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2 Descriptive Complexity

In this chapter we study the relationship between logical definability
and computational complexity on finite structures. In contrast to the
theory of computational complexity we do not measure resources as
time and space required to decide a property but the logical resources
needed to define it. The ultimate goal is to characterize the complexity
classes known from computational complexity theory by means of logic.

We first define what it means for a logic to capture a complexity
class. One of the main results is due to Fagin, stating that existential
second order logic captures NP. At this point it is still unknown whether
there exists a logic capturing PTIME on all finite structures. However, a
deeper analysis of the proof of Fagin’s Theorem shows that SO-HORN
logic captures PTIME on all ordered finite structures.

2.1 Logics Capturing Complexity Classes

To measure the complexity of a property of finite τ-structures, (for
instance, graph) we have to represent the structures by words over a finite
alphabet Σ, so that they can serve as inputs for Turing machines. For
graphs, a natural choice is to take an adjacency matrix, and write it, row
after row, as binary string. Notice that one and the same graph can have
many different adjacency matrices, and thus many different encodings.
Moreover, it is an important open problem to decide efficiently (i.e. in
polynomial time) whether two different matrices represent the same
graph, up to isomorphism. The choice of an adjacency matrix means to
fix an enumeration of the vertices, and thus an ordering of the graph. The
same is true for encoding finite structures of any fixed finite vocabulary
τ: to define an encoding it is necessary to fix an ordering on the universe.

By Ord(τ) we denote the class of all finite structures (A,<), where
A is a τ-structure and < is a linear order on its universe. For any
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2 Descriptive Complexity

structure A ∈ Ord(τ) with universe of size n, and for any fixed k, we can
identify Ak with the set {0, 1, . . . , nk − 1}. This is done by associating
each k-tuple a with its rank in the lexicographic ordering induced by <

on Ak. When we talk about the a-th element, we understand it in this
sense.
Definition 2.1. An encoding is a function mapping ordered structures to
words. An encoding code(·) : Ord(τ) → Σ∗ is good if it identifies iso-
morphic structures, is polynomially bounded, first-order definable and
allows to compute the values of atomic statements efficiently. Formally,
the following abstract conditions must be satisfied.

• code(A,<) = code(B,<) iff (A,<) ∼= (B,<).

• There is a fixed polynomial p such that |code(A,<)| ≤ p(|A|) for
all (A,<) ∈ Ord(τ).

• For all k ∈ N and all σ ∈ Σ there exists a first-order formula
βσ(x1, . . . , xk) of vocabulary τ ∪ {<} so that for all (A,<) and all
a ∈ Ak it holds that

(A,<) |= βσ(a) ⇔ the a-th symbol of code(A,<) is σ.

• Given code(A,<) a relation symbol R of τ and a tuple a one can
efficiently decide whether A |= Ra.

The meaning of “efficiently” in the last condition may depend on
the context, here we understand it is as evaluated in linear time and
logarithmic space.
Example 2.2. Let A = (A, R1, . . . , Rm) be a structure with a linear order
< on A. Let |A| = n and let si be the arity of Ri. Let ℓ be the maximal
arity of R1, . . . , Rm. For each relation we define

χ(Rj) = w0 . . . wnsj−10nℓ−nsj ∈ {0, 1}nℓ
,

where wi = 1 if the i-th element of Asj is in Rj. Now

code(A,<) := 1n0nℓ−nχ(R1) . . . χ(Rm).

When we say that an algorithm decides a class K of finite τ-structures
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2.2 Fagin’s Theorem

we actually mean that it decides

code(K) = {code(A,<) : A ∈ K,< a linear order on A}.

Definition 2.3. A model class is a class K of structures of a fixed vocabu-
lary τ that is closed under isomorphism, i.e. if A ∈ K and A ∼= B, then
B ∈ K.

A domain is an isomorphism closed class D of structures where the
vocabulary is not fixed. For a domain D and vocabulary τ, we write
D(τ) for the class of τ-structures in D.
Definition 2.4. Let L be a logic, Comp a complexity class and D a
domain of finite structures. L captures Comp on D if

(1) For every vocabulary τ and every (fixed) sentence ψ ∈ L(τ), the
model-checking problem for ψ on D(τ) is in Comp.

(2) For every vocabulary τ and any model class K ⊆ D(τ) whose
membership problem is in Comp, there exists a sentence ψ ∈ L(τ)
such that

K = {A ∈ D(τ) : A |= ψ}.

