Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa, F. Reinhardt

Algorithmic Model Theory — Assignment 7

Due: Monday, 9 December, 12:00

Exercise 1

Construct an LFP-formula φ such that a (finite) undirected graph \mathcal{G} is a model of φ if, and only if, \mathcal{G} is bipartite.

Hint: A graph is bipartite if, and only if, it does not contain a cycle of odd length.

Exercise 2

Let $\mathcal{G} = (V, E, P)$ be a finite directed graph extended by a monadic predicate P. Describe the relations in \mathcal{G} that are defined by the following LFP-formulae.

- (a) $[\mathbf{gfp} Rx. (Px \land \exists y(Exy \land [\mathbf{lfp} Sx. (Rx \lor \exists y(Exy \land Sy))](y))](x)$
- (b) $[\mathbf{lfp} Uxy. (Exy \lor \exists z (Exz \land [\mathbf{lfp} Gxy. (\exists z (Exz \land Uzy))](z, y))](x, y)$

Exercise 3

For $n \ge 1$ we consider the directed $(n \times n)$ -grid as a relational structure $\mathcal{G}_n = (U_n, H_n, V_n)$ over the signature $\tau = \{H, V\}$ where

- $U_n = \{(i, j) : 0 \le i, j \le n 1\}$, and
- $H_n = \{((i, j), (i + 1, j)) : 0 \le j \le n 1, 0 \le i < n 1\}$, and
- $V_n = \{((i, j), (i, j+1)) : 0 \le i \le n-1, 0 \le j < n-1\}.$

Construct an LFP-formula $\varphi(x, y)$ which defines a linear order on the class of all $(n \times n)$ -grids, i.e. $\varphi^{\mathcal{G}_n} = \{(a, b) : \mathcal{G}_n \models \varphi(a, b)\}$ is a linear order on U_n for all $n \ge 1$.

Exercise 4

- (a) Construct an LFP-formula $\varphi(p, x, y)$ such that for all directed cycles $\mathcal{C} = (V, E)$ and every $v \in V$ the relation $\varphi(v)^{\mathcal{C}} = \{(a, b) : \mathcal{C} \models \varphi(v, a, b)\}$ is a linear order on V.
- (b) Prove that the parameter p is necessary, i.e. prove that there is no LFP-formula $\varphi(x, y)$ which defines a linear order on the class of all directed cycles.

Exercise 5

Prove that on the classes of structures from Exercise 3 and 4 (i.e. on the class of directed grids and on the class of directed cycles) LFP captures PTIME.

http://logic.rwth-aachen.de/Teaching/AMT-WS13/