
Algorithmic Model Theory
SS 2010

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2012 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 The classical decision problem for FO 1
1.1 Basic notions on decidability 2
1.2 Trakhtenbrot’s Theorem . 8
1.3 Domino problems . 15
1.4 Applications of the domino method 19

2 Finite Model Property 27
2.1 Ehrenfeucht-Fraïssé Games . 27
2.2 FMP of Modal Logic . 30
2.3 Finite Model Property of FO2 37

3 Descriptive Complexity 47
3.1 Logics Capturing Complexity Classes 47
3.2 Fagin’s Theorem . 49
3.3 Second Order Horn Logic on Ordered Structures 53

4 LFP and Infinitary Logics 59
4.1 Ordinals . 59
4.2 Some Fixed-Point Theory . 61
4.3 Least Fixed-Point Logic . 64
4.4 Infinitary First-Order Logic . 67

5 Modal, Inflationary and Partial Fixed Points 73
5.1 The Modal µ-Calculus . 73
5.2 Inflationary Fixed-Point Logic 76
5.3 Simultaneous Inductions . 81
5.4 Partial Fixed-Point Logic . 83
5.5 Capturing PTIME up to Bisimulation 86

5 Modal, Inflationary and Partial Fixed
Points

In finite model theory, a number of other fixed-point logics, in addition
to LFP, play an important role. The structure, expressive power, and
algorithmic properties of these logics have been studied intensively, and
we review these results in this chapter.

5.1 The Modal µ-Calculus

A fragment of LFP that is of fundamental importance in many areas of
computer science (e.g. controller synthesis, hardware verification, and
knowledge representation) is the modal µ-calculus (Lµ). It is obtained
by adding least and greatest fixed points to propositional modal logic
(ML). In this way Lµ relates to ML in the same way as LFP relates to
FO.

Definition 5.1. The modal µ-calculus Lµ extends ML (including proposi-
tional variables X, Y, . . . , which can be viewed as monadic second-order
variables) by the following rule for building fixed point formulae: If ψ

is a formula in Lµ and X is a propositional variable that only occurs
positively in ψ, then µX.ψ and νX.ψ are also Lµ-formulae.

The semantics of these fixed-point formulae is completely analo-
gous to that for LFP. The formula ψ defines on G (with universe V, and
with interpretations for other free second-order variables that ψ may
have besides X) the monotone operator Fψ : P(V) → P(V) assigning
to every set X ⊆ V the set ψG(X) := {v ∈ V : (G, X), v |= ψ}. The
semantics of fixed-points is defined by

G, v |= µX.ψ iff v ∈ lfp(Fψ)

G, v |= νX.ψ iff v ∈ gfp(Fψ).

73

5 Modal, Inflationary and Partial Fixed Points

Example 5.2. The formula µX.(ϕ ∨ ⟨a⟩X) asserts that there exists a path
along a-transitions to a node where ϕ holds.

The formula ψ := νX.
(
(
∨

a∈A⟨a⟩true)∧ (∧a∈A[a]X)
)

expresses the
assertion that the given transition system is deadlock-free. In other
words, G, v |= ψ if no path from v in G reaches a dead end (i.e. a node
without outgoing transitions).

Finally, the formula νX.µY.
(
⟨a⟩

(
(ϕ ∧ X) ∨Y

))
says that there ex-

ists a path from the current node on which ϕ holds infinitely often.

The embedding from ML into FO is readily extended to a transla-
tion from Lµ into LFP, by inductively replacing formulas of the form
µX.ϕ by [lfp Xx.ϕ∗](x).

Proposition 5.3. Every formula ψ ∈ Lµ is equivalent to a formula
ψ∗(x) ∈ LFP.

Further the argument proving that LFP can be embedded into SO
also shows that Lµ is a fragment of MSO.

As for LFP, a fixed µ-calculus formula can be evaluated on a struc-
ture A in time polynomial in |A|. The question whether evaluating
µ-calculus formulas on a structure when both the formula and the
structure are part of the input is in PTIME is a major open problem.
On the other hand, it is not difficult to see that the µ-calculus does
not suffice to capture PTIME, even in very restricted scenarios such as
word structures. Indeed, as Lµ is a fragment of MSO, it can only define
regular languages, and of course, not all PTIME-languages are regular.
However, we shall see in Section 5.5 that there is a multidimensional
variant of Lµ that captures the bisimulation-invariant fragment of PTIME.
Before we do this, let us first show that Lµ is itself invariant under
bisimulation. To this end, we translate Lµ formulas into formulas of
infinitary modal logic ML∞ω , similar to the embedding of LFP into L∞ω .

5.1.1 Infinitary Modal Logic and Bisimulation Invariance

Infinitary modal logic extends ML in an analogous way as how infinitary
first-order logic extends FO.

