Algorithmic Model Theory — Assignment 9

Due: Tuesday, 24 June, 12:00

Exercise 1

Show that $\operatorname{Th}_{\operatorname{mon}}(\mathbb{Q}, <)$ is decidable.

Hint: Any countable dense linear order without endpoints is isomorphic to $(\mathbb{Q}, <)$. Exploit the decidability of the monadic theory of the infinite binary tree.

Exercise 2

It is sometimes useful to consider a modified semantics when evaluating SnS formulae—the so-called *weak semantics* where monadic second-order quantifiers range over finite sets only. To indicate which semantics we want to apply, we use \models and \models_w to denote the usual and the weak semantics, respectively, and we denote the logical system using the weak semantics WS1S.

- (a) Show that WS1S and S1S are equally expressive on infinite words. *Hint:* Show that, for each Büchi automaton \mathcal{A} on ω -words, one can construct a WS1Sformula ψ such that $\alpha \in L(\mathcal{A})$ if, and only if, $\alpha \models \psi$.
- (b) Show that this is not the case for WS2S and S2S, i.e., construct formulae φ and φ_w (do not choose the negation of φ for φ_w !) such that
 - $T \models \varphi$ but $T \not\models_w \varphi$, and
 - $T \not\models \varphi_w$ but $T \models_w \varphi_w$

where T is the infinite binary tree.

Exercise 3

- (a) The unravelling of a graph $\mathcal{G} = (V, E)$ from a node $v \in V$ is defined as the structure $\mathcal{T}(\mathcal{G}, v) := (V^*, E, v)$ with $E^{\mathcal{T}} := \{(wa, wab) : wa \in V^* \text{ and } (a, b) \in E^{\mathcal{G}}\}.$ Show that $\mathcal{T}(\mathcal{G}, v)$ is MSO-interpretable in (\mathcal{G}^*, v) .
- (b) Consider the linearly ordered natural numbers $\mathfrak{N} = (\mathbb{N}, <)$. Show that the expansion $\mathfrak{M} = (\mathfrak{N}, P)$ where $P^{\mathfrak{M}} = \{\frac{1}{2}k(k+1) : k \in \mathbb{N}\}$ is MSO-interpretable in the iteration \mathfrak{N}^* .

Hint: a) $\frac{1}{2}k(k+1) = \sum_{i=0}^{k} i$. b) Represent the set of natural numbers by a suitable path through the iteration on which the positions representing numbers in P are definable.