Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa, F. Reinhardt

Algorithmic Model Theory — Assignment 9

Due: Monday, 6 January, 12:00

Exercise 1

Let \mathcal{K} be a class of (finite) τ -structures with the following property. For every $m \in \mathbb{N}$, there exists a structure $\mathfrak{A} \in \mathcal{K}$ such that for all m-tuples \overline{a} in \mathfrak{A} there exists a non-trivial automorphism of $(\mathfrak{A}, \overline{a})$. Show that \mathcal{K} does not admit definable orders (even with parameters) in any logic which is isomorphism-invariant.

Exercise 2

(a) Construct formulae of the multidimensional μ -calculus that define the following classes C_i of rooted transition systems.

 $C_1 = \{(\mathcal{G}, v) : \text{from } v \text{ a terminal vertex is reachable that satisfies precisely the same predicates}\}$ $C_2 = \{(\mathcal{G}, v) : \text{there are two infinite paths } \pi, \sigma \text{ starting from } v \text{ such that for all positions } i > 0$ and all predicates P it holds $(\mathcal{G}, \pi[i]) \models P$ if, and only if, $(\mathcal{G}, \sigma[i]) \not\models P$ }

(b) Show that for K_1, \bar{v} and K_2, \bar{w} with $K_1, v_i \sim K_2, w_i$ for $1 \leq i \leq k$ it holds that $K_1^k, \bar{v} \sim K_2^k, \bar{w}$. Conclude, using the bisimulation invariance of L_{μ} , that the multidimensional μ -calculus is bisimulation invariant as well.

Exercise 3

Let $\mathfrak A$ be a finite τ -structure. We make the following convention: we interpret numerical tuples $\bar{\nu}=(\nu_{k-1},\dots,\nu_1,\nu_0)\in\{0,\dots,|A|-1\}^k$ as numbers in |A|-adic representation, i.e. we associate the value $\sum_{i=0}^{k-1}\nu_i|A|^i$ to each tuple $\bar{\nu}\in\{0,\dots,|A|-1\}^k$.

Show that the expressive power of FPC does not increase if we allow counting quantifiers of higher arity, i.e. formulas $\#_{x_0x_1\cdots x_{k-1}}\varphi(x_0,\ldots,x_{k-1}) \leq (\nu_{k-1},\ldots,\nu_0)$ where in a structure \mathfrak{A} the value of $\#_{x_0x_1\cdots x_{k-1}}\varphi(x_0,\ldots,x_{k-1})$ is the number of tuples \bar{a} such that $\mathfrak{A} \models \varphi(\bar{a})$ (with respect to the encoding introduced above). For simplicity, only consider the case k=2.

Exercise 4

Recall the method of colour refinement that was presented in the lecture (see Example (6.5) from the lecture notes). Give an explicit definition of the stable colouring in FPC as a numerical term $\eta(x)$ of the form

$$\eta(x) = \#_z \left([\text{ifp } u \prec v \, . \, \varphi(\prec, u, v)] \, (z, x) \right).$$

such that for any (finite, undirected) graph $\mathcal{G} = (V, E)$ the number $\eta(v)^{\mathcal{G}}$ is the colour of the vertex $v \in V$ in the stable colouring of the graph G.