74

5.1 The Modal µ-Calculus

Definition 5.4. Let κ ∈ Cn∞ be an infinite cardinal number. The
infinitary logic MLκω is inductively defined as follows.

• Predicates Pi are in MLκω .

• If ϕ ∈ MLκω , then also ¬ϕ, �ϕ, ♦ϕ ∈ MLκω .

• If Φ ⊆ MLκω is a set of formulae with |Φ| < κ,
then

∨
Φ,

∧
Φ ∈ MLκω .

Further, we write ML∞ω to denote
⋃

κ∈Cn∞ MLκω .

The semantics of ML∞ω on Kripke structures is defined analo-
gously to the semantics of ML, with the following obvious extension
for the case of infinite disjuntions and conjunctions.

• K, v |= ∧
Φ if and only if K, v |= ϕ for all ϕ ∈ Φ.

• K, v |= ∨
Φ if and only if there exists a ϕ ∈ Φ such that K, v |= ϕ.

The same proof that shows invariance of ML under bisimulation
works for ML∞ω , because the introduction of infinite conjunctions and
disjunctions does not interfere with the arguments in the proof at all.

Theorem 5.5. The logic ML∞ω is invariant under bisimulation, i.e. if
ϕ ∈ ML∞ω is a formula and K, v ∼ K′, v′ are two bisimilar Kripke
structures, then

K, v |= ϕ iff K′, v′ |= ϕ.

Similarly, the proof of Theorem 5.6 can be adapted to give a trans-
lation from Lµ formulas to ML∞ω , as stated below.

Theorem 5.6. Let κ ∈ Cn∞. For each formula ϕ ∈ Lµ there exists a
formula ϕ̂ ∈ MLκω such that for all transition systems K with |K| < κ

and all v ∈ K, we have K, v |= ϕ if and only if K, v |= ϕ̂.

Combining these two theorems, we get bisimulation invariance of Lµ.

Corollary 5.7. The logic Lµ is invariant under bisimulation.

75

5 Modal, Inflationary and Partial Fixed Points

5.2 Inflationary Fixed-Point Logic

LFP is only one instance of a logic with an explicit operator for forming
fixed points. A number of other fixed-point extensions of first-order
logic (or fragments of it) have been extensively studied in finite model
theory. These include inflationary, partial, non-deterministic, and alter-
nating fixed-point logics. All of these have in common that they allow
the construction of fixed points of operators that are not necessarily
monotone.

An operator G : P(B) → P(B) is called inflationary if G(X) ⊇ X
for all X ⊆ B. With any operator F one can associate an inflationary
operator G, defined by G(X) := X ∪ F(X). In particular, inflationary
operators are inductive, so iterating G yields a fixed point, called the
inflationary fixed point of F.

To be more precise, the inflationary fixed-point of any operator
F : P(B) → P(B) is defined as the limit of the increasing sequence of
sets (Rα) defined as R0 := ∅, Rα+1 := Rα ∪ F(Rα), and Rλ :=

⋃
α<λ Rα

for limit ordinals λ. The deflationary fixed point of F is constructed in the
dual way starting with B as the initial stage and taking intersections at
successor and limit ordinals.

Remark 5.8.

(1) Monotone operators need not be inflationary, and inflationary
operators need not be monotone.

(2) An inflationary operator need not have a least fixed point.
(3) The least fixed point of an inflationary operator (if it exists) may

be different from the inductive fixed point.
(4) However, if F is a monotone operator, then its inflationary fixed

point and its least fixed point coincide.

The logic IFP is defined with a syntax similar to that of LFP, but
without the requirement that the fixed-point variable occurs only posi-
tively in the formula defining the operator, and with semantics given
by the associated inflationary operator.

Definition 5.9. IFP is the extension of first-order logic by the following
fixed-point formation rules. For every formula ψ(R, x), every tuple

76

5.2 Inflationary Fixed-Point Logic

x of variables, and every tuple t of terms (such that the lengths of x
and t match the arity of R), we can build formulas [ifp Rx . ψ](t) and
[dfp Rx . ψ](t).

Semantics. For a given structure A, we have that A |= [ifp Rx . ψ](t)
and A |= [dfp Rx . ψ](t) if tA is contained in the inflationary and
deflationary fixed point of Fψ, respectively.

By the last item of Remark 5.8, least and inflationary inductions are
equivalent for positive formulae, and hence IFP is at least as expressive
as LFP. On finite structures, inflationary inductions reach the fixed point
after a polynomial number of iterations, hence every IFP-definable class
of finite structures is decidable in polynomial time.

Proposition 5.10. IFP captures PTIME on ordered finite structures.

