Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt

1. Übung Algorithmische Modelltheorie II

Abgabe: bis Montag, 28. April um 15:00 Uhr am Lehrstuhl.

Aufgabe 1

Wir sagen, dass eine Logik \mathcal{L} die Robinson-Konsistenz-Eigenschaft hat, wenn gilt:

• Ist $\Phi_0 \subseteq \mathcal{L}(\tau_1 \cap \tau_2)$ eine vollständige Theorie und sind $\Phi_0 \subseteq \Phi_1 \subseteq \mathcal{L}(\tau_1), \Phi_0 \subseteq \Phi_2 \subseteq \mathcal{L}(\tau_2)$ erfüllbare Erweiterungen von Φ_0 , so ist auch $\Phi_1 \cup \Phi_2$ erfüllbar.

und dass \mathcal{L} die Craig-Interpolations-Eigenschaft hat, wenn gilt:

• Für alle Formeln $\varphi \in \mathcal{L}(\tau_1)$, $\psi \in \mathcal{L}(\tau_2)$ mit $\varphi \models \psi$ existiert eine Formel $\vartheta \in \mathcal{L}(\tau_1 \cap \tau_2)$ so dass $\varphi \models \vartheta \models \psi$ gilt.

In der Vorlesung wurde gezeigt, dass die Craig-Interpolations-Eigenschaft von FO aus der Robinson-Konsistenz-Eigenschaft von FO folgt.

Sei \mathcal{L} eine Logik für die der Kompaktheissatz gilt und die abgeschlossen unter booleschen Junktoren ist. Zeigen Sie dass unter diesen Voraussetzungen die beiden Eigenschaften äquivalent sind, d.h.:

 \mathcal{L} hat die Robinson-Konsistenz-Eigenschaft $\Leftrightarrow \mathcal{L}$ hat die Craig-Interpolations-Eigenschaft

Aufgabe 2

Beweisen oder widerlegen Sie, dass FO über endlichen Strukturen die Robinson-Konsistenz-Eigenschaft hat.

Aufgabe 3

Die semantische Folgerungsbeziehung läßt sich auf beliebige Domänen $\mathcal{D} \subseteq$ Str relativieren und wird dann mit $\models_{\mathcal{D}}$ bezeichnet. Für $\Phi \subseteq FO(\tau)$ und $\varphi \in FO(\tau)$ gelte also $\Phi \models_{\mathcal{D}} \varphi$, genau dann, wenn für alle $\mathfrak{A} \in \mathcal{D}(\tau)$ mit $\mathfrak{A} \models \Phi$ auch $\mathfrak{A} \models \varphi$ gilt.

Eine Modellklasse $\mathcal{K} = \{\mathfrak{A} \in \mathcal{D}(\tau) : \mathfrak{A} \models \varphi\}$ die durch einen existentiellen Satz der Logik zweiter Stufe $\varphi \in \Sigma^1_1$ über \mathcal{D} axiomatisierbar ist heißt projektive Klasse über \mathcal{D} . Eine Modellklasse die durch einen FO-Satz über \mathcal{D} axiomatisierbar ist heißt elementare Klasse über \mathcal{D} .

- (a) Beweisen Sie die Äquivalenz der folgenden Aussagen:
 - (i) FO über \mathcal{D} hat die Craig-Interpolations-Eigenschaft.
 - (ii) Je zwei disjunkte projektive Klassen über $\mathcal D$ sind durch eine elementare Klasse über $\mathcal D$ trennbar.

(*Hinweis*: Eine Klasse \mathcal{K} trennt die disjunkten Klassen \mathcal{K}_1 , \mathcal{K}_2 , wenn $\mathcal{K}_1 \subseteq \mathcal{K}$ und $\mathcal{K} \cap \mathcal{K}_2 = \emptyset$ gilt).

(b) Folgern Sie als Korollar von (a): Gilt der Craig'sche Interpolationssatz über \mathcal{D} , so ist jede projektive Klasse über \mathcal{D} , deren Komplement auch projektiv über \mathcal{D} ist, bereits elementar über \mathcal{D} . Insbesondere gilt also $\Delta_1^1 = \mathrm{FO}$ über der Domäne $\mathcal{D} = \mathrm{Str}$ aller Strukturen.

(c) Folgern Sie aus (b) und dem Satz von Fagin, dass der Craig'sche Interpolationssatz für FO über endlichen Strukturen nicht gilt.

Aufgabe 4

Beweisen oder widerlegen Sie jeweils, dass die folgenden Logiken die Craig-Interpolations-Eigenschaft haben

- (a) FO^1
- (b) FO^k für $k \ge 2$
- (c) $L_{\infty\omega}$

Aufgabe 5

In der Vorlesung wurde gezeigt, dass FO die Craig-Interpolations-Eigenschaft hat. Zeigen Sie, dass man jedoch Interpolanten im Allgemeinen nicht berechnen kann, dass es also keine rekursive Interpolationsfunktion ϑ gibt, welche zu jedem $(\chi, \varphi) \in FO(\tau_1) \times FO(\tau_2)$ mit $\chi \models \varphi$ ein $\vartheta(\chi, \varphi) \in FO(\tau_1 \cap \tau_2)$ berechnet, für das $\chi \models \vartheta(\chi, \varphi) \models \varphi$ gilt.

Hinweis: Sie dürfen für diese Aufgabe ohne Beweis die Tatsache benutzen, dass es einen $FO(\tau)$ -Satz ψ gibt, für den die Mengen $\psi^+ := \{\alpha \in FO(\tau) : \psi \models \alpha\}$ und $\psi^- := \{\alpha \in FO(\tau) : \psi \models \neg \alpha\}$ rekursiv inseperabel sind (Jedes endliche Axiomensystem in dem alle rekursiven Funktionen repräsentierbar sind (siehe hierzu MaLo 2 - Skript über die Gödel'schen Unvollständigkeitssätze) wie etwa die Robinson-Arithmetik Q erfüllen dies zum Beispiel). Zeigen Sie nun, dass man diese Mengen rekursiv trennen könnte, falls es eine rekursive Interpolationsfunktion gäbe.

Viel Spaß und frohe Oster-Feiertage!