Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory — Assignment 10

Due: Monday, 9 January, 12:00

Exercise 1

Conway's LIFE is a game played on an undirected graph. At the beginning some vertices are marked with a pebble. In every turn the following rules are applied simultaneously to all vertices:

- marked vertices remain marked if and only if they have 2 or 3 neighbours;
- unmarked vertices become marked if and only if they have exactly 3 neighbours.

Write a PFP formula over the signature $\{E, P\}$ (*E* is the edge relation and *P* the set of vertices marked at the beginning) which holds in an arena $\mathcal{G} = (V, E^{\mathcal{G}}, P^{\mathcal{G}})$ if and only if the game becomes eventually stationary.

Exercise 2

Let \mathcal{K} be a class of τ -structures with the following property. For every $m \in \mathbb{N}$, there exists a structure $\mathfrak{A} \in \mathcal{K}$ such that for all *m*-tuples \overline{a} in \mathfrak{A} there exists a non-trivial automorphism of $(\mathfrak{A}, \overline{a})$. Show that \mathcal{K} does not admit definable orders (even with parameters) in any logic considered in this lecture.

Exercise 3

Let \mathcal{D} be the domain of structures (A, E, R_1, \ldots) such that (A, E) is isomorphic to a finite rectangular undirected grid. Show that LFP captures PTIME on \mathcal{D} .

Exercise 4

Construct formulae of the multidimensional $\mu\text{-}calculus$ that define the following classes C of rooted transition systems:

- $C = \{(\mathcal{G}, v) : \text{ from } v \text{ a terminal vertex is reachable that satisfies the same atomic propositions} \}$
- $C = \{(\mathcal{G}, v) : \text{ there are two infinite paths } \pi \text{ and } \sigma \text{ starting from } v \text{ such that for all positions } i > 0$ and all predicates P it holds $(\mathcal{G}, \pi[i]) \models P$ iff $(\mathcal{G}, \sigma[i]) \not\models P\}$