Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, F. Reinhardt

6. Übung Algorithmische Modelltheorie II

Abgabe: bis Montag, 2. Juni um 15:00 Uhr am Lehrstuhl.

Aufgabe 1

Sei Σ ein Alphabet. Wir identifizieren die Sprache $L \subseteq \Sigma^*$ mit der Klasse der Wort-Strukturen $\mathcal{K}_L = \{\mathcal{W}_x : x \in L\}$, wobei

$$\mathcal{W}_x = (\{0, \dots, |x|\}, (S_a^{\mathcal{W}_x} = \{(i, i+1) : x(i) = a\})_{a \in \Sigma}, 0^{\mathcal{W}_x} = 0, e^{\mathcal{W}_x} = |x|).$$

Jeder FO + TC-Satz φ über der Signatur $\{S_a: a \in \Sigma\} \cup \{0,e\}$ definiert die Sprache $L(\varphi) := \{x \in \Sigma^*: \mathcal{W}_x \models \varphi\}.$

- (a) Geben Sie FO + TC-Sätze an, welche die folgenden Sprachen definieren.
 - (i) $L_0 = a^*b^*$
 - (ii) $L_1 = \{ww^R : w \in \{a, b\}^*\}$
 - (iii) $L_m = \{w_1 * \ldots * w_m * w_m * \ldots * w_1 : w_i \in \{a, b\}^*, 1 \le i \le m\} \subseteq \{a, b, *\}^*$ für jedes $m \ge 2$.
- (b) Bestimmen Sie $L(\varphi_i)$ über dem Alphabet $\Sigma = \{a, b\}$ für i = 1, 2.
 - (i) $\varphi_1 = [\operatorname{dtc}_{x,y} \exists z S_a y z](e,0)$
 - (ii) $\varphi_2 = [\operatorname{dtc}_{x,y}[\operatorname{dtc}_{x,y}\exists z S_a y z](y,x)](0,e)$

Aufgabe 2

Wir betrachten endliche Transitionssysteme $\mathfrak{K} = (S, E, P)$ mit binärer Kantenrelation E und einstelligem Prädikat P.

Formalisieren Sie die folgenden Sachverhalte in FO + TC:

- (a) Es gibt einen Zykel.
- (b) Die Relation E ist fundiert, d.h. es gibt keine unendliche Folge $(a_i)_{i\in\mathbb{N}}$ mit $(a_i, a_{i+1}) \in E$ für alle $i \in \mathbb{N}$.
- (c) Es gibt einen Pfad vom Zustand x aus auf dem unendlich oft P gesehen wird.
- (d) Es gibt mindestens 100 Pfade von x nach y.