Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, K. Dannert

Algorithmic Model Theory — Assignment 10

Due: Tuesday, 17 December, 10:30

Exercise 1

7 Points

A k edge coloured connected graph $\mathcal{G} = (V, E, C_1, \dots, C_k)$ is a connected graph (V, E) which is extended by k binary predicates $C_1, \dots, C_k \subseteq E$ that encode a valid k edge colouring of (V, E), i.e. the sets C_1, \dots, C_k are pairwise disjoint, $\bigcup_{i=1}^k C_i = E$ and $|(\{v\} \times V) \cap C_i| \leq 1$ for all $v \in V$ and $1 \leq i \leq k$.

(a) Construct an LFP-formula $\varphi(p, x, y)$ such that for all $a \in V$ the relation defined by φ in \mathcal{G} with parameter a, i.e. the relation $\{(v, w) : \mathcal{G} \models \varphi(a, v, w)\}$, is a linear order on V.

Hint: Use the colouring of the vertices to identify a spanning tree of \mathcal{G} .

(b) Conclude, using the Immerman-Vardi Theorem, that LFP captures PTIME on the class of connected k edge coloured graphs.

Exercise 2

(a) Construct formulae of the multidimensional μ -calculus that define the following classes C_i of rooted transition systems.

 $C_1 = \{(\mathcal{G}, v) : \text{from } v \text{ a terminal vertex is reachable that satisfies precisely the same predicates}\}$ $C_2 = \{(\mathcal{G}, v) : \text{there are two infinite paths } \pi, \sigma \text{ starting from } v \text{ such that for all positions } i > 0$

and all predicates P it holds $(\mathcal{G}, \pi[i]) \models P$ if, and only if, $(\mathcal{G}, \sigma[i]) \not\models P$

(b) Show that for \mathcal{K}_1, \bar{v} and \mathcal{K}_2, \bar{w} with $\mathcal{K}_1, v_i \sim \mathcal{K}_2, w_i$ for $1 \leq i \leq k$ it holds that $\mathcal{K}_1^k, \bar{v} \sim \mathcal{K}_2^k, \bar{w}$. Conclude, using the bisimulation invariance of L_{μ} , that the multidimensional μ -calculus is bisimulation invariant as well.

Exercise 3

Conway's LIFE is a game played on an undirected graph. At the beginning some vertices are marked with a pebble. In every turn the following rules are applied simultaneously to all vertices:

- marked vertices remain marked if and only if they have 2 or 3 marked neighbours;
- unmarked vertices become marked if and only if they have exactly 3 marked neighbours.

Write a PFP formula over the signature $\{E, P\}$ (*E* is the edge relation and *P* the set of vertices marked at the beginning) which holds in an arena $\mathcal{G} = (V, E^{\mathcal{G}}, P^{\mathcal{G}})$ if and only if the game becomes eventually stationary.

Exercise 4

Let \mathcal{K} be a class of (finite) τ -structures with the following property. For every $m \in \mathbb{N}$, there exists a structure $\mathfrak{A} \in \mathcal{K}$ such that for all *m*-tuples \overline{a} in \mathfrak{A} there exists a non-trivial automorphism of $(\mathfrak{A}, \overline{a})$. Show that \mathcal{K} does not admit definable orders (even with parameters) in any logic which is isomorphism-invariant.

http://logic.rwth-aachen.de/Teaching/AMT-WS19/

5 Points

6 Points

12 Points