Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory — Assignment 4

Due: Monday, 14 November, 12:00

Exercise 1

Let τ_n be the vocabulary consisting of the unary relation symbols $P_0, \ldots, P_{n-1}, Q_0, \ldots, Q_{n-1}$. Construct a formula $\varphi_n \in FO(\tau_n)$ whose length is bounded by a polynomial in n such that every model of φ_n contains at least 2^{2n} elements.

Hint: Encode an $(2^n \times 2^n)$ -grid in models of φ_n .

Exercise 2

 ε -FO is the extension of FO by Hilbert's *choice operator* (also known as ε -operator). The syntax of ε -FO is given by the usual rules together with an additional ε -rule: If ψ is a formula, and x is a variable, then $\varepsilon x \psi$ is a term (read "an x such that ψ ").

An interpretation for an ε -FO formula is given by an FO-interpretation $(\mathfrak{A}, \mathcal{I})$ together with a choice function on the universe of \mathfrak{A} , i.e. a mapping $F : \mathcal{P}(A) \to A$ such that $F(X) \in X$ for all $X \neq \emptyset$. The value of a term $\varepsilon x \psi$ is defined as $F(\{a \in A : (\mathfrak{A}, \mathcal{I}) \models \psi(a)\})$.

- (a) Show that the quantifiers \exists and \forall can be expressed with the ε -operator.
- (b) Construct an infinity axiom φ in ε -FO² over the empty vocabulary, i.e., φ contains only the ε -operator, two variables x and y, and equality, but neither relation nor function symbols.

Exercise 3

Specify a conservative reduction from $[\forall^2, (0, 1), (1)]$ to $[\forall^2, (1), (0, 1)]$, i.e., from the class of formulae with quantifier prefix \forall^2 over a vocabulary containing only one binary relation and a unary function symbol to the class of formulae with the same quantifier prefix but over a vocabulary containing a unary relation and a binary function symbol. Note that equality may not be used in the formulae.

Hint: A binary relation P and a unary function f can be encoded using a unary relation Q and a binary function g in the following way: $P = \{(a, b) : g(a, b) \in Q\}$, and f(a) = g(a, a).