Algorithmic Model Theory — Assignment 11

Due: Tuesday, 8 July, 12:00

Exercise 1

Prove that any automatic structure \mathfrak{A} admits an injective presentation, i.e., a presentation \mathfrak{d} such that $\nu: L_{\delta} \to A$ is injective.

Exercise 2

Recall the encoding of ordered structures presented in the lecture. Let $\tau = \{P, R\}$ be a signature consisting of a unary predicate P and a binary predicate R. Construct formulae $\beta_0(\bar{x})$ and $\beta_1(\bar{x})$ defining the \bar{x} -th symbol of the encoding of an ordered τ -structure.

Exercise 3

- (a) Show that the following classes are in NP by constructing Σ_1^1 -formulae defining them.
 - (i) The class of bipartite graphs,
 - (ii) the class of Hamiltonian graphs, and
 - (iii) the class of graphs that admit a perfect matching.
- (b) Prove using Fagin's Theorem that SAT, the satisfiability problem for propositional logic, is complete for NP.

Exercise 4

The *spectrum* of a sentence $\varphi \in FO(\tau)$ is defined as

 $\operatorname{spec}(\varphi) := \{ n \in \mathbb{N} : \text{there exists } \mathfrak{A} \models \varphi \text{ with } |A| = n \}.$

Show that a set $S \subseteq \mathbb{N}$ is a spectrum of an FO-formula if and only if $S \in \text{NEXPTIME}$. *Hint:* Use Fagin's Theorem.