
Algorithmic Model Theory
SS 2016

Prof. Dr. Erich Grädel and Dr. Wied Pakusa

Mathematische Grundlagen der Informatik
RWTH Aachen



cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2019 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de



Contents

1 The classical decision problem 1
1.1 Basic notions on decidability . . . . . . . . . . . . . . . . . . . . 2
1.2 Trakhtenbrot’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Domino problems . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Applications of the domino method . . . . . . . . . . . . . . . . 16
1.5 The finite model property . . . . . . . . . . . . . . . . . . . . . . 20
1.6 The two-variable fragment of FO . . . . . . . . . . . . . . . . . . 21

2 Descriptive Complexity 31
2.1 Logics Capturing Complexity Classes . . . . . . . . . . . . . . . 31
2.2 Fagin’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Second Order Horn Logic on Ordered Structures . . . . . . . . 38

3 Expressive Power of First-Order Logic 43
3.1 Ehrenfeucht-Fraïssé Theorem . . . . . . . . . . . . . . . . . . . . 43
3.2 Hanf’s technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Gaifman’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Lower bound for the size of local sentences . . . . . . . . . . . 54

4 Zero-one laws 61
4.1 Random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Zero-one law for first-order logic . . . . . . . . . . . . . . . . . . 63
4.3 Generalised zero-one laws . . . . . . . . . . . . . . . . . . . . . . 68

5 Modal, Inflationary and Partial Fixed Points 73
5.1 The Modal µ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Inflationary Fixed-Point Logic . . . . . . . . . . . . . . . . . . . 75
5.3 Simultaneous Inductions . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Partial Fixed-Point Logic . . . . . . . . . . . . . . . . . . . . . . 82



5.5 Capturing PTIME up to Bisimulation . . . . . . . . . . . . . . . 85



1 The classical decision problem

The classical decision problem was generally considered as the main
problem of mathematical logic until its unsolvability was proved by
Church and Turing in 1936/37.

Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren
kennt, das bei einem vorgelegten logischen Ausdruck durch
endlich viele Operationen die Entscheidung über die Allge-
meingültigkeit bzw. Erfüllbarkeit erlaubt. (. . . ) Das Entschei-
dungsproblem muss als das Hauptproblem der mathematis-
chen Logik bezeichnet werden. 1

(D. Hilbert and W. Ackermann, Grundzüge der theoretischen
Logik, 1928)

By a logical expression, Hilbert and Ackermann meant what we now
call a formula of first-order logic (FO). Historically, the classical decision
problem was part of Hilbert’s formalist programme for the foundations
of mathematics. Its importance stems from the fact that first-order logic
provides a framework to express almost all aspects of mathematics.

We present three equivalent formulations of the classical decision
problem.

Satisfiability: Construct an algorithm that decides for any given formula
of FO whether it has a model.

Validity: Construct an algorithm that decides for any given formula of
FO whether it is valid, i.e. whether it holds in all models where it is
defined.

1The Entscheidungsproblem is solved when we know a procedure that allows
for any given logical expression to decide by finitely many operations its validity or
satisfiability. [. . . ] The Entscheidungsproblem must be considered the main problem
of mathematical logic.
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1 The classical decision problem

Provability: Construct an algorithm that decides for any given formula
ψ of FO whether ⊢ ψ, meaning that ψ is provable from the empty
set of axioms in some complete formal system such as the sequent
calculus.

Since ψ is satisfiable if, and only if, ¬ψ is not valid, satisfiability
and validity are equivalent problems with respect to computability. The
equivalence with provability is a much more intricate result and in fact
a consequence of Gödel’s Completeness Theorem.
Theorem 1.1 (Completeness Theorem (Gödel)). For any given set of
sentences Φ ⊆ FO(τ) and any sentence ψ ∈ FO(τ) it holds that

Φ |= ψ ⇐⇒ Φ ⊢ ψ .

In particular ∅ |= ψ ⇔ ∅ ⊢ ψ.
Corollary 1.2. The set of valid first-order formulae is recursively enu-
merable.

1.1 Basic notions on decidability

In our formulation of the decision problem it was not precisely specified
what an algorithm is. It was not until the 1930s that Church, Kleene,
Gödel, and Turing provided precise definitions of an abstract algorithm.
Their approaches are today known to be equivalent. We introduce the
concept of a Turing machine.
Definition 1.3. A Turing machine (TM) M is a tuple M = (Q, Σ, Γ, q0, F, δ),
where

• Q is a finite set of (control) states,
• Σ, Γ are finite alphabets, where Σ is the working alphabet with a

special blank symbol □ ∈ Σ, and Γ ⊆ Σ \ {□} is the input alphabet,
• q0 ∈ Q is the initial state,
• F ⊆ Q is the set of final states and
• δ : (Q \ F)× Σ → Q × Σ × {−1, 0, 1} is the transition function.

A configuration is a triple C = (q, p, w) ∈ Q × N × Σ∗, representing
the situation that M is in state q, reads tape cell p and that the in-
scription of the infinite tape is w = w0 . . . wk, followed by infinitely
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1.1 Basic notions on decidability

many blank-symbols. The transition function δ induces a partial
function on the set of all configurations C 7→ Next(C), where for
δ(q, wp) = (q′, a, m), the successor configuration of C is defined as
Next(C) = (q′, p + m, w0 . . . wp−1awp+1 · · ·wk). A computation of the TM
M on an input word x ∈ Γ∗ is a sequence

C0, C1, . . .

where C0 = C0(x) := (q0, 0, x) is the input configuration and Ci+1 =

Next(Ci) for all i.

M halts on x if the computation of M on x is finite and ends in a
final configuration C f = (q, p, w) with q ∈ F. Further

L(M) := {x ∈ Γ∗ : M halts on x}.

A Turing machine M computes a partial function fM : Γ∗ → Σ∗

with domain L(M) such that fM(x) = y if and only if the computation
of M on x ends in (q, p, y) for some q ∈ F, y ∈ Σ∗ and p ∈ N.
Definition 1.4. A Turing acceptor is a Turing machine M with F = F+ ·∪
F−. We say that M accepts x if the computation of M on x ends in a state
in F+ and M rejects x if the computation of M on x ends in a state in F−.
Definition 1.5.

• L ⊆ Γ∗ is recursively enumerable (r.e.) if there exists a TM M with
L(M) = L.

• L ⊆ Γ∗ is co-recursively enumerable (co-r.e.) if L := Γ∗ \ L is r.e..

• A (partial) function f : Γ∗ → Σ∗ is (Turing) computable if there is a
TM M with fM = f .

