Algorithmic Model Theory — Assignment 7

Due: Tuesday, 17 June, 12:00

Exercise 1

 $S1S_0$ is the fragment of S1S defined as the smallest set of formulae that contains, for a countable supply of monadic second-order variables, the atomic formulae

- $X \subseteq Y$ "X is a subset of Y",
- Sing(X) "X is a singleton set", and
- Succ(X, Y) " $X = \{x\}, Y = \{y\}$ and y = s(x)"

and that is closed under

- Boolean connectives \lor and \neg , and
- existential monadic second-order quantification.
- (a) Show that each S1S-formula φ can be effectively translated into an S1S₀-formula that is equivalent to φ over finite words.
- (b) For each atomic S1S₀-formula ψ with free variables $\{X_1, \ldots, X_k\}$, construct an automaton \mathcal{A}_{ψ} over $\{0,1\}^k$ such that, for all $w \in (\{0,1\}^k)^*$, $w \in L(\mathcal{A}_{\psi})$ iff $\underline{w} \models \psi(X_1, \ldots, X_k)$.

Exercise 2

(a) Let φ be an arbitrary S1S-sentence over the vocabulary {succ, $(X_a)_{a \in \Sigma}$ }. Define (in S1S) the ω -language

 $L = \{ \alpha \in \Sigma^{\omega} : \alpha \text{ contains infinitely many prefixes } w \text{ such that } \underline{w} \models \varphi \}.$

(b) Let $\psi(x, y)$ be a first-order formula about Σ -labeled trees. Formalise in MSO that the pair (x, y) is contained in the transitive closure of the relation defined by ψ .

Exercise 3

A Σ -labeled binary tree is a function $t : \{0, 1\}^* \to \Sigma$. Analogously to ω -words, we can identify a tree t with the structure $\underline{t} := (\{0, 1\}^*, s_0, s_1, (X_a)_{a \in \Sigma})$ where s_0 and s_1 denote the usual successor functions, and $X_a = \{w : t(w) = a\}$. A tree-language over Σ is a set of Σ -labeled trees.

- (a) Define the prefix relation in S2S.
- (b) Define the following tree-languages over $\Sigma := \{a, b\}$ by S2S-formulae.

 $T_1 := \{t : \text{there is a path in } t \text{ containing infinitely many } b\},\$

 $T_2 := \{t : \text{all paths through } t \text{ contain infinitely many } b\}.$

(c) Construct parity automata recognising T_1 and T_2 by hand, i.e. do not transform the formulae found in (b).

http://www-mgi.informatik.rwth-aachen.de/Teaching/AMT-SS08/