5.2.1 Least Versus Inflationary Fixed-Points

As both logics capture PTIME, IFP and LFP are equivalent on ordered
finite structures. What about unordered structures? It was shown by
Gurevich and Shelah that the equivalence of IFP and LFP holds on all
finite structures. Their proof does not work on infinite structures, and
indeed there are some important aspects in which least and inflationary
inductions behave differently. For instance, there are first-order opera-
tors (on arithmetic, say) whose inflationary fixed point is not definable
as the least fixed point of a first-order operator. Further, the alternation
hierarchy in LFP is strict, whereas IFP has a positive normal form (see
Proposition 5.17 below). Hence it was conjectured by many that IFP
might be more powerful than LFP. However, Kreutzer showed recently
that IFP is equivalent to LFP on arbitrary structures. Both proofs, by
Gurevich and Shelah and by Kreutzer, rely on constructions showing
that the stage comparison relations of inflationary inductions are definable
by lfp inductions.

Definition 5.11. For every inductive operator F : P(B) → P(B), with
stages Xα and an inductive fixed point X∞, the F-rank of an element
b ∈ B is |b|F := min{α : b ∈ Xα} if b ∈ X∞, and |b|F = ∞ otherwise.

77

5 Modal, Inflationary and Partial Fixed Points

The stage comparison relations of G are defined by

a ≤F b iff |a|F ≤ |b|F < ∞

a ≺F b iff |a|F < |b|F.

Given a formula ϕ(R, x), we write ≤ϕ and ≺ϕ for the stage compar-
ison relations defined by the operator Fϕ (assuming that it is indeed
inductive), and ≤inf

ϕ and ≺inf
ϕ for the stage comparison relations of the

associated inflationary operator Gϕ : R 7→ R ∪ {a : A |= ϕ(R, a)}.

Example 5.12. For the formula ϕ(T, x, y) := Exy ∨ ∃z(Exz ∧ Tzy) the
relation ≺ϕ on a graph (V, E) is distance comparison:

(a, b) ≺ϕ (c, d) iff dist(a, b) < dist(c, d).

Stage comparison theorems are results about the definability of
stage comparison relations. For instance, Moschovakis proved that
the stage comparison relations ≤ϕ and ≺ϕ of any positive first-order
formula ϕ are definable by a simultaneous induction over positive first-
order formulae. For results on the equivalence of IFP and LFP one
needs a stage comparison theorem for IFP inductions.

We first observe that the stage comparison relations for IFP in-
ductions are easily definable in IFP. For any formula ϕ(T, x̄) with free
variables x and free occuring predicate T, the stage comparison relation
≺inf

ϕ is defined by the formula

ψ(x′y′) = [ifp w ≺ z . ϕ[Tu/u ≺ w](w) ∧ ¬ϕ[Tu/u ≺ z](z)](x′, y′).

Here we syntactically substitute T, u by u ≺ w in ϕ(Tx) and, addition-
ally, free variables again by w. (Note that u may contain free variables.)
In ¬ϕ(T, x), we substitute T, u by u ≺ z and, additionally, free variables
again by z. Thus free variables become parameter variables of the
fixed-point. Now, for the first iteration, T0 is empty as well as ≺0, so
the formula ϕ(T0, w) is satisfied by the same a as ϕ(≺0, w). So in the
first interation, the first components of ≺1 contain the same elements
as T1. The second components of ≺1 contain all other elements. In
general, in the i-th iteration, ≺i consists of pairs (a, b) such that a ∈ Ti

78

5.2 Inflationary Fixed-Point Logic

and b ̸∈ Ti. In the next step, precisely those a satisfy ϕ[Tu/u ≺ w](≺i)

that satisfy ϕ(Ti) (instead of ϕ[T, u] we now have ϕ[u ≺ w], i.e. Ta
holds if and only if u ≺ a holds if and only if a has come to T in the
previous steps). So those b that do not satisfy ϕ[Tu/u ≺ w](≺i), satisfy
¬ϕ[Tu/u ≺ w](≺i). Summing up, pairs a, b are included to ≺i+1 if and
only if a is included into Ti+1, but not earlier, and b is not in Ti+1.

However, what we need to show is that the stage comparison
relation for IFP inductions is in fact LFP-definable.

Theorem 5.13 (Inflationary Stage Comparison). For any formula ϕ(R, x)
in FO or LFP, the stage comparison relation ≺inf

ϕ is definable in LFP.
On finite structures, it is even definable in positive LFP.

From this result, the equivalence of LFP and IFP follows easily.

Theorem 5.14 (Kreutzer). For every IFP-formula, there is an equivalent
LFP-formula.

Proof. For any formula ϕ(R, x),

[ifp Rx . ϕ](x) ≡ ϕ({y : y ≺inf
ϕ x}, x).

This holds because, by definition, an inductive fixed-point can only
increase. Thus a tuple is added to it if and only if there is a stage, at
which the relation R contains all previously added elements (thus R =

{y : y ≺inf
ϕ x}), and at that stage ϕ(R, x) holds. Due to Theorem 5.13,

the relation {y : y ≺inf
ϕ x} is definable in LFP, so the statement follows

directly. q.e.d.