• L ⊆ Γ∗ is decidable (or recursive), if there is a Turing acceptor M such
that for all x ∈ Γ∗

x ∈ L ⇒ M accepts x

x /∈ L ⇒ M rejects x

or, equivalently, if its characteristic function
χL : Γ∗ → {0, 1} is Turing computable.
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1 The classical decision problem

Theorem 1.6. A language L ⊆ Γ∗ is decidable if, and only if, L is r.e.
and co-r.e.
Definition 1.7. Let A ⊆ Γ∗, B ⊆ Σ∗. We say that A is (many-to-one)
reducible to B, A ≤ B, if there is a total computable function f : Γ∗ → Σ∗

such that for all x ∈ Γ∗ we have x ∈ A ⇔ f (x) ∈ B.
Lemma 1.8.

• A ≤ B, B decidable ⇒ A decidable

• A ≤ B, B r.e. ⇒ A r.e.

• A ≤ B, A undecidable ⇒ B undecidable.

There surely are undecidable languages since there are only count-
ably many Turing machines but uncountably many languages. Unfortu-
nately, among these there are quite relevant classes of languages. For
example we cannot decide whether a TM halts on a given input.
Definition 1.9 (Halting Problems). The general halting problem is defined
as

H := {ρ(M)#ρ(x) : M Turing machine, x ∈ L(M)}

where ρ(M) and ρ(x) are encodings of the TM M and the input x over
a fixed alphabet {0, 1} such that the computation of M on x can be
reconstructed from the encodings ρ(M) and ρ(x) in an effective way.
This means that there is a universal TM U which, given ρ(M) and ρ(x),
simulates the computation of M on x and halts if, and only if, M halts
on x. Thus, L(U) = H from which we conclude that H is r.e..

We introduce two special variants of the halting problem.

• The self-application problem: H0 := {ρ(M) : ρ(M) ∈ L(M)}.

• Halting on the empty word: Hε := {ρ(M) : ε ∈ L(M)}.

Theorem 1.10. H, H0, and Hε are undecidable.

Proof.

• H0 is not co-r.e. and thus undecidable. Otherwise H0 = L(M0) for
some TM M0. Then

ρ(M0) ∈ H0 ⇔ ρ(M0) ∈ L(M0) ⇔ ρ(M0) ∈ H0.
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1.1 Basic notions on decidability

• H0 is a special case of H, hence H0 ≤ H, and H is undecidable.
• We can reduce H to Hε, thus Hε is undecidable. q.e.d.

We next establish the much more general result that in fact, no
non-trivial semantic property of Turing machines can be decided algo-
rithmically. In particular, for any fixed function, there is no algorithm
that decides whether a given program computes precisely that func-
tion, i.e. we cannot algorithmically prove the correctness of a program.
Note that this does not mean that we cannot prove the correctness of
a single given program. Instead the statement is that we cannot do so
algorithmically for all programs.
Theorem 1.11 (Rice). Let R be the set of all computable functions and
let S ⊆ R be a set of computable functions such that S ̸= ∅ and S ̸= R.
Then code(S) := {ρ(M) : fM ∈ S} is undecidable.

Proof. Let ⇑ be the everywhere undefined function, with domain Def(⇑
) = ∅. Obviously, ⇑ is computable. Assume that ⇑̸∈ S (otherwise
consider R \ S instead of S. Clearly if code(R \ S) is undecidable then
so is code(S).)

As S ̸= ∅, there exists a function f ∈ S . Let M f be a TM that
computes f , i.e. fM f = f . We define a reduction Hε ≤ code(S) by
describing a total computable function ρ(M) 7→ ρ(M′) such that

M halts on ε ⇔ fM′ ∈ S.

Specifically, given ρ(M), we construct the encoding of a TM M′ which,
given an input x, proceeds as follows:

• first simulate M on ε (i.e. apply the universal TM U to ρ(M)#ε);
• then simulate M f on x (i.e. apply the universal TM U to

ρ(M f )#ρ(x)).

It is clear that the reduction function is computable. Furthermore, if
M halts on ε then fM′(x) = f (x) for all inputs x, i.e. fM′ = f , so fM′ ∈ S.
If M does not halt on ε then M′ does not halt on x for any x, i.e. fM′ =⇑,
so fM′ ̸∈ S. q.e.d.

Definition 1.12 (Recursive inseparability). Let A, B ⊆ Γ∗ be two disjoint
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1 The classical decision problem

sets. We say that A and B are recursively inseparable if there exists no
decidable set C ⊆ Γ∗ such that A ⊆ C and B ∩ C = ∅.
Example. (A, A) are recursively inseparable if, and only if, A is undecid-
able.
Lemma 1.13. Let A, B ⊆ Γ∗, A ∩ B = ∅ be recursively inseparable. Let
X, Y ⊆ Σ∗, X ∩Y = ∅, and let f be a total computable function such that
f (A) ⊆ X and f (B) ⊆ Y. Then X and Y are recursively inseparable.

Proof. Assume there exists a decidable set Z ⊆ Σ∗ such that X ⊆ Z
and Y ∩ Z = ∅. Consider C = {x ∈ Γ∗ : f (x) ∈ Z}. C is decidable,
A ⊆ C, B ∩ C = ∅, thus C separates A, B. q.e.d.

Notation: We write (A, B) ≤ (X, Y) if such a function f exists.
Example. (A, A) ≤ (B, B) ⇔ A ≤ B.

As a preparation for Trakhtenbrot’s Theorem, we consider the fol-
lowing refinements of Hε:

H+
ε := {ρ(M) : M accepts ε}

H−
ε := {ρ(M) : M rejects ε}

H∞
ε := {ρ(M) : the computation of M on ε is infinite

and does not cycle.}

H+
0 , H−

0 , H∞
0 are defined analogously, with respect to self-

application.
Theorem 1.14. H+

ε , H−
ε and H∞

ε are pairwise recursively inseparable.

Proof. (H+
ε , H∞

ε ): We show that every set C with H+
ε ⊆ C and H∞

ε ∩ C =

∅ is undecidable by reducing the halting problem Hε to C. Define a
reduction ρ(M) 7→ ρ(M′) as follows. From a given code ρ(M) construct
the code of a TM M′ that simulates M and simultaneously counts the
number of computation steps since the start. If M halts (accepting or
rejecting), M′ accepts.

It is clear that the reduction function is computable. If M halts
on ε then M′ halts on ε as well and accepts, so ρ(M′) ∈ H+

ε ⊆ C. If
M does not halt on ε then M′ does not halt either, and never cycles, so
ρ(M′) ∈ H∞

ε and as H∞
ε ∩ C = ∅, we have ρ(M′) ̸∈ C.
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1.2 Trakhtenbrot’s Theorem

The statement for H−
ε and H∞

ε is proven analogously.

(H−
ε , H+

ε ): Show that (H−
0 , H+

0 ) ≤ (H−
ε , H+

ε ) and that (H−
0 , H+

0 ) are
recursively inseparable.

