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Let 2 be a structure.
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Teams

Let 2 be a structure.
An assignment is a function s : {xy, xp,... } — A.
Team: a set X of assignments over the same domain

X ‘ X1 b} X3

st | si(x)  si(x)  si(x3)
s2 | S2(x1)  s2(x2)  s2(x3)
s3 | s3(x1)  s3(x)  s3(x3)

A team X can be viewed as a relation X (x1, xp, x3).
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Dependency Concepts

Let X be a team.
Dependence atoms:
Ex dep(x,y) < foralls, s’ € X, s(x) = s'(x) entails s(y) = s'(y)
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Dependency Concepts

Let X be a team.
Dependence atoms:

Ex dep(x,y) < foralls, s’ € X, s(x) = s'(x) entails s(y) = s'(y)
Independence atoms:

Ex X1y = X(x,3) = X(%) < X(7)
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Dependency Concepts

Let X be a team.
Dependence atoms:

Ex dep(x,y) < foralls, s’ € X, s(x) = s'(x) entails s(y) = s'(y)
Independence atoms:

Ex X1y = X(x,3) = X(%) < X(7)

Inclusion atoms:
Ex Xxcjy < X(%)<X()
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Dependency Concepts

Let X be a team.
Dependence atoms:

Ex dep(x,y) < foralls, s’ € X, s(x) = s'(x) entails s(y) = s'(y)
Independence atoms:

Ex X1y = X(x,3) = X(%) < X(7)

Inclusion atoms:
ExXcy < X()E)QX(}_/)

Exclusion atoms:

Ex X7 = X&) nX({F) =0
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Team Semantics

It is possible to evaluate FO-formulae (in NNF) with teams.

Disjunctions in Team Semantics

AEx ¢prve, <= A=y ¢rand A =z ¢p for some Yu Z = X

Definitions for v, 3, A are without big surprises!
FO-Literals are checked against all assignments.

FO(D) is FO extended with D-atoms.
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Known Connections between these Logics

FO
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Known Connections between these Logics

FO©)  FO()

Y
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Known Connections between these Logics

FO(s, |)

A

FO©  FO()

Y
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Known Connections between these Logics

FO(

FO©  FO()

Y

<) — FO(L)
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Known Connections between these Logics

O(s, |) — FO(L

A

FO(c) FO(]) —— FO(dep)

Y
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Existential Second-Order Logic

¥! = FO (in negation normal form) + the following quantifiers:

3R¢(R) where R is a relation symbol
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Existential Second-Order Logic

¥! = FO (in negation normal form) + the following quantifiers:
3R¢(R) where R is a relation symbol

Normalform: 3Re(R) where ¢(R) € FO
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Existential Second-Order Logic

¥! = FO (in negation normal form) + the following quantifiers:
3R¢(R) where R is a relation symbol

Normalform: 3Re(R) where ¢(R) € FO

Comparing Team-Semantics-Logics with Tarski;Logics:

(p('i) is equivalent to 1,0('X), if and only if

Akx ¢x) = A= Y(X(x)).
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More Known Connections

<,[) — FO(L)

/

FO(|) —— FO(dep)

N/
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More Known Connections

<,[) — FO(L)

i

FO()) — FO(dep)

N/
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More Known Connections
—— FO(c,|) — FO(L)
FO(|) —— FO(dep) — =i({)

N/
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More Known Connections
—— FO(c,|) — FO(L)
GFP —— FO(c) FO(|) —— FO(dep) — =1(])

\/
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Closure Properties

Let ¢(x) be a formula of a logic with team semantics.

Downwards Closure: Formula is downwards closed, if

Qll=xq0,Y§X — 52[|=y(p.

Union Closure: Formula is closed under unions, if

Ay pforallie] = Ay, x ¢
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Closure Properties

Let /(X) be a sentence with Tarski semantics.
Downwards Closure: Formula is downwards closed, if

AEPX),YcX = A= y((Y).

