Algorithmic Model Theory — Assignment 9

Due: Monday, 19 December, 12:00

Exercise 1

Show that the following classes are $L_{\omega_1\omega}$ definable over the appropriate signatures.

- (a) torsion Abelian groups (This means all elements of the group have finite order);
- (b) finitely generated fields (The whole field can be generated by a finite set through applications of addition and multiplication);
- (c) linear orders isomorphic to $(\mathbb{Z}, <)$;
- (d) connected graphs;
- (e) acyclic directed graphs.

Exercise 2

- (a) Prove that LFP contains a formula that has finite models of unbounded cardinality, but no infinite model. Conclude that the compactness theorem does not hold for LFP.
- (b) Let \mathcal{K} be a class of finite structures. We say that \mathcal{K} is fixed-point bounded if for any first-order formula $\varphi(X, \bar{x})$ (positive in X) there is a constant m_{φ} such that for all structures $\mathfrak{A} \in \mathcal{K}$ we have $(F_{\varphi}^{\mathfrak{A}})^{m_{\varphi}} = (F_{\varphi}^{\mathfrak{A}})^{m_{\varphi}+1}$ (i.e. the inductive construction for the least fixed-point of the monotone operator defined by φ terminates after at most m_{φ} steps). Show that LFP \equiv FO over fixed-point bounded structures \mathcal{K} .

Exercise 3

- (a) Show that every class of finite structures can be defined in $L_{\infty\omega}$.
- (b) Construct a satisfiable sentence $\varphi \in L_{\omega_1 \omega}$ over a *countable* signature τ such that every model of φ is uncountable.

Exercise 4

In the lecture it was shown that (over finite structures) every LFP-formula is equivalent to a formula in $L_{\infty\omega}$. Show that this can be improved to $L_{\infty\omega}^{\omega}$, i.e. show that every formula $\varphi \in LFP$ can be translated into a formula $\varphi^* \in L_{\infty\omega}$ which is equivalent to φ (on finite structures) and which uses only a finite number of variables.

http://logic.rwth-aachen.de/Teaching/AMT-WS12/