• (H−
0 , H+

0 ) ≤ (H−
ε , H+

ε ):
For a given input TM M construct a TM M′ that ignores its own
input and simulates M on ρ(M). Obviously, M′ can be constructed
effectively, say by a computable function h. Now h(M) accepts ε iff
M accepts ρ(M) and h(M) rejects ε iff M rejects ρ(M).

• (H−
0 , H+

0 ) recursively inseparable:
Assume there exists a decidable C with H−

0 ⊆ C and H+
0 ⊆ C.

Consider a machine M0 that decides C. There are two cases:

(1) M0 accepts ρ(M0). Then ρ(M0) ∈ C by definition of M0. Then
ρ(M0) ̸∈ H+

0 by definition of C. On the other hand, if M0

accepts ρ(M0) then ρ(M0) ∈ H+
0 (by definition of H+

0 ), a con-
tradiction.

(2) M0 rejects ρ(M0). Then ρ(M0) ̸∈ C by definition of M0. Then
ρ(M0) ̸∈ H−

0 by definition of C. On the other hand, if M0 rejects
ρ(M0) then ρ(M0) ∈ H−

0 (by definition of H−
0 ), a contradiction.

q.e.d.

1.2 Trakhtenbrot’s Theorem

In the following, we consider FO, more precisely first-order logic with
equality. We restrict ourselves to a countable signature

τ∞ := {Ri
j : i, j ∈ N} ∪ { f i

j : i, j ∈ N}

where each Ri
j is a relation symbol of arity i and each f i

j is a function
symbol of arity i. We write formulae in FO(τ∞) as words over the fixed
finite alphabet

Γ := {R, f , x, 0, 1, [, ]} ∪ {=,¬,∧,∨,→,↔, ∃, ∀.(, )},

using the following encoding of relation symbols, function symbols, and
variables:

7



1 The classical decision problem

relation symbols: Ri
j 7−→ R[bin i][bin j]

function symbols: f i
j 7−→ f [bin i][bin j]

variables: xj 7−→ x[bin j].

In this way, every formula φ ∈ FO can be viewed as a word in Γ∗.
Let X ⊆ FO be a class of formulae. We analyse the following

decision problems:

Sat(X) := {ψ ∈ X : ψ has a model}
Fin-Sat(X) := {ψ ∈ X : ψ has a finite model}

Val(X) := {ψ ∈ X : ψ is valid}
Non-Sat(X) := X \ Sat(X)

Inf-Axioms(X) := Sat(X) \ Fin-Sat(X)

= {ψ ∈ X : ψ is an infinity axiom, i.e. ψ has a

model but no finite model}.

Theorem 1.15. Let X ⊆ FO be decidable. Then

(1) Val(X) is r.e.
(2) Non-Sat(X) is r.e.
(3) Sat(X) is co-r.e.
(4) Fin-Sat(X) is r.e.
(5) Inf-Axioms(X) is co-r.e.

Proof. (1) φ is valid ⇔ ⊢ φ (Completeness Theorem). Thus we can
systematically enumerate all proofs and halt if a proof for φ is listed.

(2) φ valid ⇔ ¬φ is not satisfiable.
(3) Follows from Item (2).
(4) Systematically generate all finite models and halt if a model of φ is

found.
(5) FO \ Inf-Axioms(X) = Non-Sat(X) ∪ Fin-Sat(X) is r.e. q.e.d.

Definition 1.16. A class X ⊆ FO has the finite model property (FMP) if
every satisfiable φ ∈ X has a finite model, i.e. if Sat(X) = Fin-Sat(X).
Theorem 1.17. Suppose that X ⊆ FO is decidable and that X has the
FMP. Then Sat(X) is decidable.
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1.2 Trakhtenbrot’s Theorem

Proof. Sat(X) is co-r.e. and since Sat(X) = Fin-Sat(X) and Fin-Sat(X) is
r.e. also Sat(X) is r.e. Thus Sat(X) is decidable. q.e.d.

In this case also Fin-Sat(X), Non-Sat(X), Val(X) are decidable and
of course Inf-Axioms(X) = ∅ is decidable.
Theorem 1.18 (Trakhtenbrot). There is a finite vocabulary τ ⊆ τ∞ such
that Fin-Sat(FO(τ)), Non-Sat(FO(τ)) and Inf-Axioms(FO(τ)) are pair-
wise recursively inseparable and therefore undecidable.

The proof of Trakhtenbrot’s theorem introduces a proof strategy
that can be applied in many other undecidability proofs. (Do not focus
on the technicalities but on the general idea to construct the reduction
formulae.)

Proof. Let M be a deterministic Turing acceptor. We show that there is
an effective reduction ρ(M) 7→ ψM such that

(1) M accepts ε =⇒ ψM has a finite model.

(2) M rejects ε =⇒ ψM is unsatisfiable.

(3) The computation of M on ε is infinite and non-periodic =⇒ ψM is
an infinity axiom.

Then the theorem follows by Lemma 1.13.

Let M be a Turing acceptor with states Q = {q0, . . . , qr}, initial state
q0, alphabet Σ = {a0, . . . , as} (where a0 = □), final states F = F+ ∪ F−

and transition function δ.

ψM is defined over the vocabulary τ = {0, f , q, p, w} where 0 is a
constant, f , q, p are unary functions and w is a binary function. Define
the term k as f k0.

By constructing a formula we intend to have a model AM =

(A, 0, f , q, p, w) describing a run of M on the input ε where

• universe A = {0, 1, 2, . . . , n} or A = N;

• f (t) = t + 1 if t + 1 ∈ A and f (t) = t, if t is the last element of A;

• q(t) = i iff M is at time t in state qi;

• p(t) is the head position of M at time t;

• w(s, t) = i iff symbol ai is at time t on tape-cell s.

9



1 The classical decision problem

Note that we cannot enforce this model, but if ψM is satisfiable this
one will be among its models.

ψM := START ∧ COMPUTE ∧ END

START := (q0 = 0 ∧ p0 = 0 ∧ ∀x w(x, 0) = 0).

[Enforces input configuration on ε at time 0]

COMPUTE := NOCHANGE ∧ CHANGE

NOCHANGE := ∀x∀y(py ̸= x → w(x, f y) = w(x, y))

[content of currently not visited tape cells does not change]

CHANGE :=
∧

δ:(qi,aj) 7→(qk,aℓ,m)

∀y(αi,j → βk,ℓ,m)

where

αij := (qy = i ∧ w(py, y) = j)

[M is at time y in state qi and reads the symbol aj]

βk,ℓ,m := (q f y = k ∧ w(py, f y) = ℓ ∧ MOVEm)

and

MOVEm :=





p f y = py if m = 0

p f y = f py if m = 1

∃z( f z = py ∧ p f y = z) if m = −1.

