Algorithmic Model Theory — Assignment 2

Due: Tuesday, 29 April, 12:00

Exercise 1

Show that both $\operatorname{Sat}(X)$ and $\operatorname{Finsat}(X)$ are decidable in polynomial time if $X \subseteq \operatorname{FO}(\tau)$ is a class of sentences satisfying the following conditions: (a) τ is finite and relational, (b) all sentences in X are in prenex normal form, and (c) the number of variables of all $\psi \in X$ is bounded by a constant (i.e., there is a fixed $k \in \mathbb{N}$ such that for each $\psi \in X$ the length of the quantifier prefix of ψ is at most k).

Exercise 2

Construct, for each $n \in \mathbb{N}$, an FO²-sentence ψ_n whose length is polynomial in n and whose models necessarily contain a $(2^n \times 2^n)$ -grid.

An $(s \times t)$ -grid is a graph over the set of vertices $\{0, \ldots, s-1\} \times \{0, \ldots, t-1\}$ with two edge relations $H = \{\langle (i, j), (i+1, j) \rangle : i < s-1, j < t\}$ and $V = \{\langle (i, j), (i, j+1) \rangle : i < s, j < t-1\}$. *Hint:* The coordinates of the vertices of the grid have a binary representation of length n that can be described with unary relations. Using these, define appropriate successor relations.

Exercise 3

We consider a domino system \mathfrak{D} given by (D, H, V) where D is a finite set of dominoes and the binary relations H and V contain those pairs of dominoes that may be placed side by side and on top of each other, respectively.

- (a) Construct, for each domino system $\mathfrak{D} = (D, H, V)$, a set of propositional formulae $\Phi(\mathfrak{D})$ such that $\Phi(\mathfrak{D})$ is satisfiable if and only if \mathfrak{D} admits a tiling of $\mathbb{Z} \times \mathbb{Z}$.
- (b) Let \mathfrak{D} be a domino system. Show that \mathfrak{D} admits a tiling of $\mathbb{Z} \times \mathbb{Z}$ if and only if \mathfrak{D} admits a tiling of arbitrarily large finite squares.