Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, K. Dannert

Algorithmic Model Theory — Assignment 11

Due: Tuesday, 7 January, 10:30

Exercise 1

10 Points

A graph $\mathcal{G} = (V, E^{\mathfrak{A}})$ encodes an $(V \times V)$ -matrix $M^{\mathcal{G}}$ over \mathbb{F}_2 which is

$$M^{\mathfrak{A}}(a,b) = \begin{cases} 0, & \text{if } (a,b) \notin E\\ 1, & \text{if } (a,b) \in E. \end{cases}$$

In other words, $M^{\mathcal{G}}$ is just the adjacency matrix of the graph \mathcal{G} . In the same way, every FPCformula $\varphi(x, y)$ defines an $(V \times V)$ -matrix $\varphi^{\mathcal{G}}$ over \mathbb{F}_2 in the graph \mathcal{G} . We want to show that matrix multiplication is definable in FPC.

- (a) Construct a formula $\varphi(x, y) \in \text{FPC}$ such that for any graph \mathcal{G} it holds $\varphi^{\mathcal{G}} = (M^{\mathcal{G}})^2$.
- (b) Construct a formula $\varphi(x, y) \in \text{FPC}$ such that for any graph \mathcal{G} it holds $\varphi^{\mathcal{G}} = (M^{\mathcal{G}})^{2^{|V|}}$.

Exercise 2

Let \mathfrak{A} be a finite τ -structure. We make the following convention: we interpret numerical tuples $\bar{\nu} = (\nu_{k-1}, \ldots, \nu_1, \nu_0) \in \{0, \ldots, |A| - 1\}^k$ as numbers in |A|-adic representation, i.e. we associate the value $\sum_{i=0}^{k-1} \nu_i |A|^i$ to each tuple $\bar{\nu} \in \{0, \ldots, |A| - 1\}^k$.

Show that the expressive power of FPC does not increase if we allow counting quantifiers of higher arity, i.e. formulas $\#_{x_0x_1\cdots x_{k-1}}\varphi(x_0,\ldots,x_{k-1}) \leq (\nu_{k-1},\ldots,\nu_0)$ where in a structure \mathfrak{A} the value of $\#_{x_0x_1\cdots x_{k-1}}\varphi(x_0,\ldots,x_{k-1})$ is the number of tuples \bar{a} such that $\mathfrak{A} \models \varphi(\bar{a})$ (with respect to the encoding introduced above). For simplicity, you may only consider the case k = 2.

Exercise 3

8 Points

We encode linear equation systems over the finite field \mathbb{F}_2 as relational structures \mathfrak{A} over the signature $\tau = \{E, V, R_0, R_1\}$ where the intended meaning of the relations is as follows.

- E, V are unary predicates which partition the universe into equations and variables, and
- the equation $e \in E$ corresponds to the linear equation $\sum_{v \in V: R_i(e,v)} v = i$.
- (a) Construct an FO(τ)-sentence φ such that $\mathfrak{A} \models \varphi$ if, and only if, \mathfrak{A} encodes a linear equation over \mathbb{F}_2 in the described way.
- (b) For any fixed finite field \mathbb{F} , generalise the above encoding for linear equation systems over \mathbb{F} .

Exercise 4

Recall the encoding of linear equation systems over \mathbb{F}_2 as relational structures from Exercise 2. Here we want to reduce bipartiteness of undirected graphs to the solvability of linear equation systems over \mathbb{F}_2 .

Construct FO({F})-formulae $\psi_E(x, y), \psi_V(x, y)$ and $\psi_{R_i}(x, y, x', y')$ such that for any (finite, undirected) graph $\mathcal{G} = (W, F)$ the {E, V, R}-structure $\mathcal{G}^{\psi} = (W^2, E^{\psi}, V^{\psi}, R_0^{\psi}, R_1^{\psi})$ where

http://logic.rwth-aachen.de/Teaching/AMT-WS19/

6 Points

6 Points

- $E^{\psi} = \{(w, w') : \mathcal{G} \models \psi_E(w, w')\}, V^{\psi} = \{(w, w') : \mathcal{G} \models \psi_V(w, w')\}$ and
- $R_i^{\psi} = \{((u, u'), (w, w')) : \mathcal{G} \models \psi_{R_i}(u, u', w, w')\},\$

encodes a linear equation system over \mathbb{F}_2 which has a solution if, and only if, $\mathcal G$ is bipartite.