END :=
∧

δ(qi,aj) undef.
qi ̸∈F+

∀y¬αij

[The only way the computation ends is in an accepting
state]

Remark 1.19.

• ρ(M) 7→ ψM is an effective construction.

• If M accepts ε, the intended model is finite and is indeed a model
AM |= ψM, thus ψM ∈ Fin-Sat(FO(τ)).

• If the computation of M on ε is infinite, the intended model is
infinite and AM |= ψM.

10



1.2 Trakhtenbrot’s Theorem

It remains to show that if M rejects ε, then ψM is unsatisfiable, and
if the computation of M on ε is infinite and aperiodic, then ψM is an
infinity axiom.

Suppose B = (B, 0, f , q, p, w) |= ψM.

Definition 1.20. B enforces at time t the configuration (qi, j, w) with
w = ai0 . . . aim ∈ Σ∗ if

(1) B |= qt = i,
(2) B |= pt = j,
(3) for all k ≤ m, B |= w(k, t) = ik and for all k > m, B |= w(k, t) = 0.

Since B |= ψM, the following holds:

• B enforces C0 = (q0, 0, ε) at time 0 (since B |= START.)
• If B enforces at time t a non-final configuration Ct, then B enforces

the configuration Ct+1 = Next(Ct) at time t + 1.
• Especially, the computation of M cannot reach a rejecting configura-

tion. It follows that if M rejects ε, then ψM is unsatisfiable.
Consider an infinite and aperiodic computation of M, and assume
B |= ψM is finite. Since B is finite, it enforces a periodic computa-
tion in contradiction to the assumption that the computation of M
is aperiodic.

C0 ⊢ . . . ⊢Cr ⊢ . . . ⊢Ct−1

We have shown:

• If M accepts ε, then ψM has a finite model.
• If M rejects ε, then ψM is unsatisfiable.
• If the computation of M is infinite and aperiodic, then ψM is an

infinity axiom. q.e.d.

We now know that the sets of all finitely satisfiable, all unsatisfiable
and all only infinitely satisfiable formulae are undecidable for FO(τ)

where τ consists of only three unary functions and one binary function.
This raises a number of questions.

(1) For which other vocabularies σ do we have similar undecidability
results for FO(σ)?

11



1 The classical decision problem

(2) For which σ is satisfiability of FO(σ) decidable?

(3) Is there a complete classification? In this case, we want to find mini-
mal vocabularies σ such that the above problems are undecidable,
i.e. vocabularies such that any further restriction yields a class of
formulae for which satisfiability is decidable.

We first define what it means that a fragment of FO is as hard for
satisfiability as the whole FO.
Definition 1.21. X ⊆ FO is a reduction class if there exists a computable
function f : FO → X such that ψ ∈ Sat(FO) ⇔ f (ψ) ∈ Sat(X).

Let X, Y ⊆ FO. A conservative reduction of X to Y is a computable
function f : X → Y with

• ψ ∈ Sat(X) ⇔ f (ψ) ∈ Sat(Y), and

• ψ ∈ Fin-Sat(X) ⇔ f (ψ) ∈ Fin-Sat(Y).

X is a conservative reduction class if there exists a conservative reduc-
tion of FO to X.
Corollary 1.22. Let X be a conservative reduction class. Then Fin-Sat(X),
Inf-Axioms(X) and Non-Sat(X) are pairwise recursively inseparable, and
thus Fin-Sat(X), Sat(X), Val(X), Non-Sat(X), Inf-Axioms(X) are undecid-
able.

Proof. A conservative reduction from FO to X yields a uniform reduc-
tion from Fin-Sat(FO), Inf-Axioms(FO) and Non-Sat(FO) to Fin-Sat(X),
Inf-Axioms(X) and Non-Sat(X), respectively. q.e.d.

It is indeed possible to give a complete classification of those vocab-
ularies σ such that FO(σ) is decidable.
Theorem 1.23. If σ ⊆ {P0, P1, . . .} ∪ { f } consists of at most one
unary function f and an arbitrary number of monadic predicates
P0, P1, . . ., then Sat(FO(σ)) is decidable. In all other cases, Sat(FO(σ)),
Inf-Axioms(FO(σ)) and Non-Sat(FO(σ)) are pairwise recursively insepa-
rable, and FO(σ) is a conservative reduction class.

A full proof of this classification theorem is rather difficult. In
particular, the decidability of the monadic theory of one unary function,
which implies the decidability part, is a difficult theorem due to Rabin.
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On the other side, one has to show that Trakhtenbrot’s theorem applies
to the vocabularies

τ1 = {E} where E is a binary relation,
τ2 = { f , g} where f , g are unary functions,
τ3 = {F} where F is a binary function,

and hence also to all extensions of τ1, τ2, τ3.
Of course, one may also look at other syntactic restrictions besides

restricting the vocabulary. One possibility is to restrict the number of
variables. This is only interesting for relational formulae. If we have
functions, satisfiability is undecidable even for formulae with only one
variable, as we shall see later.

Define FOk as first-order logic with relational symbols only and a
fixed collection of k variables, say x1, . . . , xk.
Theorem 1.24.

• FO2 has the finite model property and is decidable (see Sect. 1.6).
• FO3 is a conservative reduction class.

A further important possibility is to restrict the structure of quan-
tifier prefixes of formulae in prenex normal form, and to combine this
with restrictions on the vocabulary, and the presence or absence of
equality. This leads to the notion of a prefix-vocabulary class in first-order
logic, and indeed, also for these fragments of FO there is a complete
classification of those with a solvable satisfiability problem, and those
that are conservative reduction classes.

A full description of this classification exceeds the scope of this
course by far (see E. Börger, E. Grädel, and Y. Gurevich, The Classical
Decision Problem, 1997). Instead we shall present some of the funda-
mental methods for establishing such results, and illustrate these with
applications to specific fragments of first-order logic.

1.3 Domino problems

Domino problems are a simple and yet general tool for proving unde-
cidability results (and lower bounds in complexity theory) without the
need of explicit encodings of Turing machine computations.

13



1 The classical decision problem

The informal idea is the following: a domino problem is given by
a finite set of dominoes or tiles, each of them an oriented unit square
with coloured edges; the question is whether it is possible to cover the
first quadrant in the Cartesian plane by copies of these tiles, without
holes and overlaps, such that adjacent dominoes have matching colours
on their common edge. The set of tiles is finite, but there are infinitely
many copies of each tile available; rotation of the tiles is not allowed.
Variants of this problem require a tiling of a different geometric object (a
finite square, a rectangle, or a torus) and/or that certain places (e.g. the
origin, the bottom row or the diagonal) are tiled by specific tiles.

Here is a more abstract defintion.
Definition 1.25. A domino system is a structure D = (D, H, V) with

• a finite set D (of dominoes),
• horizontal and vertical compatibility relations H, V ⊆ D × D.