Notice that first-order logic is very weak, in this sense. Indeed, for
every fixed first-order sentence ψ ∈ FO(τ), it can be decided efficiently,
with logarithmic space, whether a given finite τ-structure is a model
for ψ. However, FO does not capture Logspace, not even on ordered
structures. Indeed, the reachability problem on undirected graphs can
be solved in Logspace, but it is not first-order expressible.

2.2 Fagin’s Theorem

Existential second-order logic (Σ1
1) is the fragment of second-order logic

consisting of formulae of the form ∃R1 . . . ∃Rm φ where φ ∈ FO and
R1, . . . , Rm are relation symbols. As we will see in this chapter, the
logic Σ1

1 captures the complexity class NP on the domain of all finite
structures.
Example 2.5. 3-Colourability of a graph G = (V, E) is in NP and indeed
there is a Σ1

1-formula defining the class of graphs which possess a valid
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2 Descriptive Complexity

3-colouring:

∃R∃B∃Y ( ∀x(Rx ∨ Bx ∨ Yx)

∧ ∀x∀y(Exy → ¬((Rx ∧ Ry) ∨ (Bx ∧ By) ∨ (Yx ∧ Yy))

Theorem 2.6 (Fagin). Existential second-order logic captures NP on the
domain of all finite structures.

Proof. The proof consists of two parts. First, let ψ = ∃R1 . . . ∃Rm φ ∈ Σ1
1

be an existential second-order sentence. We show that it can be decided
in non-deterministic polynomial time whether a given structure A is a
model of ψ.

In a first step, we guess relations R1, . . . , Rm on A. Recall that
relations can be identified with binary strings of length nsi , where si is
the arity of Ri. Then we check whether (A, R1, . . . , Rm) |= φ which can be
done in LOGSPACE and hence in PTIME. Thus the computation consists
of guessing a polynomial number of bits followed by a deterministic
polynomial time computation, showing that the problem is in NP.

For the other direction, let K be an isomorphism-closed class of
τ-structures and let M be a non-deterministic TM deciding code(K) in
polynomial time. We construct a sentence ψ ∈ Σ1

1 such that for all finite
τ-structure A it holds that

A |= ψ ⇔ M accepts code(A,<) for any linear order < on A.

Let M = (Q, Σ, q0, F+, F−, δ) with accepting and rejecting states F+ and
F− and δ : (Q × Σ) → P(Q × Σ × {0, 1,−1}) which, given an input
code(A,<), decides in non-deterministic polynomial time whether A

belongs to K or not. We assume that all computations of M reach an
accepting or rejecting state after precisely nk steps (n := |A|).

We encode a computation of M on code(A,<) by relations X and
construct a first-order sentence φM ∈ FO(τ ∪ {<} ∪ {X}) such that for
every linear order < there exists X with (A,<, X) |= φM if and only if
code(A,<) ∈ L(M). To this end we show that

• If X represents an accepting computation of M on code(A,<) then
(A,<, X) |= φM.
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2.2 Fagin’s Theorem

• If (A,<, X) |= φM then X contains a representation of an accepting
computation of M on code(A,<).

Accordingly the desired formula ψ is then obtained via existential second-
order quantification

ψ := (∃ <)(∃X)(”< is a linear order ” ∧ φM).

Details:

• We represent numbers up to nk as tuples in Ak.
• For each state q ∈ Q we introduce a predicate

Xq := {t ∈ Ak : at time t the TM M is in state q}.

• For each symbol σ ∈ Σ we define

Yσ := {(t, a) ∈ Ak × Ak : at time t the cell a contains σ}.

• The head predicate is

Z := {(t, a) ∈ Ak × Ak : at time t the head of M

is at position a}.

Now φM is the universal closure of START ∧ COMPUTE ∧ END.

START := Xq0(0) ∧ Z(0, 0) ∧
∧

σ∈Σ

(βσ(x) → Yσ(0, x)).

Recall that βσ states that the symbol at position x in code(A,<) is σ.
The existence of the formulae βσ is guaranteed by the fact that code(·)
is a good encoding. In what follows, we denote by x + 1 and x − 1 a
first-order formula that defines the direct successor and predecessor of
the tuple x (in the lexicographical ordering on tuples that is induced by
the linear order <), respectively.

COMPUTE := NOCHANGE ∧ CHANGE.
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2 Descriptive Complexity

NOCHANGE :=
∧

σ∈Σ

(Yσ(t, x) ∧ Z(t, y) ∧ y ̸= x

∧ t′ = t + 1 → Yσ(t
′, x)).

