Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, K. Dannert

Algorithmic Model Theory — Assignment 4

Due: Thursday, 7 November, 10:30

Exercise 1

5 Points

10 Points

15 Points

We say that an FO($\tau \cup \{<\}$)-sentence φ is *order-invariant* if for all *finite* τ -structures \mathfrak{A} and linear orderings <, <' on A we have

$$(\mathfrak{A},<)\vDash\varphi \quad \Leftrightarrow \quad (\mathfrak{A},<')\vDash\varphi$$

Show that the problem whether a given $FO(\tau \cup \{<\})$ -sentence φ is order-invariant is undecidable.

Hint: Show that Fin-Sat(FO) is reducible to this problem.

Exercise 2

Let τ be a fixed (finite) vocabluary which only consists of monadic relation symbols and let X be the set of all FO(τ)-sentences in prenex normal form.

- (i) Show that Sat(X) is in PSPACE.
- (ii) Show that Sat(X) is PSPACE-complete.
 Hint: Reduce QBF (the quantified Boolean formula problem) to Sat(X).

Exercise 3

- (a) Show that the following classes of (undirected, finite) graphs are in NP by explicitly constructing Σ_1^1 -sentences defining them.
 - (i) The class of regular graphs (i.e. every node has the same number of neighbours).
 - (ii) The class of Hamiltonian graphs.
 - (iii) The class of graphs that admit a perfect matching.
- (b) Let $k \ge 1$. An (undirected, finite) graph G = (V, E) has connectivity k if |G| > k and
 - for all $S \subseteq V$, |S| < k the graph $G \setminus S$ is connected, and
 - there exists a set $S \subseteq V$, |S| = k such that $G \setminus S$ is not connected.

Construct a Σ_1^1 -sentence defining the class of (undirected) graphs with connectivity k.

(c) Construct an SO-HORN-sentence which defines the class of (undirected) graphs G = (V, E, c, d) (with constant symbols c and d) in which there is no path from c to d.

http://logic.rwth-aachen.de/Teaching/AMT-WS19/