The intuitive meaning of H and V is that

• (d, d′) ∈ H if the right colour of d is equal to the left colour of d′,
• (d, d′) ∈ V if the top colour of d is equal to the bottom colour of d′

(see Figure 1.1).

A tiling of N × N by D is a function t : N × N → D such that for
all x, y ∈ N

• (t(x, y), t(x + 1, y)) ∈ H and
• (t(x, y), t(x, y + 1)) ∈ V.

A periodic tiling of N × N by D is a tiling t for which there exist two
integers h, v ∈ N such that t(x, y) = t(x + h, y) = t(x, y + v) for all
x, y ∈ N.

The decision problem DOMINO is described as

DOMINO := {D : there exists a tiling of N × N by D}

Theorem 1.26 (Berger, Robinson). DOMINO is co-r.e. and undecidable.
In this general form, this is quite a difficult result. A simpler variant

is the so-called origin-constrained domino problem, that requires that a
specific domino must be placed at the point (0, 0). With this requirement,
it is straightforward to encode Turing machine computations by domino

14
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Figure 1.1. Domino adjacency condition

tilings (successive rows of the tiling correspond to successive configura-
tions in the computation), and thus to reduce halting problems to tiling
problems for domino systems. The origin constraint is used to encode
the beginning of the computation (and to avoid that the entire space can
be tiled by a domino corresponding to the blank symbol) Without an
origin constraint, the problem is more difficult to handle; an essential
part of the proof is the construction of a set of dominoes that admits
only non-periodic tilings.

There are several extensions and variations of this result.
Theorem 1.27. A domino system D admits a tiling of Z×Z if, and only
if, it admits a tiling of N × N.

Proof. It is clear that a tiling of Z × Z also gives a tiling of N × N. The
converse is a nice application of König’s Lemma. Suppose that t is a tiling
of N × N by D. There exists at least one domino d such that for all n
there exist i, j > n with t(i, j) = d. Fix such a d. Further, for every k ∈ N,
let Sk be the square {−k, . . . ,−1, 0, 1, . . . , k} × {−k, . . . ,−1, 0, 1, . . . , k}.

We define a finitely branching tree whose nodes are the correct
tilings tk of Sk by D such that tk(0, 0) = d. The root is the unique such
tiling of S0 and the children of a tiling tk are the possible extensions
to tilings tk+1 of Sk+1. This tree contains paths of any finite length. By
König’s Lemma it also contains an infinite path from the root, which
means that D admits a tiling of Z × Z. q.e.d.

The undecidability result from Theorem 1.26 can be strengthened to
a recursive inseparability result.

15



1 The classical decision problem

Theorem 1.28. The set of domino systems admitting a periodic tiling
of N × N, those that admit no tiling of N × N and those that admit a
tiling but not a periodic one are pairwise recursively inseparable.

The proof of Theorem 1.28 reduces the halting problems H+
ε , H−

ε , H∞
ε ,

to the domino problems. There exists a recursive function that associates
with every TM M a domino system D satisfying

• If M ∈ H+
ε then D admits a periodic tiling of N × N.

• If M ∈ H−
ε then D admits no tiling of N × N.

• If M ∈ H∞
ε then D admits a tiling of N × N but no periodic one.

Definition 1.29. A computable function f is a conservative reduction from
domino systems to X if, for all domino systems D, f (D) = φD is in X and
the following holds:

• D admits a periodic tiling of N × N ⇒ ψD has a finite model
• D admits no tiling of N × N ⇒ ψD is unsatisfiable
• D admits a tiling of N × N but no periodic one ⇒ ψD is an infinity

axiom.

Proposition 1.30. Let X ∈ FO. If there exists a conservative reduction
from domino systems to X then X is a conservative reduction class.

Proof. Since Fin-Sat(FO) and Non-Sat(FO) are recursively enumerable
and Inf-Axioms(FO) is co-recursively enumerable, we can associate with
every first-order formula ψ a Turing machine M such that

• ψ ∈ Fin-Sat(FO) ⇒ ρ(M) ∈ H+
ε ,

• ψ ∈ Non-Sat(FO) ⇒ ρ(M) ∈ H−
ε ,

• ψ ∈ Inf-Axioms(FO) ⇒ ρ(M) ∈ H∞
ε .

According to the assumption, there is a reduction D 7→ φD from
domino systems to X. Thus, the domino method yields a conservative
reduction from FO to X.

q.e.d.

1.4 Applications of the domino method

We now apply the domino method to obtain several reduction classes.

16



1.4 Applications of the domino method

The Kahr-Moore-Wang class KMW is the class of all first-order
sentences of form ∀x∃y∀zφ, where φ is a quantifier-free formula without
equality, whose vocabulary contains only binary relation symbols.
Theorem 1.31. The Kahr-Moore-Wang class is a conservative reduction
class.

Proof. It suffices to construct a conservative reduction from domino
systems to KMW, i.e., a mapping D 7→ ψD over a vocabulary consisting
of binary relation symbols (Pd)d∈D such that

(1) D admits a periodic tiling of N × N ⇒ ψD has a finite model

(2) D admits no tiling of N × N ⇒ ψD is unsatisfiable

(3) D admits a tiling of N × N but no periodic one ⇒ ψD is an infinity
axiom

For a tiling t : N × N → D, an intended model of ψD is N with
the interpretation Pd = {(i, j) ∈ N × N : t(i, j) = d} for all d ∈ D. We
define ψD by

ψD := ∀x∃y∀z
( ∧

d ̸=d′
Pdxz → ¬Pd′xz

∧
∨

(d,d′)∈H

(Pdxz ∧ Pd′yz) ∧
∨

(d,d′)∈V

(Pdzx ∧ Pd′zy)
)

.

Obviously ψD is of the desired format, i.e. ψD ∈ KMW.
(1) Suppose that D admits a periodic tiling t of N × N, such that

t(x, y) = t(x + h, y) = t(x, y + v) for all x, y. We construct a finite model
of ψD as follows. Let m := lcm(h, v) be the least common multiple of h
and v. Then t induces a tiling

t′ : Z/mZ × Z/mZ → D

with t′(x, y) = t(x( mod m), y( mod m)).
It follows that A = (Z/mZ, (Pd)d∈D) with Pd = {(i, j) : t′(i, j) = d}

is a finite model for ψD (for x in Z/mZ choose y := x + 1 (mod m)).
(2) By analogous arguments, it follows, that whenever D admits a

tiling of N × N, then ψD has a model over N.

17



1 The classical decision problem

(3) Finally we prove that if ψD has a model, then D admits a tiling
of N × N, and if that model is finite, we even obtain a periodic tiling.