Positive LFP. While LFP and the modal µ-calculus allow arbitrary
nesting of least and greatest fixed points, and arbitrary interleaving
of fixed points with Boolean operations and quantifiers, we can also
ask about their more restricted forms. Let LFP1 (sometimes also called
positive LFP) be the extension of first-order logic that is obtained by
taking least fixed points of positive first-order formulae (without param-
eters) and closing them under disjunction, conjunction, and existential
and universal quantification, but not under negation. LFP1 can be

79

5 Modal, Inflationary and Partial Fixed Points

conveniently characterized in terms of simultaneous least fixed points,
defined in the next chapter.

Theorem 5.15. A relation is definable in LFP1 if and only if it is de-
finable by a formula of the form [lfp R : S](x), where S is a system of
update rules Rix := ϕi(R, x) with first-order formulae ϕi. Moreover,
we can require, without diminishing the expressive power, that each of
the formulae ϕi in the system is either a purely existential formula or a
purely universal formula.

One interesting consequence of the stage comparison theorems is
that on finite structures, greatest fixed points (i.e. negations of least
fixed points) can be expressed in positive LFP. This gives a normal form
for LFP and IFP.

Theorem 5.16 (Immerman). On finite structures, every LFP-formula
(and hence also every IFP-formula) is equivalent to a formula in LFP1.

This result fails on infinite structures. On infinite structures, there
exist LFP formulae that are not equivalent to positive formulae, and in
fact the alternation hierarchy of least and greatest fixed points is strict.
This is not the case for IFP.

Proposition 5.17. It can be proven that every IFP-formula is equivalent
to one that uses ifp-operators only positively.

Proof. Assume that structures contain at least two elements and that a
constant 0 is available. Then a formula ¬[ifp Rx . ψ(R, x)] is equivalent
to an inflationary induction on a predicate Tx y which, for y ̸= 0,
simulates the induction defined by ψ, checks whether the fixed point
has been reached, and then makes atoms Tx0 true if x is not contained
in the fixed point. q.e.d.

In finite model theory, owing to the Gurevich-Shelah Theorem, the
two logics LFP and IFP have often been used interchangeably. However,
there are significant differences that are sometimes overlooked. Despite
the equivalence of IFP and LFP, inflationary inductions are a more
powerful concept than monotone inductions. The translation from IFP-
formulae to equivalent LFP-formulae can make the formulae much more

80

5.3 Simultaneous Inductions

complicated, requires an increase in the arity of fixed-point variables
and, in the case of infinite structures, introduces alternations between
least and greatest fixed points. Therefore it is often more convenient
to use inflationary inductions in explicit constructions, the advantage
being that one is not restricted to inductions over positive formulae.
For an example, see the proof of Theorem 5.29 below. Furthermore, IFP
is more robust, in the sense that inflationary fixed points remain well
defined even when other non-monotone operators (e.g. generalized
quantifiers) are added to the language.

5.3 Simultaneous Inductions

A more general variant of LFP permits simultaneous inductions over
several formulae. A simultaneous induction is based on a system of
operators of the form

F1 : P(B1)× · · · × P(Bm) → P(B1)

...

Fm : P(B1)× · · · × P(Bm) → P(Bm),

forming together an operator

F = (F1, . . . , Fm) : P(B1)× · · · × P(Bm)→ P(B1)× · · · × P(Bm).

Inclusion on the product lattice P(B1)× · · · ×P(Bm) is componentwise.
Accordingly, F is monotone if, whenever Xi ⊆ Yi for all i, then also
Fi(X) ⊆ Fi(Y) for all i.

Everything said above about least and greatest fixed points carries
over to simultaneous induction. In particular, a monotone operator
F has a least fixed point lfp(F) which can be constructed inductively,
starting with X0 = (∅, . . . , ∅) and iterating F until a fixed point X∞ is
reached.

One can extend the logic LFP by a simultaneous fixed point forma-
tion rule.

81

5 Modal, Inflationary and Partial Fixed Points

Definition 5.18. Simultaneous least fixed-point logic, denoted by S-LFP, is
the extension of first-order logic by the following rule.

Syntax. Let ψ1(R, x1), . . . , ψm(R, xm) be formulae of vocabulary
τ ∪ {R1, . . . , Rm}, with only positive occurrences of R1, . . . , Rm, and, for
each i ≤ m, let xi be a sequence of variables matching the arity of Ri.
Then

S :=





R1x1 := ψ1
...

Rmxm := ψm

is a system of update rules, which is used to build formulae [lfp Ri : S](t)
and [gfp Ri : S](t) (for any tuple t of terms whose length matches the
arity of Ri).

