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4 Zero-one laws

4.1 Random graphs

We consider the class Gn of (undirected) graphs over {0, . . . , n − 1}, i.e.

Gn := {G = (V, E) : G graph, V = {0, . . . , n − 1}},

In order to introduce random graphs we consider a sequence of probability
distributions µ = (µ1, µ2, . . . ) on (G1,G2, . . . ), i.e. µn : Gn → [0, 1] and
∑G∈Gn µ(G) = 1 for all n ≥ 1. This defines a sequence of probability
spaces (G1, µ1), (G2, µ2), . . . on classes of graphs of increasing size.

Example 4.1.

(1) The uniform distribution µn assigns equal probability to each graph:

µn(G) =
1

2(
n
2)

.

(2) Let p : N → [0, 1] be an arbitrary mapping. Then the probability
space Gn,p = (Gn, µp,n) is defined by the following random experi-
ment: determine for every pair (u, v) with 0 ≤ u < v < n whether
(u, v) ∈ E using a random variable X taking values 0, 1 (False and
True) with Pr[X = 1] = p(n) and Pr[X = 0] = (1 − p(n)). Observe
that for p = 1

2 one obtains the uniform distribution.

We make the following convention: unless otherwise stated, µn denotes
the uniform distribution. For a class K of graphs we set

µn(K) := µn(K ∩ Gn) = ∑
G∈K∩Gn

µn(G).

This definition formalises what it means that a random graph G ∈ Gn has
a certain property K. However, in what follows, we are not interested
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4 Zero-one laws

in random graphs of some fixed size n ∈ N but much more in the
behaviour of the probability µn(K) if we increase the size of graphs, i.e.
if we let n approach infinity.

Definition 4.2. The asymptotic probability of a class K of graphs (with
respect to µ) is defined as

µ(K) := lim
n→∞

µn(K),

in the case that this sequence has a limit. In particular, if ψ is a sentence
over vocabulary {E} in some logic L, then the asymptotic probability of ψ

(with respect to µ) is defined as

µ(ψ) := lim
n→∞

µn({G ∈ Gn : G |= ψ},

again only for the case that the limit exists.

Example 4.3.

(1) Let K = {G : G is a clique}. Then

lim
n→∞

µn(K) = lim
n→∞

1

2(
n
2)

= 0.

(2) Let H be a graph and let KH = {G : G contains H as subgraph}.
For n > k · |H| we have

µn(KH) ≥ 1 − (1 − (2−|E(H)|))k,

hence µ(KH) = 1 since k → ∞ for n → ∞.

(3) Let K = {G : G is three-colourable}. Then

lim
n→∞

µn(K) ≤ 1 − lim
n→∞

µn({G ∈ Gn : G contains K4}) = 0.

(4) Recall that we have limn→∞ µn({G : (3, 17) ∈ E}) = 1
2 .

(5) The asymptotic probability is not defined for every class of graphs.
For instance, consider K = {G : G has an even number of nodes}.
Then the sequence (µn(K))n≥1 = (0, 1, 0, 1, . . . ) has no limit.
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4.2 Zero-one law for first-order logic

In this section we prove the zero-one law for first-order logic:

Theorem 4.4. For sentences ψ ∈ FO (over relational vocabulary) we have

µ(ψ) = 0 or µ(ψ) = 1.

To put it in words, every first-order definable property of graphs either
holds almost never or almost surely on random graphs of increasing size.

Definition 4.5. An atomic graph k-type is a maximal consistent set t of
FO({E})-literals in variables x1, . . . , xk, i.e. Exixj,¬Exixj, xi = xj, xi ̸= xj,
which is consistent with the graph axioms (∀x1∀x2(¬Ex1x1 ∧ Ex1x2 ↔
Ex2x1). Furhtermore, for a graph G = (V, E) and a ∈ Vk we define the
atomic graph k-type of a by

tG(a) := {φ(xi, xj) : φ an FO({E})-literal such that G |= φ(ai, aj)}.

Formally, an atomic k-type t is a set but we frequently identify it
with the formula t(x) =

∧
φ∈t φ(x) (this formula is an FO-formula, since

there are only finitely many {E}-literals in k variables).