Union Closure: Formula is closed under unions, if

A= yYX) forallie ] = A= YU X).

i€l
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Connections and Closure Properties
——— FO(,|) — FO(1)
GFP —— FO(c) FO([) —— FO(dep) — Zi()

\/
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Connections and Closure Properties

sl — FO(g,|) —— FO(L)

downwards closed

FO() —— FO(dep) — SH()

GFP —— FO(<)
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Connections and Closure Properties

¥l —— FO(g,|) — FO(L)
union closed

one year ago:
unknown
downwards closed

GFP —— FO(<)
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Connections and Closure Properties

¥l —— FO(g,|) — FO(L)
union closed

myopic frag-
ments of >}

resp. FO(g, |),
downwards closed
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Contributions

@ Syntactic characterisations for closure properties and
model-checking games for >}

® Ronnholm’s question regarding the connection between
inclusion logic of bounded arity and greatest fixed-point logics

® Logics with dependency concepts up to a given equivalence
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Characterisation of the Union Closed Fragment
Joint work with Richard Wilke

Let ¢(X) € 3. Then the following are equivalent:
® ¢(X) is union closed.
® ¢(X) is equivalent to some myopic »{-sentence.
® ¢(X) is equivalent to some x-myopic FO(c, | )-formula.
0 o

X) is equivalent to some FO(u-game)-formula.
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Myopic >{-Sentences

Myopic ¥!-sentences are of the form
VE(Xx — IRY(X, R, X))

where X occurs only positively in ¢ € FO.
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Myopic >{-Sentences

Myopic >|-sentences are of the form
VE(Xx — IRY(X, R, X))

where X occurs only positively in ¢ € FO.

It is easy to prove that >:!-myopic sentences are closed under unions.
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Myopic >{-Sentences

Myopic >|-sentences are of the form
VE(Xx — IRY(X, R, X))

where X occurs only positively in ¥ € FO.

It is easy to prove that >:!-myopic sentences are closed under unions.
If p(X) is closed under unions, then ¢(X) is equivalent to

Vi(Xx — 3Y(Y c X A Yx A @(Y))).
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Inclusion-Exclusion Games
An inclusion-exclusion game is a structure
C=(V, Vo, Vi, LE, T, Eey)
where V = Vyu V;.

el
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Inclusion-Exclusion Games
An inclusion-exclusion game is a structure
G=(V, Vo, Vi, LE, T, Eex)
where V = Vyu V. A
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Inclusion-Exclusion Games
An inclusion-exclusion game is a structure
G=(V,Vo, Vi, LE, T, Eex)
where V = Vyu V. -
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Inclusion-Exclusion Games
An inclusion-exclusion game is a structure
g = (V: VO’ Vl: sE’ T! ECX)
where V = Vyu V;.
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Inclusion-Exclusion Games
An inclusion-exclusion game is a structure
G=(V,Vo, Vi, LE, T, Eex)
where V = Vyu V;.




Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences
000000000 0O0@000000000000 (e]e] [e]e]e}

Inclusion-Exclusion Games

An inclusion-exclusion game is a structure
g: (V) VO’ VlylsE’ T:ECX)
where V = Vyu V. '-




Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences
000000000 0O0@000000000000 (e]e] [e]e]e}

Inclusion-Exclusion Games
An inclusion-exclusion game is a structure
G=(V. Vo, Vi, LE, T, Eey)
where V = Vyu V;.
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Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
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Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
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Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
@ For every v € W n V), S plays at least one outgoing edge of v.
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Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
@ For every v € W n V), S plays at least one outgoing edge of v.
® For every v € W n V4, S plays all outgoing edges of v.
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Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
@ For every v € W n V), S plays at least one outgoing edge of v.

® For every v € W n V4, S plays all outgoing edges of v.
@IcWw
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Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
@ For every v € W n V), S plays at least one outgoing edge of v.
® For every v € W n V4, S plays all outgoing edges of v.
@IcWw
O (WxW)nEx=0
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Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
@ For every v € W n V), S plays at least one outgoing edge of v.
® For every v € W n V4, S plays all outgoing edges of v.
@IcWw
O (WxW)nEx=0
We define 7(S) :=WnT




Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences
000000000 O00@00000000000 (e]e] [e]e]e}

Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
@ For every v € W n Vj, S plays at least one outgoing edge of v.
® For every v € W n V4, S plays all outgoing edges of v.
@Icw
O (WxW)nEx=0
We define 7(S) := Wn T and T(G) := {T(S) : S winning strategy}.
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Winning Strategies and Target Sets
A winning strategy in G for 0 is a subgraph S := (W, F) c (V,E) s.t.
@ For every v € W n V), S plays at least one outgoing edge of v.
® For every v € W n V4, S plays all outgoing edges of v.
@IcWw
O (WxW)nEx=0
We define 7(S) := Wn T and T(G) := {T(S) : S winning strategy}.
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Model-Checking Games for 3]