CHANGE :=
∧

q∈Q,σ∈Σ

(PRE[q, σ] →
∨

(q′,σ′,m)∈δ(q,σ)

POST[q′, σ′, m]),

where

PRE[q, σ] := Xq(t) ∧ Z(t, x) ∧ Yσ(t, x) ∧ t′ = t + 1,

POST[q′, σ′, m] := Xq′(t
′
) ∧ Yσ′(t′, x) ∧ MOVEm[t

′, x],

and

MOVEm[t
′, x] :=





∃y(x − 1 = y ∧ Z(t′, y)), m = −1

Z(t′, x), m = 0

∃y(x + 1 = y ∧ Z(t′, y)), m = 1.

Finally, we let

END :=
∧

q∈F−
¬Xq(t).

It remains to show the following two claims.
Claim 1. If X represents an accepting computation of M on code(A,<)

then (A,<, X) |= φM. This, however, follows immediately from the
construction of φM.
Claim 2. If (A,<, X) |= φM, then X contains a representation of an
accepting computation of M on code(A,<). We define

CONF[C, j] := Xq(j) ∧ Z(j, p) ∧
nk−1∧

i=0

Ywi(j, i)

for configurations C = (w0 . . . wnk−1, q, p) (tape content w0 . . . wnk−1,
state q, head position p), i.e. the conjunction of the atomic statements
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2.2 Fagin’s Theorem

that hold for C at time j. Let C0 be the input configuration of M on
code(A,<). Since (A,<, X) |= START it follows that

(A,<, X) |= CONF[C0, 0].

Since (A,<, X) |= COMPUTE and (A,<, X) |= CONF[Ci, t], for some
Ci ⊢ Ci+1 it holds that (A,<, X) |= CONF[Ci+1, t + 1].

Finally, no rejecting configuration can be encoded in X because
(A,<, X) |= END. Thus an accepting computation

C0 ⊢ C1 ⊢ . . . ⊢ Cnk−1

of M on code(A,<) exists, with (A,<, X) |= CONF[Ci, i] for all i ≤
nk − 1. This completes the proof of Fagin’s Theorem. q.e.d.

Theorem 2.7 (Cook, Levin). SAT is NP-complete.

Proof. Obviously SAT ∈ NP. We show that for any Σ1
1-definable class K

of finite structures the membership problem A ∈ K can be reduced to
SAT. By Fagin’s Theorem, there exists a first-order sentence ψ such that

K = {A ∈ Fin(τ) : A |= ∃R1 . . . ∃Rmψ}.

Given A, construct a propositional formula ψA as follows.

• replace ∃xi φ by
∨

a∈A φ[xi/a],

• replace ∀xi φ by
∧

a∈A φ[xi/a],

• replace all closed τ-atoms Pa in ψ with their truth values,

• replace all atoms Ra with propositional variables PRa.

This is a polynomial transformation and it holds that

A ∈ K ⇔ A |= ∃R1 . . . ∃Rmψ ⇔ ψA ∈ SAT.

q.e.d.
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2 Descriptive Complexity

2.3 Second Order Horn Logic on Ordered Structures

The problem of whether there exists a logic capturing PTIME on all
finite structures is still open. However, on ordered finite structures, there
are several known logical characterizations of PTIME. The most famous
result of this kind is the one is the Theorem by Immerman and Vardi
which states that the least fixed-point logic LFP captures PTIME on the
class of all ordered finite structures. We shall discuss this later. We here
present a different characterization of PTIME, in terms of second-order
Horn logic SO-HORN, which follows from a careful analysis of the proof
of Fagin’s Theorem. Indeed, the construction that we used in that proof
is not the original one by Fagin, but an optimized version that has been
tailored so that it can be adapted to a proof that SO-HORN captures
PTIME on ordered structures.
Definition 2.8. Second-order Horn logic, denoted by SO-HORN, is the set
of second-order sentences of the form

Q1R1 . . . QmRm∀y1 . . . ∀ys

t∧

i=1

Ci,

where Qi ∈ {∃, ∀} and the Ci are Horn clauses, i.e. implications

β1 ∧ . . . ∧ βm → H,

where each β j is either a positive atom Rkz or an FO-formula that does
not contain R1, . . . , Rm. H is either a positive atom Rjz or the Boolean
constant 0.

Σ1
1-HORN denotes the existential fragment of SO-HORN, i.e. the

set of SO-HORN sentences where all second-order quantifiers are exis-
tential.
Theorem 2.9. Every sentence ψ ∈ SO-HORN is equivalent to a sentence
ψ′ ∈ Σ1

1-HORN.

Proof. It suffices to prove the theorem for formulae of the form

ψ = ∀P∃R1 . . . ∃Rm∀zφ,
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2.3 Second Order Horn Logic on Ordered Structures

where φ is a conjunction of Horn clauses and m ≥ 0 (for m = 0, the
formula has the form ∀P∀zφ). Indeed we can then eliminate universal
quantifiers beginning with the inner most one by considering only the
part starting with that universal quantifier.