In what follows, let s(x) and t(x) denote atomic graph types of
tuples of distinct elements, i.e. s, t |= ∧

i<j≤k xi ̸= xk. We say that
an atomic (m + 1)-type t(x1, . . . , xm, xm+1) extends an atomic m-type
s(x1, . . . , xm) if s ⊆ t, or equivalently, if t |= s.

Definition 4.6. Let s(x1, . . . , xm) and t(x1, . . . , xm, xm+1) be atomic types
such that s ⊆ t. We define the extension axiom σs,t by

σs,t := ∀x1 · · · ∀xm(s(x) → ∃xm+1t(x, xm+1)).

Furthermore, we let T be the set of all extension axioms together with
the graph axioms.

The proof of the zero-one law for FO relies on the following proper-
ties of the extension axioms and the set T:

(1) µ(σs,t) = 1 for all σs,t ∈ T.
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4 Zero-one laws

(2) T is ω-categorical, i.e. there is, up to isomorphism, only one count-
able model of T. This structure is known as the Rado graph.

(3) T is complete, i.e. for all ψ ∈ FO either T |= ψ or T |= ¬ψ.

We proceed to establish these three properties.

Lemma 4.7. Let σs,t ∈ T be an extension axiom. Then µ(σs,t) = 1.

Proof. Let σs,t := ∀x1 · · · ∀xm(s(x) → ∃xm+1t(x, xm+1)). For every
i = 1, . . . , m we have t |= Exixm+1 or t |= ¬Exixm+1. Let G ∈ Gn

be a random graph and a1, . . . , am ∈ {0, . . . , n − 1}. For every fixed
am+1 ∈ V \ {a1, . . . , am}, the experiments G |= Eaiam+1 are stochastically
independent and have probability 1

2 . Hence

Pr[G |= t(a, am+1)|G |= s(a)] =
1

2m .

Thus, probability that no element am+1 ∈ V \ {a1, . . . , am} extends a
realisation a of s to a realisation of (a, am+1) of t is (1 − 1

2m )n−m. In
conclusion, we obtain

µn(¬σs,t) = µn(∃x1 · · · ∃xn(s(x) ∧ ∀xm+1¬t(x, xm+1)))

≤ nm · (1 − 1
2m )n−m exp. fast−→ 0,

and thus µ(σs,t) = 1. q.e.d.

The compactness theorem implies that also every logical conse-
quence of the extensions axioms almost surely holds in a random graph.

Corollary 4.8. If T |= ψ then µ(ψ) = 1, and the set T is satisfiable.

Proof. If T |= ψ, then by the compactness theorem there is a finite
set T0 ⊆ T such that T0 |= ψ. Hence, we have µn(ψ) ≥ ∏σ∈T0

µn(σ)

for all n ≥ 1 and thus limn→∞(ψ) = 1 by Lemma 4.7. In particular
T ̸|= ∀x(x ̸= x) since µ(∀x(x ̸= x)) = 0. q.e.d.

Interestingly, one can give explicit description of models of T and
we present two different possibilities here. However, as we show later
that T is ω-categorical, these models are isomorphic.
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Definition 4.9 (Rado graph). The following graphs are models of T.

(1) Let pi denote the i-th prime number. We define G = (N, E) with

E := {(i, j) ∈ N × N : pi | j or pj | i.}

We claim that G |= T. To see this, we choose an arbitrary extension
axiom σs,t := ∀x1 · · · ∀xm(s(x) → ∃xm+1t(x, xm+1)) ∈ T.
Let I ·∪ J = {1, . . . , m} be the partition defined by t with respect to
the following condition

• If t |= Exixm+1 then i ∈ I, and
• if t |= ¬Exixm+1 then i ∈ J.

Let a1, . . . , ak ∈ A such that G |= s(a1, . . . , ak). We set am+1 :=
∏i∈I pai q where q is a prime number with q > pa1 · · · pam . Then it is
easy to check that G |= Eaiam+1 for all i ∈ I and G |= ¬Eajam+1 for
all j ∈ J.

(2) The set HF of heriditarily finite sets is defined by:

• ∅ ∈ HF
• If a1, . . . , ak ∈ HF, then also {a1, . . . , ak} ∈ HF.

Let G = (HF, E) with E := {(a, b) : a ∈ b or b ∈ a}. Similarly as
above, one can show that G |= T.

Theorem 4.10. Let G = (VG, EG) and H = (VH, EH) be two countable
models of T. Then G ∼= H. The unique countable model of T is known
as the Rado graph R.