Let ¥/(X) :=3R¢p(X, R) € =} where ¢(X, R) € FO (is in NNF).
The game Gx (2, ¢) is defined as in the following picture:

el

* Player 0 moves at v,3

* Player 1 moves at A, Y

Xa H-XaH Ry H-RyaH-XdH Xd @

NS~ A T - 4w

A= YY) = YeT(Gx® ¥))
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Model-Checking Games for 3]

Let ¥/(X) :=3R¢p(X, R) € =} where ¢(X, R) € FO (is in NNF).
The game Gx (2, ¢) is defined as in the following picture:

* Player 0 moves at v,3

* Player 1 moves at A,V

T = Aar(X)

A= YY) = Y eT(Gx® ¥))
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Model-Checking Games for Myopic X]-Sentences

Let ¢(X) = V&(Xx — 3RY(X, R, X)) be a myopic Z!-sentence.
The model-checking game G(%, ¢) has the following form:

g - |
l l 1 l_ T = Aar(X)
¥ (@) W)\ g

A= o(Y) = YeT(GA )
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

MR

2\ ) )

o~
Q




Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences
000000000 O00000@00000000 (e]e] [e]e]e}

Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

e

M M N . I;
AN AR A AR A
ot a A / — a

[
Q
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

L h f f3 ly
|l
.:\ / :*\ / ﬁ\ .

b\]
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

MR

2\ ) )

o~
Q
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

LR

o~
Q
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

b\]
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

b\]
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

b\]




Introduction Syntactic Characterisations Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences
000000000 O00000@00000000 (e]e] [e]e]e}

Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

b\]
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Union Games

An inclusion-exclusion game is a union game, if it can be
decomposed into components like in the following picture:

b\]

Observation: T (G) is closed under unions, because we can reassemble
the components of winning strategies.
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From Union Games to Inclusion-Exclusion-Logic

Associate
* Game «~ Formula
* Strategy «~ Team

This association leads to the following questions:

* What are the components of a team?

+ How can we restrict a formula “to these components”?
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Components of a Team

Let X be a team with dom(X) = {x, y}.

X X y
S1 a Uy
$2 a (&)
$3 a ’(73
S4 B Uy
S5 B ’(}5
S6 c ’[)6
87 ¢ U7
Ss ¢ Ug

The x-components of X are subteams of the form

erzz’) = {S €X: S()Z') = l_)}
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Components of a Team

Let X be a team with dom(X) = {x, y}.

X X y
S1 a Uq
S$2 a '(-)2 X r X=a
$3 a ’Z-}3
S4 I; Uy
s| b | oo Kl
S6 ¢ (23
S7 c 07 Xz=¢
Ss ¢ Tg

The x-components of X are subteams of the form

Xr)z:@ = {S €X: S()Z') = l_)}
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Guarded Atoms

AEx 0| w e foralls, s’ € X,s(d) # s'(w).
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Guarded Atoms

AEx 0| w e foralls, s’ € X,s(d) # s'(w).

Problem: The whole team X is considered, not just the ¥-components!
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Guarded Atoms

AEx 0| w e foralls, s’ € X,s(d) # s'(w).

Problem: The whole team X is considered, not just the ¥-components!
Solution: Allow only exclusion atoms with x on both sides.
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Guarded Atoms

AEx 0| w e foralls, s’ € X,s(d) # s'(w).

Problem: The whole team X is considered, not just the ¥-components!
Solution: Allow only exclusion atoms with x on both sides.
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Guarded Atoms

AEx 0| w e foralls, s’ € X,s(d) # s'(w).
Problem: The whole team X is considered, not just the ¥-components!
Solution: Allow only exclusion atoms with x on both sides.

AEx X0 | xw = A=y,

a

0| w for all a € X(x)
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Guarded Atoms

AEx 0| w e foralls, s’ € X,s(d) # s'(w).

Problem: The whole team X is considered, not just the ¥-components!
Solution: Allow only exclusion atoms with x on both sides.

AEx X0 | xw = A=y,

a

0| wforall a € X(x)
Similarly, we have

AbEx X0 cxiw = A Ex),_, vcwiorall a e X(x).

a
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Guarded Formulae

A formula ¢(x, y) € FO(c, |) is x-guarded, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
* X0 S XWw.

® The variables i are never quantified in ¢.
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Guarded Formulae

A formula ¢(x, y) € FO(c, |) is x-guarded, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
XU CXw.
® The variables i are never quantified in ¢.