Consider the Skolem normal form φD of ψD:

φD := ∀x∀z(
∧

d ̸=d′
Pdxz → ¬Pd′xz

∧
∨

(d,d′)∈H

(Pdxz ∧ Pd′ f xz) ∧
∨

(d,d′)∈V

(Pdzx ∧ Pd′z f x).

If ψD is satisfiable, then also φD has a model B = (B, f , (Pd)d∈D).
Define a tiling t : N × N → D as follows: choose any b ∈ B, and for all
i, j ∈ N, set t(i, j) := d for the unique d ∈ D such that B |= Pd( f ib, f jb).
Since B |= φD, it follows that t is a correct tiling.

Now suppose that B |= φD is finite.

• •
f bf

· · · · · · •
f

Choose b ∈ B such that, for some n ≥ 1, f nb = b. Then the defined
tiling t is periodic. q.e.d.

Corollary 1.32. FO3 is a conservative reduction class.
Later we shall prove that FO2 has the FMP.

Consider now formula classes X ⊆ FO over functional vocabularies.
One can prove that FO(τ) is a conservative reduction class if τ contains

• two unary functions or
• one binary function.

This is even true for sentences of the form ∀xφ where φ is quantifier-free.
We stablish, again via a conservative reduction from domino prob-

lems, a weaker result from which the above mentioned ones can be
obtained by interpretation arguments (see exercises).
Theorem 1.33. The class F , consisting of all sentences ∀xφ where φ

is a quantifier-free formula whose vocabulary consists only of unary
function symbols, is a conservative reduction classes.

Proof. We define a conservative reduction D = (D, H, V) 7→ ψD where
ψD ∈ F has the vocabulary { f , g, (hd)d∈D} where all function symbols

18



1.4 Applications of the domino method

are unary. The intended model is N × N with successor functions f
and g. The subformula ∀x( f gx = g f x) ensures that the models of ψD
contain a two-dimensional grid. The fact that a position x is tiled by
d ∈ D is expressed by requiring that hdx = x, i.e. that x is a fixed point
of hd.

ψD := ∀x
(

f gx = g f x ∧
∧

d ̸=d′
(hdx = x → hd′x ̸= x)

∧
∨

(d,d′)∈H

(hdx = x ∧ hd′ f x = f x)

∧
∨

(d,d′)∈V

(hdx = x ∧ hd′gx = gx)
)

.

We claim that there exists a tiling t : N × N → D if and only if ψD
is satisfiable.

” ⇒ ” Assume that t is a correct tiling. Construct the (intended) model
A = (N × N, f , g, (hd)d∈D) with

– f (i, j) = (i + 1, j),
– g(i, j) = (i, j + 1),

– hd(i, j)




= (i, j) if t(i, j) = d

̸= (i, j) otherwise.

Clearly A |= ψD.
” ⇐ ” Consider B = (B, f , g, (hd)d∈D) |= ψD.

Choose an arbitrary b ∈ B and define t : N × N → D by

t(i, j) := d iff B |= hd f igjb = f igjb.

Note that every point in B is a fixed-point of exactly one of the
functions hd, and t is well-defined and a a correct tiling. Further, if
B is finite, then σ is periodic, and thus the reduction is conservative.

q.e.d.

Exercise 1.1. Prove that the more restricted class F2 ⊆ F consisting of
sentences in F that contain just two unary function symbols, is also a
conservative reduction class.
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1 The classical decision problem

Hint: Transform sentences ∀xφ with unary function symbols
f1, . . . , fm into sentences ∀xφ̃ := ∀xφ[x/hx, fi/hgi] where h, g are fresh
unary function symbols.

1.5 The finite model property

We study the finite model property (FMP) for fragments of FO as a
mean to show that these fragments are decidable, and also to better
understand their expressive power and algorithmic complexity.

Recall that a class X ⊆ FO has the finite model property if Sat(X) =

Fin-Sat(X). Since for any decidable class X, Fin-Sat(X) is r.e. and Sat(X)

is co-r.e., it follows that Sat(X) is decidable if X has the FMP. In many
cases, the proof that a class has the finite model property provides a
bound on the model’s cardinality, and thus a complexity bound for the
satisfiability problem. To prove completeness for complexity classes we
make use of a bounded variant of the domino problem.

We shall illustrate the power of this method by a few examples.
Definition 1.34. The atomic k-type of a1, . . . , ak in A is defined as

atpA(a1, . . . , ak) := {γ(x1 . . . , xk) : γ atomic formula or negated

atomic formula such that A |= γ(a1, . . . , ak)}.

In the examples that we consider here, the structures contain unary
or binary relations only. Hence, to describe a structure it suffices to
define its universe and to specify the atomic 1-types and 2-types for all
of its elements.
Example 1.35. Let A be the structure (A, E1, . . . , Em) where the Ei are
binary relations. Then for a ∈ A:

atpA(a) = {Eixx : A |= Eiaa} ∪ {¬Eixx : A |= ¬Eiaa}.

The monadic class (also called the Löwenheim class) is the class of
first-order sentences over a vocabulary the contains only unary predi-
cates.
Theorem 1.36. The monadic class has the FMP.
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1.6 The two-variable fragment of FO

Proof. Let A = (A, PA
1 , . . . , PA

n ) |= φ where qr(φ) = m. For each se-
quence of bits α = α1 . . . αn ∈ {0, 1}n we define PA

α = Q1 ∩ Q2 ∩ . . . ∩ Qn,
where Qi = PA

i if αi = 1 and Qi = A \ PA
i if αi = 0. Notice that the sets

PA
α define a partition of A, and that α completely describes the atomic

1-type of any a ∈ PA
α .

We construct B by taking min(|PA
α |, m) elements into each PB

α . Ob-
serve that B is completly specified in this way, with PB

i =
⋃

α|αi=1 PB
α ).

We show that A ≡m B using the Ehrenfeucht-Fraïssé Theorem.
The following is a winning strategy for Duplicator in the

Ehrenfeucht-Fraïssé game with m moves on (A,B): Answer any el-
ement chosen by Spoiler by an element with the same atomic type in the
other structure, respecting equalities and inequalities with previously
chosen elements. Due to the construction it is certainly possible to do
that for m moves, so Duplicator wins the game. Hence A ≡m B, and
therefore B |= φ. q.e.d.

From the proof we see that the constructed finite model B is in fact
a submodel of the arbitrary model A that we started with. Thus we
have in fact established a stronger result than the finite model property,
namely the finite submodel property of the monadic class: every infinite
model of a sentence in the monadic class has a finite substructure which
is also a model of that sentence.

In general it need not be the case that classes with the FMP also
have the finite submodel property.

1.6 The two-variable fragment of FO

We denote relational first-order logic over k variables by FOk, i.e.

FOk := {φ ∈ FO : φ relational, φ only contains k variables}.