Proof. First of all, it is clear that T has no finite models, hence G and
H are infinite graphs. We fix two enumerations of VG and VH and
inductively construct a sequence of partial isomorphism p0, p1, p2, . . .
between G and H such that p0 ⊆ p1 ⊆ p2 ⊆ · · · . For the base case,
we set p0 := ∅. For the induction step let pi = {(a1, b1), . . . , (ai, bi)} ∈
Loc(G, H) be already defined. We distinguish between the following
two cases:

• If i is even, choose ai+1 ∈ VG to be the minimal element (with respect
to the enumeration of VG) which is not in the domain of pi, i.e.
ai+1 ̸∈ {a1, . . . , ai}. Let s := tG(a1, . . . , ai) and t := tG(a1, . . . , ai+1).
Since pi is a partial isomorphism we know that H |= s(b1, . . . , bi).
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4 Zero-one laws

Since H |= σs,t there exists an element bi+1 ∈ VH such that H |=
t(b1, . . . , bi+1). We set pi+1 := pi ∪ {(ai+1, bi+1)} and obtain a partial
isomorphism extending pi.

• If i is odd, we proceed analogously, but this time we let bi+1 ∈
VH be the minimal element (with respect to the enumeration of
VH) which is not in the image of pi, i.e. bi+1 ̸∈ {b1, . . . , bi}. For
s := tH(b1, . . . , bi) and t := tH(b1, . . . , bi+1), the same reasoning
as above yields an element ai+1 ∈ VG such that G |= t(a1, . . . , ai+1.
Again we obtain an extended partial isomorphism by setting pi+1 :=
pi ∪ {(ai+1, bi+1)}.

Finally we let p :=
⋃

i≥0 pi. By construction we have that dom(p) = VG

and im(p) = VH, hence p : G ∼−→ H. q.e.d.

In particular, ω-categorical theories are complete:

Theorem 4.11. T axiomatises a complete theory, i.e. for all sentences
ψ ∈ FO({E}) we have T |= ψ or T |= ¬ψ.

Proof. Assume for some sentence ψ ∈ FO({E}) it holds that T ̸|= ψ

and T ̸|= ¬ψ. Then by the downwards Löwenheim-Skolem theorem,
there exist two countable graphs G and H with G |= T ∪ {ψ} and
H |= T ∪ {¬ψ}. In particular this implies G ̸∼= H, which contradicts
Theorem 4.10. q.e.d.

Theorem 4.12. [Glebskiı̆ et al., R. Fagin] For all ψ ∈ FO({E}) it holds:

µ(ψ) = 0 or µ(ψ) = 1.

Proof. If T |= ψ, then µ(ψ) = 1. Otherwise, T |= ¬ψ, and hence µ(ψ) =

1 − µ(¬ψ) = 0. q.e.d.

In particular, we can give a precise characterisation of those first-
order properties which hold almost surely in random graphs.

Corollary 4.13. Let ψ ∈ FO({E}). Then

µ(ψ) = 1 iff T |= ψ iff R |= ψ.
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4.2.1 Applications

We can use Theorem 4.12 to show that certain classes of graphs are
not definable in first-order logic: if a class K of graphs has undefined
asymptotic probability or an asymptotic probability different from 0
and 1, then clearly K cannot be defined in first-order logic. More gen-
erally, this method yields non-definability of K for every logic that
has a 0-1-law, e.g. for Lω

∞ω as we see later. For instance, consider
the class EvenV = {G = (V, E) : |V| is even} with undefined asymp-
totic probability or the class EvenE = {G = (V, E) : |E| is even} with
µ(EvenE) = 1

2 . Moreover, we can use our results as a convenient method
to determine the asymptotic probability for many natural classes of
graphs.

(1) We want to determine µ(Con) where Con denotes the class of con-
nected graphs. Let s be an atomic 2-type in variables x, y containing
¬Exy and let t be the atomic 3-type in variables x, y, z which extends
s and contains Exz ∧ Eyz. Then G |= σs,t iff G has diameter at most
2. Hence, G |= σs,t implies G ∈ Con, which means that µ(Con) = 1.

