Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, K. Dannert

Algorithmic Model Theory — Assignment 3

Due: Tuesday, 29 October, 10:30

Exercise 1

15 Points

Prove that for the following classes, the satisfiability problem is decidable.

(i) The (∃*)-class, containing all FO formulae whose quantifier prefix in prenex normal form only contains existential quantifiers. Note that relations and functions of any arity are allowed.

Hint: Transform a given formula into a formula whose atoms are all of the form $Rx_1 \ldots x_k$, $x_1 = x_2$ or $fx_1 \ldots x_l = x_j$, where all x_i are variables.

(ii) The class of monadic formulae without equality, i.e. of fomulae without equality statements whose vocabulary contains only unary relation symbols and unary function symbols.

Hint: Construct a formula with at most n unary relation symbols and no function symbols that is satisfiable over the same universes as the original formula.

(iii) The class FO⁺, consisting of all FO formulae that do not contain negation.

Exercise 2

15 Points

Show that the following classes of FO-sentences, where R is a binary relation symbol and f is a unary function symbol, contain infinity axioms.

- (i) $\exists x \forall y \forall z \varphi(x, y, z), \varphi \in FO(\{f\})$ quantifier-free.
- (ii) $\forall x \exists y \forall z \varphi(x, y, z), \varphi \in FO(\{R, f\})$ quantifier-free and withut equality.
- (iii) $\forall x \exists y \varphi(x, y), \varphi \in FO(\{f\})$ quantifier-free.
- (iv) The two variable fragment FO² extended by the counting quantifiers $\exists^{\leq n}$ for every $n \in \mathbb{N}$, where $\exists^{\leq n} x \varphi$ expresses that there are no more than n elements x that satisfy φ .