Semantics. On each structure A, S defines a monotone operator
SA = (S1, . . . , Sm) mapping tuples R = (R1, . . . , Rm) of relations on A
to SA(R) = (S1(R), . . . , Sm(R)) where Si(R) := {a : (A, R) |= ψi(R, a)}.
As the operator is monotone, it has a least fixed point lfp(SA) =

(R∞
1 , . . . , R∞

m). Now A |= [lfp Ri : S](a) if a ∈ R∞
i . Similarly for greatest

fixed points.

As in the case of LFP, one can also extend IFP and PFP (defined
in the next section) by simultaneous inductions over several formulae.
In all of these cases, simultaneous fixed-point logics S-LFP, S-IFP and
S-PFP are not more expressive than their simple variants. This can
be proven easily by taking a fixed-point over a relation R with bigger
arity, e.g. one higher than the maximum arity of R1, . . . , Rm. The atoms
Ri(x) can then be replaced by R(ci, x) for chosen m constants c1, . . . , cm.
The fixed-point of R is then sufficient to describe the simultaneous
fixed-point of S, yielding the following.

Theorem 5.19. For every formula ϕ ∈ S-LFP (ϕ ∈ S-IFP,S-PFP) there
exists an equivalent formula ϕ ∈ LFP (ϕ ∈ IFP,PFP).

82

5.4 Partial Fixed-Point Logic

5.4 Partial Fixed-Point Logic

Another fixed-point logic that is relevant to finite structures is the
partial fixed-point logic (PFP). Let ψ(R, x) be an arbitrary formula
defining on a finite structure A a (not necessarily monotone) operator
Fψ : R 7→ {a : A |= ψ(R, a)}, and consider the sequence of its finite
stages R0 := ∅, Rm+1 = Fψ(Rm).

This sequence is not necessarily increasing. Nevertheless, as A is
finite, the sequence either converges to a fixed point, or reaches a cycle
with a period greater than one. We define the partial fixed point of Fψ

as the fixed point that is reached in the former case, and as the empty
relation otherwise. The logic PFP is obtained by adding to first-order
logic the partial-fixed-point formation rule, which allows us to build from
any formula ψ(R, x) a formula [pfp Rx . ψ(R, x)](t), saying that t is
contained in the partial fixed point of the operator Fψ.

Note that if R occurs only positively in ψ, then

[lfp Rx . ψ(R, x)](t) ≡ [pfp Rx . ψ(R, x)](t),

so we have that LFP ≤ PFP. However, PFP seems to be much more
powerful than LFP. For instance, while a least-fixed-point induction on
finite structures always reaches the fixed point in a polynomial number
of iterations, a partial-fixed-point induction may need an exponential
number of stages.

Example 5.20. Consider the sequence of stages Rm defined by the for-
mula

ψ(R, x) :=
(

Rx∧∃y(y < x∧¬Ry)
)
∨
(
¬Rx∧∀y(y < x → Ry)

)
∨∀yRy

on a finite linear order (A,<). It is easily seen than the fixed point
reached by this induction is the set R = A, but before this fixed point is
reached, the induction goes in lexicographic order through all possible
subsets of A. Hence the fixed point is reached at stage 2n − 1, where
n = |A|.

83

5 Modal, Inflationary and Partial Fixed Points

Complexity. Although a PFP induction on a finite structure may go
through exponentially many stages (with respect to the cardinality of
the structure), each stage can be represented with polynomial storage
space. As first-order formulae can be evaluated efficiently, it follows by
a simple induction that PFP-formulae can be evaluated in polynomial
space.

Proposition 5.21. For every formula ψ ∈ PFP, the set of finite models
of ψ is in PSPACE; in short: PFP ⊆ PSPACE.

On ordered structures, one can use techniques similar to those used
in previous capturing results, to simulate polynomial-space-bounded
computation by PFP-formulae.

Theorem 5.22 (Abiteboul, Vianu, and Vardi). On ordered finite struc-
tures, PFP captures PSPACE.

Proof. It remains to prove that every class K of finite ordered structures
that is recognizable in PSPACE, can be defined by a PFP-formula.

Let M be a polynomially space-bounded deterministic Turing ma-
chine with state set Q and alphabet Σ, recognizing (an encoding of)
an ordered structure (A,<) if and only if (A,<) ∈ K. Without loss of
generality, we can make the following assumptions. For input structures
of cardinality n, M requires space less than nk − 2, for some fixed k. For
any configuration C of M, let Next(C) denote its successor configura-
tion. The transition function of M is adjusted so that Next(C) = C if,
and only if, C is an accepting configuration.

We represent any configuration of M with a current state
q, tape inscription w1 · · ·wm, and head position i, by the word
#w1 · · ·wi−1(qwi)wi+1 · · ·wm−1# over the alphabet Γ := Σ ∪ (Q× Σ) ∪
{#}, where m = nk and # is merely used as an end marker to make the
following description more uniform. When moving from one configura-
tion to the next, Turing machines make only local changes. We can there-
fore associate with M a function f : Γ3 → Γ such that, for any configu-
ration C = c0 · · · cm, the successor configuration Next(C) = c′0 · · · c′m is
determined by the rules

c′0 = c′m = # and c′i = f (ci−1, ci, ci+1) for 1 ≤ i ≤ m− 1.

