Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory — Assignment 6

Due: Monday, 28 November, 12:00

Exercise 1

We say that an FO($\tau \cup \{<\}$)-sentence φ is order-invariant if for all finite τ -structures $\mathfrak A$ and linear orderings <, <' on A we have

$$(\mathfrak{A},<)\models\varphi\Leftrightarrow(\mathfrak{A},<')\models\varphi.$$

Show that it is undecidable whether a given $FO(\tau \cup \{<\})$ -sentence φ is order-invariant. *Hint:* Show that Fin-sat(FO) is reducible to this problem.

Exercise 2

Recall the encoding of ordered structures presented in the lecture. Let $\tau = \{P, R\}$ be a signature consisting of a unary predicate P and a binary predicate R. Construct formulae $\beta_0(\bar{x})$ and $\beta_1(\bar{x})$ defining the \bar{x} -th symbol of the encoding of an ordered τ -structure.

Exercise 3

- (a) Show that the following classes of (undirected) graphs are in NP by explicitly constructing Σ_1^1 -sentences defining them.
 - (i) The class of regular graphs (i.e. every node has the same number of neighbours),
 - (ii) the class of Hamiltonian graphs, and
 - (iii) the class of graphs that admit a perfect matching.
- (b) Let $k \ge 1$. An (undirected) graph G = (V, E) has connectivity k if |G| > k and
 - for all $S \subseteq V, |S| < k$ the graph $G \setminus S$ is connected, and
 - there exists a set $S \subseteq V, |S| = k$ such that $G \setminus S$ is not connected.

Construct a Σ_1^1 -sentence defining the class of (undirected) graphs with connectivity k.

Exercise 4

The spectrum of a sentence $\varphi \in FO(\tau)$ is defined as

$$\operatorname{spec}(\varphi) := \{ n \in \mathbb{N} : \text{there exists } \mathfrak{A} \models \varphi \text{ with } |A| = n \}.$$

Show that a set $S \subseteq \mathbb{N}$ is a spectrum of an FO-sentence if and only if $S \in \text{NEXPTIME}$. *Hint:* Use Fagin's Theorem.