Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, W. Pakusa, F. Reinhardt, M. Voit

Algorithmic Model Theory — Assignment 5

Due: Friday, 27 May, 13:00

Exercise 1

We say that an FO($\tau \cup \{<\}$)-sentence φ is *order-invariant* if for all *finite* τ -structures \mathfrak{A} and linear orderings <, <' on A we have

$$(\mathfrak{A},<)\models\varphi \Leftrightarrow (\mathfrak{A},<')\models\varphi.$$

Show that the problem whether a given $FO(\tau \cup \{<\})$ -sentence φ is order-invariant is undecidable.

Hint: Show that Fin-Sat(FO) is reducible to this problem.

Exercise 2

Let τ be a fixed (finite) vocabulary which only consists of monadic relation symbols and let X be the set of all FO(τ)-sentences in prenex normal form.

- (a) Show that $Sat(X) \in PSPACE$.
- (b) Show that Sat(X) is PSPACE-complete.

Hint: Reduce QBF (the quantified Boolean formula problem) to Sat(X).

Exercise 3

Recall the encoding of ordered structures presented in the lecture. Let $\tau = \{P, R\}$ be a signature consisting of a unary predicate P and a binary predicate R. Construct formulae $\beta_0(\bar{x})$ and $\beta_1(\bar{x})$ defining the \bar{x} -th symbol of the encoding of an ordered τ -structure.

Exercise 4

- (a) Show that the following classes of (undirected, finite) graphs are in NP by explicitly constructing Σ_1^1 -sentences defining them.
 - (i) The class of regular graphs (i.e. every node has the same number of neighbours),
 - (ii) the class of Hamiltonian graphs, and
 - (iii) the class of graphs that admit a perfect matching.
- (b) Let $k \ge 1$. An (undirected, finite) graph G = (V, E) has connectivity k if |G| > k and
 - for all $S \subseteq V, |S| < k$ the graph $G \setminus S$ is connected, and
 - there exists a set $S \subseteq V, |S| = k$ such that $G \setminus S$ is not connected.

Construct a Σ_1^1 -sentence defining the class of (undirected) graphs with connectivity k.

http://logic.rwth-aachen.de/Teaching/AMT-SS16/