sure that unions of satisfying teams cannot
encode a di�erent game.

For X ≠ ∅, de�ne

A ⊨X ∪−game(k , x̄)∶⟺ X is complete and
if X encodes a union game A

X
,

then X (x̄) ∈ (A
X
).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

�e Game Atom

∙ Union games are complete for the union-closed fragment
∙ We can encodes such games in a team using a lot of variables

∙ An atom ∪−game could check whether a speci�ed set is a target
set of the encoded union game

∙ Why is ∪−game union-closed?
∙ Answer: Make sure that unions of satisfying teams cannot
encode a di�erent game.

For X ≠ ∅, de�ne

A ⊨X ∪−game(k , x̄)∶⟺ X is complete and
if X encodes a union game A

X
,

then X (x̄) ∈ (A
X
).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

�e Game Atom

∙ Union games are complete for the union-closed fragment
∙ We can encodes such games in a team using a lot of variables
∙ An atom ∪−game could check whether a speci�ed set is a target
set of the encoded union game

∙ Why is ∪−game union-closed?
∙ Answer: Make sure that unions of satisfying teams cannot
encode a di�erent game.

For X ≠ ∅, de�ne

A ⊨X ∪−game(k , x̄)∶⟺ X is complete and
if X encodes a union game A

X
,

then X (x̄) ∈ (A
X
).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

�e Game Atom

∙ Union games are complete for the union-closed fragment
∙ We can encodes such games in a team using a lot of variables
∙ An atom ∪−game could check whether a speci�ed set is a target
set of the encoded union game

∙ Why is ∪−game union-closed?

∙ Answer: Make sure that unions of satisfying teams cannot
encode a di�erent game.

For X ≠ ∅, de�ne

A ⊨X ∪−game(k , x̄)∶⟺ X is complete and
if X encodes a union game A

X
,

then X (x̄) ∈ (A
X
).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

�e Game Atom

∙ Union games are complete for the union-closed fragment
∙ We can encodes such games in a team using a lot of variables
∙ An atom ∪−game could check whether a speci�ed set is a target
set of the encoded union game

∙ Why is ∪−game union-closed?
∙ Answer: Make sure that unions of satisfying teams cannot
encode a di�erent game.

For X ≠ ∅, de�ne

A ⊨X ∪−game(k , x̄)∶⟺ X is complete and
if X encodes a union game A

X
,

then X (x̄) ∈ (A
X
).

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Rönnholm’s �estion

FO(⊆k): FO + inclusion atoms ū ⊆ v̄ with |ū| = |v̄| ≤ k.

Rönnholm’s �estion:
What fragment of GFP+ corresponds to FO(⊆k)?

GFP
+

k
: fragment of greatest �xed-point logic where �xed-point

relations are of arity ≤ k

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Rönnholm’s �estion

FO(⊆k): FO + inclusion atoms ū ⊆ v̄ with |ū| = |v̄| ≤ k.

Rönnholm’s �estion:
What fragment of GFP+ corresponds to FO(⊆k)?

GFP
+

k
: fragment of greatest �xed-point logic where �xed-point

relations are of arity ≤ k

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Answering Rönnholm’s �estion

1 For every FO(⊆k)-formula '(x̄) there exists an equivalent myopic
GFP

+

k
-sentence (X).

2 For every myopic GFP+
k
-sentence (X) there exists an equivalent

FO(⊆k′)-formula '(x̄) where k′ ∶= max{k, ar(X)}.
3 For every GFP+

k
-formula (x̄) there exists a (downwards closed)

FO(⊆k)-formula (x̄) s.t. for every A, X ,

A ⊨X (x̄)⟺ A ⊨s (x̄) for every s ∈ X.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Answering Rönnholm’s �estion

1 For every FO(⊆k)-formula '(x̄) there exists an equivalent myopic
GFP

+

k
-sentence (X).

2 For every myopic GFP+
k
-sentence (X) there exists an equivalent

FO(⊆k′)-formula '(x̄) where k′ ∶= max{k, ar(X)}.
3 For every GFP+

k
-formula (x̄) there exists a (downwards closed)

FO(⊆k)-formula (x̄) s.t. for every A, X ,

A ⊨X (x̄)⟺ A ⊨s (x̄) for every s ∈ X.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Answering Rönnholm’s �estion

1 For every FO(⊆k)-formula '(x̄) there exists an equivalent myopic
GFP

+

k
-sentence (X).

2 For every myopic GFP+
k
-sentence (X) there exists an equivalent

FO(⊆k′)-formula '(x̄) where k′ ∶= max{k, ar(X)}.
3 For every GFP+

k
-formula (x̄) there exists a (downwards closed)

FO(⊆k)-formula (x̄) s.t. for every A, X ,

A ⊨X (x̄)⟺ A ⊨s (x̄) for every s ∈ X.