The (un)guarded version of a formula is obtained as follows:

® g

Removing x
AN —

R e e e e
Adding x

=
(S]]
=i
3
=i
S]]
[a]
=i
s
[s])
s
S]]
n
s
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Guarded Formulae
A formula ¢(x, y) € FO(c, |) is x-guarded, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
* X0 S Xw.
® The variables i are never quantified in ¢.
The (un)guarded version of a formula is obtained as follows:
¢ ¢

Removing x
AN —

R e e e e
Adding x

X0|XW X0<iw 0w ocw

Lemma: A =x ¢ < A=y ¢ for every i-component Y of X.
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Guarded Formulae
A formula ¢(x, y) € FO(c, |) is x-guarded, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
* X0 S Xw.
® The variables i are never quantified in ¢.
The (un)guarded version of a formula is obtained as follows:
¢ ¢

Removing x
AN —

R e N N N
Adding x
X0|XW X0<iw 0w ocw

Lemma: A =x ¢ < A=y ¢ for every i-component Y of X.
Problem: Deleting x-components preserves satisfaction.
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Myopic Fragment of FO(<c, |)
A formula ¢(x) € FO(g, |) is called x-myopic, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
* XUcXxwor
* O ¢ X but not below disjunctions.
® The variables x are never quantified in ¢.
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Myopic Fragment of FO(<c, |)
A formula ¢(x) € FO(g, |) is called x-myopic, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
* XUcXxwor
* O ¢ X but not below disjunctions.
® The variables x are never quantified in ¢.

How can we prove that these formulae are closed under unions?
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Myopic Fragment of FO(<c, |)
A formula ¢(x) € FO(g, |) is called x-myopic, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
* XUcXxwor
* O ¢ X but not below disjunctions.
® The variables x are never quantified in ¢.

How can we prove that these formulae are closed under unions?
Let ¢/ be a subformula of ¢ and 2( =x, ¥ for every i.

Xi|x ¥y Xolx ¥y Xs|x ¥y
S1la sila o s b W
S2la @ spla O S| b W
ss|p iz sh|la D3 sf|c ows
Sa| p iy syl a o4 syl e wy
Sss| b is  si|¢c 05 st|c ws
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Myopic Fragment of FO(<c, |)
A formula ¢(x) € FO(g, |) is called x-myopic, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
* XUcXxwor
* O ¢ X but not below disjunctions.
® The variables x are never quantified in ¢.

How can we prove that these formulae are closed under unions?
Let ¢/ be a subformula of ¢ and 2( =x, ¥ for every i.
Idea: Reassemble these X; like winning strategies in a union game:

Xi|lx y Xolx ¥y X3l x ¥
Sit|a i sila o sl b W
S2la iy sj|la D2 sY|b we
S3| p Us Sg a U3 Sgl c W3
Sa| b Uy Si a U4 Sil C Wy
Ss|p s si|é D5 séfc ws
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Myopic Fragment of FO(<c, |)
A formula ¢(x) € FO(g, |) is called x-myopic, if

@ Inclusion-exclusion atoms in ¢ are always of the form

* X0|xwor
* XUcXxwor
* O ¢ X but not below disjunctions.
® The variables x are never quantified in ¢.

How can we prove that these formulae are closed under unions?
Let ¢/ be a subformula of ¢ and 2( =x, ¥ for every i.
Idea: Reassemble these X; like winning strategies in a union game:

Xi|x ¥y Xolx Y X3|x ¥y
sifa m si|a o | b W
S| a o ssla o0 sl b W
ss|p s s5la 93 s§|E ws
S4 [; Uy Sfl a Uy Sﬁ,l, C Wy
ss| b us  [sefenos s c ws
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Myopic Fragment of FO(<c, |)
A formula ¢(x) € FO(g, |) is called x-myopic, if
@ Inclusion-exclusion atoms in ¢ are always of the form
* X0|xwor
* XUcXxwor
* O ¢ X but not below disjunctions.
® The variables x are never quantified in ¢.

How can we prove that these formulae are closed under unions?
Let ¢/ be a subformula of ¢ and 2( =x, ¥ for every i.
Idea: Reassemble these X; like winning strategies in a union game:

Xi|x y Xolx ¥ X3lx y ~ X|x Y
sifa m si|a o | b W si|a iy
S2la i s)|a 0o SY|b W S2|a i
$3 [; L_lg S«g a U3 Sg/ cC W3 S;’ l-) W]
S4 [; 1;14 Sf} a @4 S;l/ c W4 Sé/ l-; Wz
ss| b ds  (ssfends s|c ws sl ¢ s
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Capturing the Union-Closed Fragment

Let ¢(X) € 31 be a myopic sentence.
Task: Construct equivalent, x-myopic u(x) € FO(g, |).
Let 2 be a structure and Y be a team with dom(Y) = {x}.