We have shown that the Kahr-Moore-Wang class KMW, and hence also
FO3, are conservative reduction classes. We now prove that FO2 has the
finite model property and is thus decidable. Note that FOk formulae
are not necessarily in prenex normal form. A further motivation for the
study of FO2 is that propositional modal logic can be viewed as a frag-
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1 The classical decision problem

ment of FO2 (in fact ML can be proven to be precisely the bisimulation
invariant fragment of FO2).

Before we proceed to prove the finite model property for FO2, as a
first step we establish a normal form for formulae in FO2.
Lemma 1.37 (Scott). For each sentence ψ ∈ FO2 one can construct in
polynomial time a sentence φ ∈ FO2 of the form

φ := ∀x∀yα ∧
n∧

i=1

∀x∃yβi

such that α, β1, . . . , βn are quantifier free and such that ψ and φ are
satisfiable over the same universe. Moreover, we have |φ| = O(|ψ| ·
log |ψ|).

Proof. First of all, we can assume that formulae φ ∈ FO2 only contain
unary and binary relation symbols. This is no restriction since relations
of higher arity can be substituted by introducing new binary and unary
relation symbols. For example, if R is a relation of arity three, one
could add a unary relation Rx and three binary relations Rx,x,y, Rx,y,x

and Rx,y,y and replace each atom R(x, x, x) (or R(y, y, y)) by Rx(x) (or
Rx(y)) and atoms as R(x, x, y) or R(x, y, x) by Rx,x,y(x, y) and Rx,y,x(x, y)
respectively. By adding appropriate new subformulae one can ensure
that the semantics are preserved, i.e. that the newly introduced relations
partition a ternary relation in the intended sense. For example we would
introduce as a new subformula ∀x(Rx(x) ↔ Rx,x,y(x, x)).

With ψ containing at most binary relations, we iterate the following
steps until ψ has the desired form. We choose a subformula Qyη of ψ

(Q ∈ {∀, ∃}, η quantifier free) and add a new unary relation R:

ψ′ := ψ[Qyη/Rx]

ψ 7→ ψ′ ∧ ∀x(Rx ↔ Qyη).

R captures those x that satisfy Qyη. The resulting formula φ is not yet
of the desired form, but it is equivalent to the following:

(a) if Q = ∃, then
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1.6 The two-variable fragment of FO

φ ≡ ψ′ ∧ ∀x∀y(η → Rx) ∧ ∀x∃y(Rx → η)

(b) else if Q = ∀, then

φ ≡ ψ′ ∧ ∀x∀y(Rx → η) ∧ ∀x∃y(η → Rx)

Now use that conjunctions of ∀∀-formulae are equivalent to a ∀∀-formula

and obtain ψ ≡ ∀x∀yα ∧
n∧

i=1
∀x∃yβi. q.e.d.

Theorem 1.38. FO2 has the finite model property. In fact, every satisfi-
able formula ψ ∈ FO2 has a model with at most 2|ψ| elements.

Proof. The proof strategy is as follows: we start with a model A of ψ and
proceed by constructing a new model B of ψ such that |B| ≤ 2O(|ψ|).
For the construction the following definitions will be essential.

An element a ∈ A is said to be a king of A if its atomic 1-type is
unique in A, i.e. if atpA(b) ̸= atpA(a) for all b ̸= a. We let

• K := {a ∈ A : a is a king of A} be the set of kings of A, and

• P := {atpA(a) : a ∈ A, a /∈ K} be the set of atomic 1-types which
are realized at least twice in A.

Since A |= ∀x∃yβi for i = 1, . . . , n, there exist (Skolem) functions
f1, . . . , fn : A → A such that A |= βi(a, fia) for all a ∈ A. The court
of A is defined as

C := K ∪ { fik : k ∈ K, i = 1, . . . , n}.

Let C be the substructure of A induced by C. We construct a model
B |= ψ with universe B = C ∪ (P × {1, . . . , n} × {0, 1, 2}).
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A

C
K

B

C
K

P

P

P

To specify B we set B|C = C and for all other elements we specify
the 1- and 2-types (in this way fixing B on the remaining part). However,

(1) This must be done consistently:

• atpA(b, b′) and atpA(b, b′′) must agree on atpA(b), and
• γ(x, y) ∈ atpB(b, b′) ⇔ γ(y, x) ∈ atpB(b

′, b).

(2) Of course we have to ensure that B |= ψ.

We illustrate the construction with the following example.

Example 1.39. Consider the formula ψ over the signature τ = {R, B} (red
edges and blue edges).

ψ = ∃x(Rxx ∧ Bxx)

∧ ∀x∀y((Rxx ∧ Bxx ∧ Ryy ∧ Byy → x = y)

∧(Rxx ∨ Bxx)

∧(Rxy ∧ Ryx → x = y)

∧(Bxy ∧ Byx → x = y)

∧(Bxy ∧ x ̸= y → Ryy))

∧ ∀x∃y(x ̸= y ∧ (Rxx → Rxy)

∧ (Bxx → Bxy)).

Let A |= ψ, then A looks like follows:

• • • • · · ·
K C
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1.6 The two-variable fragment of FO

In this case P = {{Rxx,¬Bxx}, {¬Rxx, Bxx}} and the universe of
B is B = C ∪ (P × {1} × {0, 1, 2}).

We proceed to construct B by specifying the 1-types and 2-types of
its elements as follows.

(1) The atomic 1-types of elements (p, i, j) are set to atpB((p, i, j)) = p.

(2) The atomic 2-types atpB(b, b′) will be set so that B |= ∀x∃yβi for
i = 1, . . . , m.
Choose for each p ∈ P an element h(p) ∈ A with atpA(h(p)) = p.
Find for each b ∈ B and each i a suitable element b′ such that
B |= βi(b, b′) (by defining atpB(b, b′) appropriately).

(a) If b is a king, set b′ := fi(b) ∈ C ⊆ B. Then B |= βi(b, b′).

(b) If b ∈ C \ K (non-royal member of the court), distinguish:
• If fi(b) ∈ K, then set b′ := fi(b) ∈ K ⊆ B.

• Otherwise it holds that atpA( fi(b)) = p ∈ P.
In this case, set b′ := (p, i, 0). Now set atpB(b, b′) :=
atpA(b, fi(b)). Thus B |= βi(b, b′) since A |= βi(b, fi(b)).

(c) If b = (p, j, ℓ) for some p ∈ P, j ∈ {1, . . . , n}, ℓ ∈ {0, 1, 2}, let
a := h(p) and consider fi(a).
If fi(a) ∈ K, set b′ = fi(a) and atpB(b, b′) := atpA(a, b′).
If fi(a) /∈ K, then atpA( fi(a)) = p′ ∈ P.
Set b′ := (p′, i, (ℓ+ 1) (mod 3)).
Then set atpB(b, b′) := atpA(a, fi(a)), and thus B |= βi(b, b′).

