Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory — Assignment 12

Due: Monday, 23 January, 12:00

Exercise 1

Show that the following classes of (undirected) graphs are definable in FPC.

- (a) Graphs having an odd number of edges. Hint: Handshaking lemma
- (b) Graphs having an even number of connected components.

Exercise 2

Let \mathfrak{A} be a finite τ -structure. We make the following convention: we interpret numerical tuples $\bar{\nu} = (\nu_{k-1}, \ldots, \nu_1, \nu_0) \in \{0, \ldots, |A| - 1\}^k$ as numbers in |A|-adic representation, i.e. we associate the value $\sum_{i=0}^{k-1} \nu_i |A|^i$ to each tuple $\bar{\nu} \in \{0, \ldots, |A| - 1\}^k$.

Show that the expressive power of FPC does not increase if we allow counting quantifiers of higher arity, i.e. formulas $\#_{x_0x_1\cdots x_{k-1}}\varphi(x_0,\ldots,x_{k-1}) \leq (\nu_{k-1},\ldots,\nu_0)$ where in a structure \mathfrak{A} the value of $\#_{x_0x_1\cdots x_{k-1}}\varphi(x_0,\ldots,x_{k-1})$ is the number of tuples \bar{a} such that $\mathfrak{A} \models \varphi(\bar{a})$ (with respect to the encoding introduced above). For simplicity, you may only consider the case k = 2.

Exercise 3

We denote by $C_{\infty\omega}^k$ the k-variable infinitary logic with counting which is the extension of $L_{\infty\omega}^k$ by all quantifiers of the form $\exists^{\geq n} x$ with the intended semantics "there are at least *n* elements x such that". Similarly to the definition of $L_{\infty\omega}^{\omega}$ we set $C_{\infty\omega}^{\omega} := \bigcup_{k\geq 1} C_{\infty\omega}^k$.

For illustration, consider the following sentence of $C^1_{\infty\omega}$ defining the class of graphs with an even number of vertices

$$\bigvee_{n\in 2\omega} (\exists^{\geq n} x(x=x) \land \neg \exists^{\geq n+1} x(x=x)).$$

Show that FPC $\leq C_{\infty\omega}^{\omega}$ (for formulas without free numerical variables). Hints:

• Construct for every formula $\varphi(\bar{x},\bar{\nu}) \in \text{FPC}$ and $n \in \omega, \bar{\nu} \in \{0,\ldots,n-1\}^k$ a formula $\varphi^*_{n,\bar{\nu}}(\bar{x})$ which is equivalent to φ on structures of size n, i.e. for all \mathfrak{A} of size n we have

$$\mathfrak{A} \models \varphi(\bar{a}, \bar{\nu}) \text{ iff } \mathfrak{A} \models \varphi_{n, \bar{\nu}}^{\star}(\bar{a}), \text{ for all } \bar{a} \in A.$$

• For fixed point operators, adapt the construction from the proof showing $FP \leq L^{\omega}_{\infty\omega}$.

http://logic.rwth-aachen.de/Teaching/AMT-WS12/