84

5.4 Partial Fixed-Point Logic

Recall that we encode structures so that there exist first-order
formulae βσ(y) such that (A,<) |= βσ(a) if and only the ath symbol
of the input configuration of M for input code(()A,<) is σ. We now
represent any configuration C in the computation of M by a tuple
C = (Cσ)σ∈Γ of k-ary relations, where

Cσ := {a : the a-th symbol of C is σ}.

The configuration at time t is the stage t + 1 of a simultaneous pfp
induction on (A,<), defined by the rules

C#y :=∀z(y ≤ z) ∨ ∀z(z ≤ y)

and, for all σ ∈ Γ− {#},

Cσy :=
(

βσ(y) ∧
∧

γ∈Γ
∀x¬Cγx

)
∨

∃x∃z
(

x + 1 = y ∧ y + 1 = z ∧
∨

f (α,β,γ)=σ

Cαx ∧ Cβy ∧ Cγz)
)

The first rule just says that each stage represents a word starting and
ending with #. The other rules ensure that (1) if the given sequence
C contains only empty relations (i.e. if we are at stage 0), then the
next stage represents the input configuration, and (2) if the given se-
quence represents a configuration, then the following stage represents
its successor configuration.

By our convention, M accepts its input if and only the sequence of
configurations becomes stationary (i.e. reaches a fixed point). Hence
M accepts code(()A,<) if and only if the relations defined by the
simultaneous pfp induction on A of the rules described above are non-
empty. Hence K is PFP-definable. q.e.d.

5.4.1 Least Versus Partial Fixed-Point Logic

From the capturing results for PTIME and PSPACE we immediately
obtain the result that PTIME = PSPACE if, and only if, LFP = PFP on

85

5 Modal, Inflationary and Partial Fixed Points

ordered finite structures. The natural question arises of whether LFP
and PFP can be separated on the domain of all finite structures. For a
number of logics, separation results on arbitrary finite structures can
be established by relatively simple methods, even if the corresponding
separation on ordered structures would solve a major open problem
in complexity theory. For instance, we have proved by quite a simple
argument that DTC (TC, and it is also not very difficult to show that
TC (LFP (indeed, TC is contained in stratified Datalog, which is also
strictly contained in LFP). Further, it is trivial that LFP is less expressive
than Σ1

1 on all finite structures. However the situation is different for
LFP vs. PFP.

Theorem 5.23 (Abiteboul and Vianu). LFP and PFP are equivalent on
finite structures if, and only if, PTIME = PSPACE.

5.5 Capturing PTIME up to Bisimulation

In mathematics, we consider isomorphic structures as identical. Indeed,
it almost goes without saying that relevant mathematical notions do
not distinguish between isomorphic objects. As classical algorithmic
devices work on ordered representations of structures rather than the
structures themselves, our capturing results rely on an ability to reason
about canonical ordered representations of isomorphism classes of finite
structures.

However, in many application domains of logic, structures are
distinguished only up to equivalences coarser than isomorphism. Per-
haps the best-known example is the modelling of the computational
behaviour of (concurrent) programs by transition systems. The meaning
of a program is usually not captured by a unique transition system.
Rather, transition systems are distinguished only up to appropriate
notions of behavioural equivalence, the most important of these being
bisimulation.

In such a context, the idea of a logic capturing PTIME gets a new
twist. One would like to express in a logic precisely those properties of
structures that are

86

5.5 Capturing PTIME up to Bisimulation

(1) decidable in polynomial time, and

(2) invariant under the notion of equivalence being studied.

A class S of rooted transition systems or Kripke structures is invari-
ant under bisimulation if, whenever K, v ∈ S and K, v ∼ K′, v′, then also
K′, v′ ∈ S. We say that a class S of finite rooted transition systems is in
bisimulation-invariant PTIME if it is invariant under bisimulation, and
if there exists a polynomial-time algorithm deciding whether a given
pair K, v belongs to S. A logic L is invariant under bisimulation if all
L-definable properties of rooted transition systems are.

Clearly, Lµ ⊆ bisimulation-invariant PTIME. However, as pointed
out in Section 5.1, Lµ is far too weak to capture this class, mainly
because it is essentially a monadic logic. Instead, we have to consider a
multidimensional variant Lω

µ of Lµ.

But before we define this logic, we should explain the main tech-
nical step, which relies on definable canonization, but of course with
respect to bisimulation rather than isomorphism. For simplicity of
notation, we consider only Kripke structures with a single transition
relation E. The extension to the case of several transition relations Ea is
straightforward.

