Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa, F. Reinhardt

Algorithmic Model Theory — Assignment 10

Due: Monday, 13 January, 12:00

Exercise 1

Show that FPC $\leq C_{\infty\omega}^{\omega}$ (for formulas without free numerical variables). Hints:

• Construct for every formula $\varphi(\bar{x}, \bar{\nu}) \in \text{FPC}$ and $n \in \omega, \bar{\nu} \in \{0, \dots, n-1\}^k$ a formula $\varphi_{n,\bar{\nu}}^*(\bar{x})$ which is equivalent to φ on structures of size n, i.e. for all \mathfrak{A} of size n we have

 $\mathfrak{A} \models \varphi(\bar{a}, \bar{\nu}) \text{ iff } \mathfrak{A} \models \varphi^{\star}_{n, \bar{\nu}}(\bar{a}), \text{ for all } \bar{a} \in A.$

• For fixed point operators, adapt the construction from the proof showing $FP \leq L^{\omega}_{\infty\omega}$.

Exercise 2

In the lecture, the k-pebble bijection game k-BG($\mathfrak{A}, \mathfrak{B}$) was introduced which characterises $C^k_{\infty\omega}$ -equivalence of structures.

- (a) Modify the rules of the game to capture equivalence in $L^k_{\infty\omega}$ rather than $C^k_{\infty\omega}$. Hint: Relax the requirement for Duplicator to choose a bijection.
- (b) Use this game to show that the following classes of structures are undefinable in FP:
 - The class of (undirected) graphs with an Eulerian cycle. *Hint*: Consider complete graphs.
 - The class of (undirected) graphs with an Hamiltonian cycle. *Hint*: Consider complete bipartite graphs.

Exercise 3

Let G = (V, E) be a finite undirected graph and $v, w \in V$.

Show that Duplicator has a winning strategy in the 2-pebble bijection game 2-BG(G,G) starting from position (v, w) if v and w have the same colour in the stable colouring of G (cf. assignment 9, exercise 4).