A= o(Y(x)
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Capturing the Union-Closed Fragment

Let ¢(X) € 31 be a myopic sentence.
Task: Construct equivalent, x-myopic u(x) € FO(g, |).
Let 2 be a structure and Y be a team with dom(Y) = {x}.

By construction of A = (Y(x))
the union game G(2L, ¢).

Y(x) € T (G2, 9)
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Capturing the Union-Closed Fragment
Let ¢(X) € 31 be a myopic sentence.
Task: Construct equivalent, x-myopic u(x) € FO(g, |).
Let 2 be a structure and Y be a team with dom(Y) = {x}.

By construction of A = (Y(x))
the union game G(2, ¢).

Y(x) € T (G2, 9)

9r(y) € FO(<, |) is a \

y-myopic formula that
defines T (G, ¢)). G ) =g 9r(y)

Yo(y) = Y(%)
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Capturing the Union-Closed Fragment

Let ¢(X) € 31 be a myopic sentence.
Task: Construct equivalent, x-myopic u(x) € FO(g, |).
Let 2 be a structure and Y be a team with dom(Y) = {x}.

By construction of A = o(Y(x))
the union game G(2, ¢).

Y(x) € T (G2, 9) A vy ()

Jr(y) € FO(s, |) is a \ / Use a logical inter-

y-myopic formula that pretation 7 with
defines 7 (G2, ¢)). G ) =g 9r(y) I@) = G, ¢) for

Ys(y) = Y(x) some coordinate map h.
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Capturing the Union-Closed Fragment
Let ¢(X) € 31 be a myopic sentence.
Task: Construct equivalent, X-myopic p(x) € FO(g, | ).
Let 2 be a structure and Y be a team with dom(Y) = {x}.

Repair the damage

. done by T to the
By construction of Ak p(Y(x) Ay p(x) myopic shape and

the union game G(21, ¢). \ extract values for x

from their encodings.

Y(x) € T (G2, 9) A vy ()

Jr(y) € FO(s, |) is a \ / Use a logical inter-

y-myopic formula that pretation 7 with
defines 7 (G2, ¢)). G ) =g 9r(y) I@) = G, ¢) for

Ys(y) = Y(x) some coordinate map h.
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to

Y(x) =3y(ycx A XXXy A @ (%, 7))

o @ ® @ ® @)
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to

Y(E) =397 € X AGTE DA 9*(5, ).

Y = X[y — F] Y [z-a(p)

x@ (@ ® ® 0]
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of (¢p(7)k
Then ¢(x) is equivalent to
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to

Y = X[y — F] Y[:5(9) Vg E @)

we e 8 @)
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to

Y = X[y > F] Y 5=e(5) = = ¢(7)

Y,
x@|(@ ® 8 0]
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to

Y(x) = 39(V € X A XX STV A 9 (X, 7))

Y = X[ — F] Y] a(®) Yleq o)

o @ (@ @ 7))
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions-
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to

Y = X[y F] Y E o)

wexo @ ® 9@ 00 @ )
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Capturing the Union-Closed Fragment

Let ¢(x) € FO(g, |) be closed under unions.
Let ¢* (%, 7) be the x-guarded version of ¢(7).
Then ¢(x) is equivalent to

Y = X[y F] Y E o)

CRCIT T ])
\\ — X F ¢(x)
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The Game Atom

* Union games are complete for the union-closed fragment

For X # @, define

A E=x u—game(Vy, X): <= X is complete and
if X encodes a union game G,

then X(%) € T(G%).
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The Game Atom

* Union games are complete for the union-closed fragment

* We can encodes such games in a team using a lot of variables

For X # @, define

A E=x u—game(Vg, X) : <= X is complete and
if X encodes a union game G,
then X(%) € T(G%).
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The Game Atom

* Union games are complete for the union-closed fragment
* We can encodes such games in a team using a lot of variables

* An atom u-game could check whether a specified set is a target
set of the encoded union game

For X # @, define

A E=x u—game(Vy, X) : <= X is complete and
if X encodes/a union game QQ,

then X(%) € T (G%).
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The Game Atom

* Union games are complete for the union-closed fragment
* We can encodes such games in a team using a lot of variables

* An atom u-game could check whether a specified set is a target
set of the encoded union game

* Why is u-game union-closed?