With a rooted Kripke structure K = (V, E, (Pb)b∈B), u, we associate
a new transition system

K∼u := (V∼u , E∼, (P∼b)b∈B),

where V∼u is the set of all ∼-equivalence classes [v] of nodes v ∈ V that
are reachable from u. More formally, let [v] denote the bisimulation
equivalence class of a node v ∈ V. Then

V∼u := {[v] : there is a path in G from u to v}
P∼b := {[v] ∈ V∼u : v ∈ Pb}
E∼ := {([v], [w]) : (v, w) ∈ E}.

The pair K∼u , [u] is, up to isomorphism, a canonical representant of
the bisimulation equivalence class of K, u. To see this one can prove

87

5 Modal, Inflationary and Partial Fixed Points

that (1) (K, u) ∼ (K∼u , [u]), and (2) if (K, u) ∼ (G, v), then (K∼u , [u]) ∼=
(G∼v , [v]).

It follows that a class S of rooted transition systems is bisimulation-
invariant if and only if S = {(K, u) : (K∼u , [u]) ∈ S}. Let CR∼ be the
domain of canonical representants of finite transition systems, i.e.

CR∼ := {K, u | (K∼u , [u]) ∼= (K, u)}.

Proposition 5.24. CR∼ admits LFP-definable linear orderings, i.e. for
every vocabulary τ = {E} ∪ {Pb : b ∈ B}, there exists a formula
ψ(x, y) ∈ LFP(τ) which defines a linear order on every transition
system in CR∼(τ).

Proof. Recall that bisimulation equivalence on a transition system is a
greatest fixed point. Its complement, bisimulation inequivalence, is a
least fixed point, which is the limit of an increasing sequence ̸∼i defined
as follows: u ̸∼0 v if u and v do not have the same atomic type, i.e. if
there exists some b such that one of the nodes u, v has the property
Pb and the other does not. Further, u ̸∼i+1 v if the sets of ∼i-classes
that are reachable in one step from u and v are different. The idea is
to refine this inductive process, by defining relations ≺i that order the
∼i-classes. On the transition system itself, these relations are pre-orders.
The inductive limit ≺ of the pre-orders ≺i defines a linear order of
the bisimulation equivalence classes. But in transition systems in CR∼,
bisimulation classes have only one element, so ≺ actually defines a
linear order on the set of nodes.

To make this precise, we choose an order on B and define ≺0 by
enumerating the 2|B| atomic types with respect to the propositions Pb,
i.e.

x ≺0 y :=
∨

b∈B

(
¬Pbx ∧ Pby ∧

∧

b′<b
Pb′x ↔ Pb′y

)
.

In other words, there is some b such that Pb separates x from y and for
the least such b, Pb holds on y and not on x.

88

5.5 Capturing PTIME up to Bisimulation

In what follows, x ∼i y can formally be taken as an abbreviation for
¬(x ≺i y ∨ y ≺i x), and similarly for x ∼ y. We define x ≺i+1 y by the
condition that either x ≺i y, or x ∼i y and the set of ∼i-classes reachable
from x is lexicographically smaller than the set of ∼i-classes reachable
from y. Note that this inductive definition of ≺ is not monotone, so it
cannot be directly captured by an LFP-formula. However, as we know
that LFP ≡ IFP, we can use an IFP-formula instead. Explicitly, ≺ is
defined by [ifp x ≺ y . ψ(≺, x, y)](x, y), where

ψ(≺, x, y) := x ≺0 y ∨
(

x ∼ y∧

(∃y′ . Eyy′)
(
(∀x′ . Exx′)x′ ̸∼ y′∧

(∀z.z ≺ y′)
(
∃x′′(Exx′′ ∧ x′′ ∼ z)↔

∃y′′(Eyy′′ ∧ y′′ ∼ z)
)))

.

q.e.d.

Corollary 5.25. On the domain CR∼, LFP captures PTIME.

Since LFP is not invariant under bisimulation, we will strengthen
the above result and capture bisimulation-invariant PTIME in terms of
a natural logic, the multidimensional µ-calculus Lω

µ .

Definition 5.26. The syntax of the k-dimensional µ-calculus Lk
µ (for tran-

sition systems K = (V, E, (Pb)b∈B)) is the same as the syntax of the
usual µ-calculus Lµ with modal operators ⟨i⟩, [i], and ⟨σ⟩, [σ] for every
substitution σ : {1, . . . , k} → {1, . . . , k}. Let S(k) be the set of all these
substitutions.

The semantics is different, however. A formula ψ of Lk
µ is in-

terpreted on a transition system K = (V, E, (Pb)b∈B) at node v by
evaluating it as a formula of Lµ on the modified transition system

Kk = (Vk, (Ei)1≤i≤k, (Eσ)σ∈S(k), (Pb,i)b∈B,1≤i≤k)

89

5 Modal, Inflationary and Partial Fixed Points

at node v := (v, v, . . . , v). Here Vk = V × · · · ×V and

Ei := {(v, w) ∈ Vk ×Vk : (vi, wi) ∈ E and vj = wj for j ̸= i}
Eσ := {(v, w) ∈ Vk ×Vk : wi = vσ(i) for all i}

Pb,i := {v ∈ Vk : vi ∈ Pb}

That is, K, v |=Lk
µ

ψ iff Kk, (v, . . . , v) |=Lµ
ψ. The multidimensional µ-

calculus is Lω
µ =

⋃
k<ω Lk

µ.

