Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa, F. Reinhardt

Algorithmic Model Theory — Assignment 4

Due: Monday, 18 November, 12:00

Exercise 1

In this exercise we want to show that the model construction for FO²-formulae from the lecture is optimal in the following sense: in general it does not suffice to take only two copies (instead of three) of the set P which consists of those atomic 1-types which are realised at least twice in \mathfrak{A} .

Find an example of a satisfiable FO²-sentence $\varphi = \forall x \forall y \alpha \land \forall x \exists y \beta$ where α, β are quantifier-free such that:

- no model of φ contains a king (i.e. $K = \emptyset$) and
- for every model \mathfrak{A} of φ there is no corresponding finite model over the universe $P \times \{0, 1\}$.

Exercise 2

Show that the class $[\exists^*\forall, (0), (1)]_{=}$ has the finite model property.

Hint: Consider the Skolem normal-form of such sentences φ and try to prune a possibly infinite model of φ by using the fact that in all terms that appear in φ the number of iterations of f is bounded.

Exercise 3

- (a) Show that the problem whether a sentence of length n given in prenex normal form with q universal quantifiers has a model with at most s elements can be decided nondeterministically in time $p(s^q n)$ for some polynomial p.
- (b) Conclude, using the arguments from Exercise 1 of Assignment 2, that $Sat[\exists^*\forall^*, all, (0)]_{=} \in NEXPTIME.$
- (c) Show that $\operatorname{Sat}[\exists^*\forall^*, \operatorname{all}, (0)]_=$ is even NEXPTIME-complete by proving the hardness via a reduction from $\operatorname{Domino}(\mathfrak{D}, 2^n)$ to $\operatorname{Sat}[\exists^2\forall^*, \operatorname{all}, (0)]_=$.

Hint: Use sentences of the form $\exists 0 \exists 1 \forall \bar{x} \forall \bar{y} \dots (0 \neq 1 \land \varphi)$ where tuples $\bar{x} = x_0 \dots x_{n-1}$ represent coordinates and φ describes a correct tiling using appropriate relations.