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Dependencies Concepts up to Equivalences

Let
∙ ≈ be an equivalence relation of the structure A
∙ ā ≈

̄
b ∶⟺ ai ≈ bi for all i

A ⊨X dep(x̄ , y) ⟺ for every s, s′ ∈ X : s(x̄) = s′(x̄)
implies s(y) = s′(y)

A ⊨X x̄ ⊆ ȳ ⟺ for every s ∈ X there exists some s′ ∈ X
holds s(x̄) = s(ȳ)

A ⊨X x̄ | ȳ ⟺ for every s, s′ ∈ X holds s(x̄) ≠ s′(ȳ)
A ⊨X x̄⊥ȳ ⟺ for every s, s′ ∈ X there exists some s′′ ∈ X

with s(x̄) = s′′(x̄) and s′(ȳ) = s′′(ȳ)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Dependencies Concepts up to Equivalences

Let
∙ ≈ be an equivalence relation of the structure A
∙ ā ≈

̄
b ∶⟺ ai ≈ bi for all i

A ⊨X dep(x̄ , y) ⟺ for every s, s′ ∈ X : s(x̄) = s′(x̄)
implies s(y) = s′(y)

A ⊨X x̄ ⊆ ȳ ⟺ for every s ∈ X there exists some s′ ∈ X
holds s(x̄) = s(ȳ)

A ⊨X x̄ | ȳ ⟺ for every s, s′ ∈ X holds s(x̄) ≠ s′(ȳ)
A ⊨X x̄⊥ȳ ⟺ for every s, s′ ∈ X there exists some s′′ ∈ X

with s(x̄) = s′′(x̄) and s′(ȳ) = s′′(ȳ)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Dependencies Concepts up to Equivalences

Let
∙ ≈ be an equivalence relation of the structure A
∙ ā ≈

̄
b ∶⟺ ai ≈ bi for all i

A ⊨X dep
≈
(x̄ , y) ⟺ for every s, s′ ∈ X : s(x̄) ≈ s′(x̄)

implies s(y) ≈ s′(y)
A ⊨X x̄ ⊆≈ ȳ ⟺ for every s ∈ X there exists some s′ ∈ X

holds s(x̄) ≈ s(ȳ)
A ⊨X x̄ |≈ ȳ ⟺ for every s, s′ ∈ X holds s(x̄) ̸≈ s′(ȳ)
A ⊨X x̄⊥≈ȳ ⟺ for every s, s′ ∈ X there exists some s′′ ∈ X

with s(x̄) ≈ s′′(x̄) and s′(ȳ) ≈ s′′(ȳ)

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Expressive Powers in Comparison

FO

FO(⊆≈)GFP+(≈) FO(|≈) FO(dep
≈
)

FO(⊆≈, |≈) FO(⊥≈)Σ
1

1
(≈)

Σ
1

1

FO

FO(⊆) FO(∣)

FO(⊆, ∣)

GFP+ FO(dep)

FO(⊥)Σ
1

1

>
<

<
>

≡

≡≡

≡

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Expressive Powers in Comparison

FO

FO(⊆≈)GFP+(≈) FO(|≈) FO(dep
≈
)

FO(⊆≈, |≈) FO(⊥≈)Σ
1

1
(≈)

Σ
1

1

FO

FO(⊆≈) FO(|≈)

FO(⊆≈, |≈)

GFP+(≈) FO(dep
≈
)

FO(⊥≈)Σ
1

1
(≈)

>
<

<
>

≡

≡≡

≡

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Expressive Powers in Comparison

FO

FO(⊆≈)GFP+(≈) FO(|≈) FO(dep
≈
)

FO(⊆≈, |≈) FO(⊥≈)Σ
1

1
(≈)

Σ
1

1

FO

FO(⊆≈) FO(|≈)

FO(⊆≈, |≈)

GFP+(≈) FO(dep
≈
)

FO(⊥≈)Σ
1

1
(≈)

Σ
1

1

>
<

<
>

≡

≡≡

≡
<

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Expressive Powers in Comparison

FO

FO(⊆≈)GFP+(≈) FO(|≈) FO(dep
≈
)

FO(⊆≈, |≈) FO(⊥≈)Σ
1

1
(≈)

Σ
1

1

FO

FO(⊆≈) FO(|≈)

FO(⊆≈, |≈)

GFP+(≈) FO(dep
≈
)

FO(⊥≈)Σ
1

1
(≈)

Σ
1

1

>
<

<
>

≡

≡≡

≡
<

Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences

Results for these Logics
Joint work with Erich Grädel

1 Σ
1

1
(≈) ≡ FO(⊆≈, |≈) (on the level of sentences).

2 Σ
1

1
(≈) < Σ

1

1
(on the level of sentences).

3 For every '(X) ∈ Σ1
1
(≈) where X occurs only ≈-guarded there

exists an equivalent (x̄) ∈ FO(⊆≈, |≈) that cannot distinguish
between ≈-equivalent teams and vice versa.

4 FO(⊆≈) ≡ GFP
+

≈
(on the level of sentences).

≈-guarded occurrence of X : X≈v̄ ∶= ∃w̄(v̄ ≈ w̄ ∧ Xw̄).

	Introduction
	Syntactic Characterisations
	Inclusion Logic of Restricted Arity
	Dependencies Concepts up to Equivalences