(2) Let K be any class of graphs which exclude a forbidden sub-
graph H = ({v1, . . . , vk}, E). Then µ(K) = 0. To see this, we
set si(x1, . . . , xi) := tH(v1, . . . , vi) for i ≤ k and consider the ex-
tension axioms σsisi+1 . Then clearly ψ :=

∧
i<k σsisi+1 is a logical

consequence of T, which means that µ(ψ) = 1. Moreover, if G |= ψ,
then G contains H as an induced subgraph. We conclude that
µ(K) ≤ 1 − µ(ψ) = 0. As an application, consider the class of
planar graphs which exclude K5 (the complete graph on 5 vertices)
and the class of k-colourable graphs which exclude Kk+1 (where k is
fixed). To put it in words, a random graph is almost never planar
nor k-colourable.

4.3 Generalised zero-one laws

In this section we want to generalise our considerations in two different
ways. Firstly, instead of restricting ourselves to graphs, we want to work
on more general classes of structures and analyse whether the zero-one-
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law for FO still holds. Secondly, as FO has rather limited expressive
power, we look for zero-one laws for more powerful logics as well.

Let τ be an arbitrary vocabulary (not necessarily relational). By
Strn(τ) we denote the set of all τ-structures over the universe {0, . . . , n −
1}. As before we define a sequence µ = (µ1, µ2, . . . ) of uniform prob-
ability distributions µn : Strn(τ) → [0, 1], i.e. for every A ∈ Strn(τ) we
set

µn(A) =
1

|Strn(τ)|
.

We claim that FO(τ) has a zero-one law if, and only if, τ contains
no function symbols. To this end, we first consider the case where τ

contains function symbols:

(1) Assume {P, c} ⊆ τ where c is a constant symbol and P a monadic
relation. Then for ψ := Pc we have µn(ψ) =

1
2 for all n ≥ 1, hence

µ(ψ) = 1
2 , i.e. the zero-one law does hold in this case.

(2) Assume f ∈ τ where f is a unary function symbol. Consider the
FO(τ)-sentence ψ := ∃x( f x = x) stating that f has a fixed point.
For n ≥ 1 we have

µn(ψ) = 1 −
n−1

∏
i=0

(
n − 1

n

)

︸ ︷︷ ︸
=Pr[ f (i) ̸=i]

= 1 −
(

1 − 1
n

)n
.

Since
(

1 − 1
n

)n
−→ e−1 for n → ∞, the zero-one law does not hold

in this case either.

For the other direction, let τ be purely relational, τ = {R1, . . . , Rk}.
The proof strategy we used over graphs generalises for this general in a
straightforward way:

• An atomic τ-type in k variables is a maximal, consistent set of τ-
literals over variables x1, . . . , xk. For a τ-structure A and a ∈ A we
set tA(a) = {φ(x) : φ a τ-literal with A |= φ(a)}.

• The τ-extension axiom σs,t for two atomic τ-types s and t (in k and
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k + 1 variables, respectively) with s ⊆ t is defined as

σs,t := ∀x(s(x) → ∃xk+1t(x, xk+1)).

As before, we let T denote the set of all τ-extension axioms

• Again we can show that µ(σs,t) = 1 for all σs,t ∈ T. Let r denote
the number of literals in t which contain xm+1. Then, for a random
structure A ∈ Strn(τ), a ∈ A and am+1 it holds

Pr[A |= t(a, am+1) |A |= s(a)] = 2−r.

Thus

µn(¬σs,t) = µn(∃x(s(x) ∧ ∀xm+1¬t(x, xm+1)))

≤ nm(1 − 2−r)n−m exp. fast−→ 0.

• T is ω-categorical: analogously!

Our analysis raises the question why even basic functions but not
arbitrary relations inhibit a zero-one law. The reason is that atomic
experiments are not longer stochastically independent. For instance,
consider the experiments f (a) = b and f (a) = c (for b ̸= c), then
Pr[ f (a) = c | f (a) = b] = 0 ̸= Pr[ f (a) = c].

4.3.1 Zero-one law for Lω
∞ω

We proceed to show that the zero-one law holds for Lω
∞ω as well (re-

stricted to relational vocabularies). In particular, since LFP ≤ Lω
∞ω,

this means that a random graph either almost surely has an LFP-
definable property or almost never does. With FOk we denote the
k-variable fragment of FO, i.e. FOk = FO ∩ Lk

∞ω = {φ ∈ FO :
φ only contains variables x1, . . . , xk}. If we restrict the set of extension
axioms T to FOk we obtain finite sets of approximations of T which are
again sentences in FOk; more specifically, we set

Θk :=
∧

T ∩ FOk =
∧
{σs,t : σs,t ∈ T ∩ FOk} ∈ FOk.
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The central property of these approximations for T is stated in the
following theorem: in models of Θk, every Lk

∞ω-formula is equivalent to
a simple Boolean combinations of atomic k-types. In particular, every
Lk

∞ω-sentence is either true or false in all models of Θk.