For X # @, define

A E=x u—game(Vy, X): <= X is complete and
if X encodes a union game G,

then X(%) € T(G%).
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The Game Atom

* Union games are complete for the union-closed fragment
* We can encodes such games in a team using a lot of variables

* An atom u-game could check whether a specified set is a target
set of the encoded union game

* Why is u-game union-closed?
+ Answer: Make sure that unions of satisfying teams cannot
encode a different game.

For X # @, define

A E=x u—game(Vy, x) : <= X]is complete and
if X encodes a union game G,

then X(x) € 7(GY).
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Ronnholm’s Question

FO(<y): FO + inclusion atoms # ¢ © with |a| = |9 =< k.

Roénnholm’s Question:
What fragment of GFP* corresponds to FO(cy)?
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Ronnholm’s Question

FO(<y): FO + inclusion atoms # ¢ © with |a| = |9 =< k.

Roénnholm’s Question:
What fragment of GFP* corresponds to FO(cy)?

GFP;: fragment of greatest fixed-point logic where fixed-point
relations are of arity < k
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Answering Ronnholm’s Question

@ For every FO(c;)-formula ¢(x) there exists an equivalent myopic
GFP} -sentence /(X).
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Answering Ronnholm’s Question

@ For every FO(c;)-formula ¢(x) there exists an equivalent myopic
GFP} -sentence /(X).

@® For every myopic GFP}-sentence 1/(X) there exists an equivalent
FO(cy/)-formula ¢(x) where k” := max{k, ar(X)}.
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Answering Ronnholm’s Question

@ For every FO(c;)-formula ¢(x) there exists an equivalent myopic
GFP} -sentence /(X).

@® For every myopic GFP}-sentence 1/(X) there exists an equivalent
FO(cy/)-formula ¢(x) where k” := max{k, ar(X)}.

© For every GFP;-formula /(%) there exists a (dlownwards closed)
FO(cy)-formula y(x) s.t. for every 2, X,

A Ex y(x) = A = Y(x) for every s € X.
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Dependencies Concepts up to Equivalences

A =y dep(x,y) <« foreverys,s € X: s(x) = s'(x)
implies s(y) = s'(y)

AE=x xcy < for every s € X there exists some s’ € X
holds s(x) = s(y)

A=y x|y < forevery s, s’ € X holds s(x) # s'(§)

AE=x xLy < forevery s, s’ € X there exists some s”/ € X

with s(x) = s”(x) and 5'(7) = s”(3)
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Dependencies Concepts up to Equivalences

Let
* ~ be an equivalence relation of the structure 2A
G~ b:e= a;~b;foralli
A =y dep(x,y) <« foreverys,s € X: s(x) = s'(x)
implies s(y) = s'(y)

AE=x xcy < forevery s € X there exists some s’ € X
holds s(x) = s(y)

A=y x|y < foreverys,s’ € X holds s(x) # s'(§)

AE=x xLy < forevery s, s’ € X there exists some s”/ € X

with s(x) = s”(x) and 5'(3) = s”(3)
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Inclusion Logic of Restricted Arity Dependencies Concepts up to Equivalences
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Dependencies Concepts up to Equivalences

Let

* ~ be an equivalence relation of the structure 2A

G~ b:e= a;~b;foralli

A =x dep (%, y)

—

for every s,s" € X: s(%) ~ s'(x)

implies s(y) ~ s'(y)

for every s € X there exists some 5" € X
holds s(x) ~ s(9)

for every s,s” € X holds s(x) # s'(9)

for every s, s’ € X there exists some s” € X
with s(x) ~ s”/(x) and s'() ~ s”(3)
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Expressive Powers in Comparison

i)
[}
Lp]
Q
n
1
gy
Q
E

/
GFP* = FO(c) FO(]) = FO(dep)
AN

N
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Expressive Powers in Comparison
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Expressive Powers in Comparison
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Expressive Powers in Comparison
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Results for these Logics

Joint work with Erich Gridel

® >{(=) = FO(c., |- ) (on the level of sentences).
® >{(=) < 3] (on the level of sentences).

® For every ¢(X) € 2i(=) where X occurs only ~-guarded there
exists an equivalent ¥/(x) € FO(c., |- ) that cannot distinguish
between ~-equivalent teams and vice versa.

@ FO(c.) = GFP; (on the level of sentences).

~-guarded occurrence of X: X. 0 =3w(0 = w A Xw).
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