Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa, F. Reinhardt

Algorithmic Model Theory — Assignment 8

Due: Monday, 16 December, 12:00

Exercise 1

Show that the following classes are $L_{\omega_1\omega}$ definable over the appropriate signatures.

- (a) torsion Abelian groups (This means all elements of the group have finite order);
- (b) finitely generated fields (The whole field can be generated by a finite set through applications of addition and multiplication);
- (c) linear orders isomorphic to $(\mathbb{Z}, <)$;
- (d) connected graphs;
- (e) acyclic directed graphs.

Exercise 2

- (a) Show that every model class of finite τ -structures can be defined in $L_{\infty\omega}$.
- (b) Let \mathcal{K} be a model class of finite structures. We say that \mathcal{K} is *fixed-point bounded* if for any first-order formula $\varphi(X, \bar{x})$ (positive in X) there is a constant m_{φ} such that for all structures $\mathfrak{A} \in \mathcal{K}$ we have $(F_{\varphi}^{\mathfrak{A}})^{m_{\varphi}} = (F_{\varphi}^{\mathfrak{A}})^{m_{\varphi}+1}$ (i.e. the inductive construction for the least fixed-point of the monotone operator defined by φ terminates after at most m_{φ} steps). Show that LFP \equiv FO over fixed-point bounded structures \mathcal{K} .

Exercise 3

In the lecture it was shown that (over finite structures) every LFP-formula is equivalent to a formula in $L_{\infty\omega}$. Show that this can be improved to $L_{\infty\omega}^{\omega}$, i.e. show that every formula $\varphi \in LFP$ can be translated into a formula $\varphi^* \in L_{\infty\omega}$ which is equivalent to φ (on finite structures) and which uses only a finite number of variables.

Exercise 4

Construct LFP-formulas which define in a rooted tree $\mathcal{T} = (V, E, r)$, where r denotes its root, the following relations.

- (a) $R_1 = \{(x, y) : \text{the subtrees rooted in } x \text{ and } y \text{ have the same height} \}$
- (b) $R_2 = \{(x, y) : \text{the nodes } x \text{ and } y \text{ are on the same level of the tree} \}$
- (c) $R_3 = \{x : \text{the subtree rooted in } x \text{ possesses a perfect matching}\}.$

Hint: Use the inflationary stage comparison relations \prec_{φ}^{\inf} which were presented in the lecture.

http://logic.rwth-aachen.de/Teaching/AMT-WS13/