Theorem 4.14. Let m ≤ k, s(x1, . . . , xm) an atomic m-type and
φ(x1, . . . , xm) ∈ Lk

∞ω. Then

either Θk |= ∀x(s(x) → φ(x))

or Θk |= ∀x(s(x) → ¬φ(x)).

Proof. We proceed by induction on φ and simultaneously show the claim
for all m ≤ k and atomic types s. If φ is atomic, then either φ ∈ s or
¬φ ∈ s. If φ = ¬ψ, the claim directly follows.

Let φ =
∧

Ψ, Ψ ⊆ Lk
∞ω. By induction hypothesis for all ψ ∈ Ψ

either Θk |= ∀x(s(x) → ψ(x))

or Θk |= ∀x(s(x) → ¬ψ(x)).

If Θk |= ∀x(s(x) → ψ(x)) for all ψ ∈ Ψ, then Θk |= ∀x(s(x) → ∧
Ψ(x)).

Otherwise, Θk |= ∀x(s(x) → ¬∧
Ψ(x)).

Let φ(x) = ∃yψ(x, y) and assume that Θk ̸|= ∀x(s(x) → ¬φ(x)). Choose
a structure A |= Θk with A |= ∃x(s(x) ∧ ∃yψ(x, y)) and consider the
following two cases

• If y ̸∈ {x1, . . . , xm}, i.e. y ∈ {xm+1, . . . , xk}; let a1, . . . , am, b ∈ A such
that A |= s(a)∧ψ(a, b). We define the atomic type t(x1, . . . , xm, y) :=
tA(a, b) with s ⊆ t. In particular,

A |= ∃x∃y(t(x, y) ∧ ψ(x, y)).

By induction hypothesis we know that

A |= ∀x∀y(t(x, y) → ψ(x, y)),

and since σs,t = ∀x(s(x) → ∃yt(x, y)) is an extension axiom con-
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tained in Θk we finally obtain

A |= ∀x(s(x) → ∃yψ(x, y)).

• If y ∈ {x1, . . . , xm}, i.e. y = xj for j ≤ m; let a ∈ A such that
A |= s(a) ∧ ∃xjψ(a), and let x∗ and a∗ denote the tuples x and a
without the j-th componenent, i.e.

x⋆ := x1 · · · xj−1xj+1 · · · xk

a⋆ := a1 · · · aj−1aj+1 · · · ak.

Similarly, let s⋆(x⋆) := tA(a⋆) be the atomic type of a⋆ in A. Then
s⋆ ⊆ s and there is b ∈ A such that

A |= s⋆(a⋆) ∧ ψ
(
a

b
aj

)
, where a

b
aj

:= a1 · · · aj−1baj+1 · · · am.

For t⋆(x) := tA(a b
aj
) we thus have A |= ∃(t⋆(x) ∧ ψ(x)), and the

induction hypothesis yields

Θk |= ∀x(t⋆(x) → ψ(x)).

As above, since s⋆ ⊆ t⋆, it holds that Θk |= ∀x⋆(s⋆(x⋆) → ∃xjt⋆(x)),
and altogether we obtain

Θk |= ∀x(s(x) → ∃xjψ(x)).

q.e.d.

Corollary 4.15. For every Lk
∞ω-sentence ψ we either have Θk |= ψ or

Θk |= ¬ψ.

Corollary 4.16. If A |= Θk and B |= Θk, then A ≡Lk
∞ω

B.

Corollary 4.17 (Kolaitis, Varidi 1992). For every sentence ψ ∈ Lω
∞ω (over

a relational signature) we have µ(ψ) = 0 or µ(ψ) = 1.

Proof. Let ψ ∈ Lk
∞ω for some k ≥ 1. Then by Corollary 4.15 we have

Θk |= ψ or Θk |= ¬ψ. Since Θk ⊆ T is finite, we have µ(Θk) = 1 and
thus the claim follows. q.e.d.
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