Remark. Instead of evaluating a formula ψ ∈ Lk
µ at single nodes

v of G, we can also evaluate it at k-tuples of nodes: K, v |=Lk
µ

ψ iff

Kk, v |=Lµ
ψ.

Example 5.27. Bisimulation is definable in L2
µ (in the sense of the remark

just made). Let

ψ∼ := νX .
(∧

b∈B
(Pb,1 ↔ Pb,2) ∧ [1]⟨2⟩X ∧ [2]⟨1⟩X

)
.

For every transition system K, we have that K, v1, v2 |= ψ∼ if, and only
if, v1 and v2 are bisimilar in K. Further, we have that

K, v |= µY . ⟨2⟩(ψ∼ ∨ ⟨2⟩Y)

if, and only if, there exists in K a point w that is reachable from v (by a
path of length ≥ 1) and bisimilar to v.

One can see that Lω
µ is invariant under bisimulation (because if

K, vi ∼ G, ui for all i then also Kk, v ∼ G, u) and that Lω
µ can be embed-

ded in LFP. This establishes the easy direction of the desired result:
Lω

µ ⊆ bisimulation-invariant PTIME.
For the converse, it suffices to show that LFP and Lω

µ are equivalent
on the domain CR∼. Let S be a class of rooted transition systems in
bisimulation-invariant PTIME. For any K, u, we have that K, u ∈ S if
its canonical representant K∼u , [u] ∈ S. If LFP and Lω

µ are equivalent
on CR∼, then there exists a formula ψ ∈ Lω

µ such that K∼u , [u] |= ψ

iff K∼u , [u] ∈ S. By the bisimulation invariance of ψ, it follows that
K, u |= ψ iff K, u ∈ S.

90

5.5 Capturing PTIME up to Bisimulation

The width of an LFP-formula ϕ is the maximal number of free
variables occuring in a subformula of ϕ.

Proposition 5.28. On the domain CR∼, LFP ≤ Lω
µ . More precisely, for

each formula ψ(x1, . . . , xk) ∈ LFP of width ≤ k, there exists a formula
ψ∗ ∈ Lk+1

µ such that for each K, u ∈ CR∼, we have that K |= ψ(u, v) iff
K, u, v |= ψ∗.

Note that although, ultimately, we are interested only in formulae
ψ(x) with just one free variable, we need more general formulae, and
evaluation of Lk

µ-formulae over k-tuples of nodes, for the inductive
treatment. In all formulae, we shall have at least x1 as a free variable,
and we always interpret x1 as u (the root of the transition system).
We remark that, by an obvious modification of the formula given in
Example 5.27, we can express in Lk

µ the assertion that xi ∼ xj for any
i, j.

Atomic formulae are translated from LFP to Lω
µ according to

(xi = xj)
∗ := xi ∼ xj

(Pbxi)
∗ := Pb,ix

(Exixj)
∗ := ⟨i⟩xi ∼ xj

(Xxσ(1) · · · xσ(r))
∗ := ⟨σ⟩X.

Boolean connectives are treated in the obvious way, and quantifiers
are translated by use of fixed points. To find a witness xj satisfying a
formula ψ, we start at u (i.e. set xj = x1), and search along transitions
(i.e. use the µ-expression for reachability). That is, let j/1 be the
substitution that maps j to 1 and fixes the other indices, and translate
∃xjψ(x) into

⟨j/1⟩µY . ψ∗ ∨ ⟨j⟩Y.

Finally, fixed points are first brought into normal form so that variables
appear in the right order, and then they are translated literally, i.e.
[lfp Xx . ψ](x) translates into µX . ψ∗.

The proof that the translation has the desired property is a straight-

91

5 Modal, Inflationary and Partial Fixed Points

forward induction, which we leave as an exercise. Altogether we have
established the following result.

Theorem 5.29 (Otto). The multidimensional µ-calculus captures
bisimulation-invariant PTIME.

Otto has also established capturing results with respect to other
equivalences. For finite structures A,B, we say that A ≡k B if no first-
order sentence of width k can distinguish between A and B. Similarly,
A ≡C

k B if A and B are indistinguishable by first-order sentences of
width k with counting quantifiers of the form ∃≥ix, for any i ∈N.

Theorem 5.30 (Otto). There exist logics that effectively capture ≡2-
invariant PTIME and ≡C

2 -invariant PTIME on the class of all finite
structures.

92