Lemma 2.10. A formula ∃R∀zφ(P, R) ∈ Σ1
1-HORN holds for all relations

P on a structure A if and only if it holds for those P that are false at at
most one point.

Proof. Let k be the arity of P. For every k-tuple a, let Pa = Ak − {a}, i.e.
the relation that is false at a and true at all other points. By assumption,
there exist Ra such that

(A, Pa, Ra
) |= ∀zφ.

Now consider any P ̸= Ak and let Ri :=
⋂

a/∈P Ra
i . We show that

(A, P, R) |= ∀zφ where R is the tuple consisting of all Ri.
Suppose that this is false, then there exists a relation P ̸= Ak,

a clause C of φ and an assignment ρ : {z1, . . . , zs} → A such that
(A, P, R) |= ¬C[ρ]. We proceed to show that in this case there exists a
tuple a such that (A, Pa, Ra

) |= ¬C[ρ] and thus

(A, Pa, Ra
) |= ¬∀zφ

which contradicts the assumption.

• If the head of C[ρ] is Pa, then take a = u /∈ P.

• If the head of C[ρ] is Riu, then choose a /∈ P such that u /∈ Ra
i , which

exists because u /∈ Ri.

• If the head is 0, take an arbitrary a /∈ P.

The head of C[ρ] is clearly false in (A, Pa, Ra
). Pa does not occur in

the body of C[ρ], because a /∈ P and all atoms in the body of C[ρ] are
true in (A, P, R). All other atoms of the form Pi that might occur in the
body of the clause remain true for Pa. Moreover, every atom Riv in the
body remains true if Ri is replaced by Ra

i because Ri ⊆ Ra
i . This implies

(A, Pa, Ra
) |= ¬C[ρ]. q.e.d.
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Using the above lemma, the original formula ψ = ∀P∃R1 . . . ∃Rm∀zφ

is equivalent to

∃R ∀zφ[Pu/u = u] ∧ ∀y ∃R ∀zφ[Pu/u ̸= y].

This formula can be converted again to Σ1
1-HORN; in the second part

we push the external first-order quantifiers inside while increasing the
arity of quantified relations by |y| to compensate it, i.e. we get

∃R′ ∀y zφ[Pu/u ̸= y, R(x)/R′(x, y)].

q.e.d.

Theorem 2.11. If ψ ∈ SO-HORN, then the set of finite models of ψ,
Mod(ψ), is in PTIME.

Proof. Given ψ′ ∈ SO-HORN, transform it to an equivalent sentence
ψ = ∃R1 . . . ∃Rm∀z

∧
i Ci in Σ1

1-HORN. Given a finite structure A reduce
the problem of whether A |= ψ to HORNSAT (as in the proof of the
Theorem of Cook and Levin).

• Omit quantifiers ∃Ri.

• Replace the universal quantifiers ∀ziη(zi) by
∧

a∈A η[zi/a].
• If there is a clause that is already made false by this interpretation,

i.e. C = 1 ∧ . . . ∧ 1 → 0, reject ψ. Else interpret atoms Riu as
propositional variables.

The resulting formula is a propositional Horn formula with length
polynomially bounded in |A| and which is satisfiable iff A |= ψ. The
satisfiability problem HORNSAT can be solved in linear time. q.e.d.

Theorem 2.12 (Grädel). On ordered finite structures SO-HORN and
Σ1

1-HORN capture PTIME.

Proof. We analyze the formula φM constructed in the proof of Fagin’s
Theorem in the case of a deterministic TM M. Recall that φM is the
universal closure of START∧NOCHANGE∧CHANGE∧END. START,
NOCHANGE and END are already in Horn form. CHANGE has the
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2.3 Second Order Horn Logic on Ordered Structures

form

∧

q∈Q,σ∈Σ

(PRE[q, σ] →
∨

(q′,σ′,m)∈δ(q,σ)

POST[q′, σ′, m]).

For a deterministic M for each (q, σ) there is a unique δ(q, σ) = (q′, σ′, m).
In this case PRE[q, σ] → POST[q′, σ′, m] can be replaced by the conjunc-
tion of the Horn clauses

• PRE[q, σ] → Xq′(t
′
)

• PRE[q, σ] → Yσ′(t′, x)
• PRE[q, σ] ∧ y = x + m → Z(t′, y).

q.e.d.

Remark 2.13. The assumption that a linear order is explicitly available
cannot be eliminated, since linear orderings are not definable by Horn
formulae.
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