Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa, F. Reinhardt

Algorithmic Model Theory — Assignment 5

Due: Monday, 25 November, 12:00

Exercise 1

For $n \geq 2$ we consider the directed path \mathcal{P}_n of length n, i.e. the $\{E\}$ -structure

 $\mathcal{P}_n = (\{0, \dots, n-1\}, \{(i, i+1) : 0 \le i < n-1\}).$

Construct for every $n \geq 2$ a sentence $\varphi_n \in \mathrm{FO}^2$ such that for every $\{E\}$ -structure \mathfrak{A} it holds $\mathfrak{A} \models \varphi_n$ if, and only if, $\mathfrak{A} \cong \mathcal{P}_n$.

Exercise 2

Recall the encoding of ordered structures presented in the lecture. Let $\tau = \{P, R\}$ be a signature consisting of a unary predicate P and a binary predicate R. Construct formulae $\beta_0(\bar{x})$ and $\beta_1(\bar{x})$ defining the \bar{x} -th symbol of the encoding of an ordered τ -structure.

Exercise 3

- (a) Show that the following classes of (undirected) graphs are in NP by explicitly constructing Σ_1^1 -sentences defining them.
 - (i) The class of regular graphs (i.e. every node has the same number of neighbours),
 - (ii) the class of Hamiltonian graphs, and
 - (iii) the class of graphs that admit a perfect matching.
- (b) Let $k \ge 1$. An (undirected) graph G = (V, E) has connectivity k if |G| > k and
 - for all $S \subseteq V, |S| < k$ the graph $G \setminus S$ is connected, and
 - there exists a set $S \subseteq V, |S| = k$ such that $G \setminus S$ is not connected.

Construct a Σ_1^1 -sentence defining the class of (undirected) graphs with connectivity k.