To complete the construction of B, let b1, b2 ∈ B be such that
atpB(b1, b2) is not yet specified. Choose a1, a2 ∈ A so that

atpA(a1) = atpB(b1) and

atpA(a2) = atpB(b2)

and set

atpB(b1, b2) := atpA(a1, a2).

Since A |= α(a1, a2), also B |= α(b1, b2).
For the previously considered example, B looks as follows:
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C
K

P × {0} P × {1}

P × {2}

•
•

•
•

•
•

•
•

Overall, we obtain B |= ∀x∀yα ∧
n∧

i=1
∀x∃yβi = ψ, and the size of B

is restricted by

|B| = |C|︸︷︷︸
≤|K|(n+1)

+ 3n|P| = O(n · # (atomic 1-types)) .

For k relation symbols, there are 2k atomic 1-types, hence |B| = 2O(|ψ|).

q.e.d.

This result implies that Sat(FO2) is in NEXPTIME (indeed it is
NEXPTIME-complete), since we can simply guess a finite structure
A of exponential size (in the length of ψ) and verify that A |= ψ.
Corollary 1.40. Sat(FO2) ∈ NEXPTIME = (

⋃
k

NTIME(2nk
)).

This is a typical complexity level for decidable fragments of FO.
In fact, Sat(FO2) is even complete for NEXPTIME. For showing this, we
reduce a bounded version of the domino problem to Sat(FO2).
Definition 1.41. Let D = (D, H, V) be a domino system and let Z(t)
denote Z/tZ × Z/tZ. For a word w = w0, . . . , wn−1 ∈ Dn we say that
D tiles Z(t) with initial condition w if there is τ : Z(t) → D such that

• if τ(x, y) = d and τ(x + 1, y) = d′ then (d, d′) ∈ H
for all (x, y) ∈ Z(t) ,

• if τ(x, y) = d, τ(x, y + 1) = d′ then (d, d′) ∈ V
for all (x, y) ∈ Z(t) and

• τ(i, 0) = wi for all i = 0, . . . , n − 1.
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1.6 The two-variable fragment of FO

Let D be a domino system and T : N → N a mapping. Define

DOMINO(D, T) := {w ∈ D∗ : D tiles Z(T(|w|)) with initial

condition w} .

One can describe computations of a (in this case non-deterministic)
Turing machine by domino tilings in such a way that the input condition
of the domino problem relates to the initial configuration of the Turing
machine. The restrictions on the size of the tiled rectangle correspond
to the time and space restrictions of the Turing machine. To prove
that a problem A is NEXPTIME-hard, it then suffices to show that
DOMINO(D, 2n) ≤p A.

Our goal is to show that DOMINO(D, 2n) reduces to Sat(X) for
relatively simple classes X ⊆ FO. Set

X = {φ ∈ FO2 : φ = ∀x∀y α ∧ ∀x∃y β, s.t. α, β quantifier-free,

without =, and with only monadic predicates} .

We show that Sat(X) is NEXPTIME-complete and hence also
Sat(FO2) is NEXPTIME-complete.
Lemma 1.42. For each domino system D = (D, H, V) there exists a
polynomial time reduction w ∈ Dn 7→ ψw ∈ X such that D tiles Z(2n)

with initial condition w if and only if ψw is satisfiable.

Proof. The intended model of ψw is a description of a tiling τ : Z(2n) →
D in the universe Z(2n).

Let z = (a, b) ∈ Z(2n) with a =
n−1
∑

i=0
ai2i and b =

n−1
∑

i=0
bi2i. Encode the

tuple as (ao, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n.
To encode the tiling, we define ψw with the monadic predicates Xi,

X∗
i , Yi, Y∗

i , Ni for 0 ≤ i < n and Pd(d ∈ D) with the following intended
meaning:

Xiz iff ai = 1.

X∗
i z iff aj = 1 for all j < i.

Yiz iff bj = 1.
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1 The classical decision problem

Y∗
i z iff bj = 1 for all j < i.

Niz iff z = (i, 0).

Pdz iff τ(z) = d.

ψw will have the form ψw = ∀x∀yα ∧ ∀x∃yβ, where β accounts
for the correct interpretation of Xi, X∗

i , Yi, Y∗
i , Ni and ensures that every

element has a successor, and α accounts for the description of a correct
tiling.

Now β is the the following formula:

β = X∗
0 x ∧ Y∗

0 x

∧
n−1∧

i=1

X∗
i x ↔ (X∗

i−1x ∧ Xi−1x)

∧
n−1∧

i=1

Y∗
i x ↔ (Y∗

i−1x ∧ Yi−1x)

∧
n−1∧

i=0

Xiy ↔ (Xix ⊕ X∗
i x)

∧
n−1∧

i=0

Yiy ↔ (Yix ⊕ (Y∗
i x ∧ Xn−1x ∧ X∗

n−1x))

∧ N0x ↔ (
n−1∧

i=0

¬Xix ∧ ¬Yix)

∧
n−1∧

i=0

Nix ↔ Ni+1y.

We define the following shorthands for use in α:

H(x, y) :=
n−1∧

i=0

(Yiy ↔ Yix) ∧
n−1∧

i=0

(Xiy ↔ (Xix ⊕ X∗
i x))

V(x, y) :=
n−1∧

i=0

(Xiy ↔ Xix) ∧
n−1∧

i=0

(Yiy ↔ (Yix ⊕ Y∗
i x)).

Now α is defined to be
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1.6 The two-variable fragment of FO

α =
∧

d ̸=d′
¬(Pdx ∧ Pd′x)

∧ (H(x, y) →
∨

(d,d′)∈H

(Pdx ∧ Pd′y))

∧ (V(x, y) →
∨

(d,d′)∈V

(Pdx ∧ Pd′y))

∧ (
n−1∧

i=i

(Nix → Pwi x)).

Claim 1.43. ψw is satisfiable if and only if D tiles Z(2n) with initial
condition w.

Proof. We show both directions.

(⇐) Consider the intended model, ψw holds in it.
(⇒) Consider C = (C, X1, . . .) |= ψw and define a mapping

f : C → Z(2n)

c 7→ (a, b) ≡ (a0, . . . , an−1, b0, . . . , bn−1)

with ai = 1 iff C |= Xic and

bi = 1 iff C |= Yic.

As C |= ∀x∃yβ, f is surjective. Choose for each z ∈ Z(2n) an element
c ∈ f−1(z) and set τ(z) = d for the unique d that satisfies C |= Pdc.
Then τ is a correct tiling with initial condition w. q.e.d.

Since the length of ψw is |ψw| = O(n log n), the above claim com-
pletes the proof of the lemma. q.e.d.

29


