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Chapter 1

Logics of Knowledge

In the first chapter we investigate logics for reasoning about knowledge. We
assume that there are multiple agents with different states of knowledge, and
we want to make statements about the knowledge of the agents concerning
facts about the outside world about each other’s knowledge.

Let us start with a simple example.

Three logicians come into a bar.

Barkeeper: Beer everybody?
First logician: I don’t know.
Second logician: I don’t know.
Third logician: Yes/

Obviously, for this simple example it is not difficult to figure out why
the agents reason in the way the do, and how the state of their knowledge
develops as the conversation proceeds. But for more involved sutuations this
may be far less obvious and is useful to have a formal framework for modeling
knowledge.

A popular such framework is based on possible worlds semantics and
modal logics. The intuitive idea behind the possible-worlds framework is
that besides the true state of affairs, there are a number of other possible
states of affairds or “worlds”. An agent may not be able to tell which of a
number of possible states describes the actual world. He is then said to know
a fact if this fact is true at all the worlds he considers possible (given his
current state of information).

To describe these ideas more precisely, we first need an appropriate lan-
guage. We find one in modal logic.
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1.1 Modal Logics

For modeling a situation in modal logic (ML) we use
e a finite, non-empty set A of agents,
e a set (P;);er of atomic propositions,

o a Kripke structure KK = (W,(E,)aca), (Pi)icr, where W is a set of
worlds, B, CW x W, and P; C W for each i € I.

For an agent a € A in world v € W of the Kripke structure K, the set
vE, == {w: (v,w) € E,} is supposed to be the set of worlds that he considers
possible.

Formulae of modal logics will always be evaluated at a specific world w
of a Kripke structure.

Notice that modal logics have many interpretations, and reasoning about
knowledge is just one of them. If a modal logic is used as a logic of knowledge,
like it is here, one usually requires that all relations F, are reflexive, symmet-
ric and transitive, and hence are equivalence relations on W. This captures
the intuition that an agent considers world t possible in world s if in both
worlds s and ¢ he has the same information, i.e., they are indistinguishable
to him.

Let us have a look again at the introductory example. Represented as
a Kripke structure, we have A = {L1, Lo, L3}, where each L; denotes one
of the logicians. Further, we define W = {0,1}* and P, = {(wy, wy,w3) :
w; = 1} such that P; stands for L; wanting beer. The edges are Ej, =
{((v1,v9,v3), (w1, ws,ws)) : v; = w;} since each logician must be completely
open about the other’s decision about having a beer; the only thing he knows
for sure is whether he wants one for himself.

The formulae of modal logic (ML) are defined by the grammar

pu=PF | —p| (V)| (eAe)]|{a)e][ae.
For the semantics we define

e C,wkE P, <= weE P,

K,wE —p <= K, w £ p,
KiwkE eV <= KwkEeor K,wlk 1,
KiwkEeANy <= KwlE pand K,w = 1,

K,w = (a)p <= K, z = ¢ for some z € wkE,,
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Figure 1.1: Three logicians in a bar. Equivalence classes for one actor are two
opposite faces of the cube. Note that there is no optical distinction between
edges of different actors.

o C,w[ajp <= K,z | ¢ forall z € wk,.

In our context of reasoning about knowledge we write K, instead of [a]p
and say “agent a knows ¢”. We usually will not use the notation (a)¢ but
instead ~ K .

Coming back to the example above, we can reformulate the question of
the barkeeper as ¢ = P; A P, A Ps. If the first logician does not want a beer,
his answer would be “No” right away since then not everybody wants a beer.
So the interesting case is when he answers “I don’t know”, as he does. By this
he implicitly states that he himself wants a beer, which eliminates all worlds
where he does not and thus changes the knowledge of his two fellow logicians.
Yet the number of possible worlds is still four still (the right face of the cube),
and they do not all agree on ¢, as formally captured by I, (1, ws, w3) =
K19 A =K1, so the second logician will not say “Yes” either. Repeating
the argument, we see that the answer of the second logicians further restricts
the set of possible worlds to 110 and 111, so eventually, the third logician,
by knowing that he himself want a beer, can answer “Yes” to the barkeeper.

We see that from our formalization alone we did not get a direct way
of how to solve the situation. Indeed, our reasoning was not completely
“inside logic” but we also argued on the “meta-level”, for the reductions of
the cube. This is a general phenomenon. Modal logic (even when extended
by additional logical operators) is rarely enough to capture everything that
is relevant in a situation. Rather, we look at it as a helpful tool which is
used to somewhat illustrate the situation and make it easier to understand
and reason about it.
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1.2 The Muddy Children Puzzle

Let us discuss a more elaborate example.

We imagine n children playing together. After their play, k£ of them have
mud on their forehead. Each one can see the mud on others but not on
its own forehead. Now, their father comes and tells them all together that
at least one of them has mud on his forehead. Further, he repeatedly asks
the question “Do you know whether there is mud on your own forehead?”.
Assuming that all children are perceptive, honest, intelligent and answer
simultaneously, what happens is the following. To the first £ — 1 questions,
all children answer “No”. To the k-th question however, exactly the muddy
children answer “Yes”.

Now, why is that? In the case of only one child having mud on his
forehead, this child will answer “Yes” to the first question of the father since
it can see that all the other children are clean. If there are two muddy
children, both will answer “No” to the first question since no one knows the
exact number of muddy children at that point of time. With the question
having been asked a second time however, the muddy children can deduce
that there is more than one child with mud on its forehead, since if there
was only one, this one would have answered “yes” in the first round, as just
explained. Hence, each child that sees only one muddy child, deduces that
that there are exactly two muddy children and that it must be one of them.
We can argue analogously for arbitrary k, with ever more deeply nested
reasoning.

Assuming that £ > 1, we further observe that, when the father tells
his children at the very beginning, that at least one of them has mud on
its forehead, he actually states a fact that is already known to all of them.
Nevertheless this statement is crucial for the argumentation above to work.
The reason is that even if it is true that everyone knows that at least one
of them has mud on its forehead, it is not true that everyone knows that
everyone knows that at least one of them has mud on his forehead. To
establish this is exactly the role of the father’s statement. If we look again
at the case k = 2, we said that “the muddy children can deduce that there is
more than one child with mud on his forehead, since if there was only one,
this one would have answered “yes” in the first round”. But this deduction
is possible only if all the (muddy) children know that all children know that
there is at least one child with mud on his forehead. Otherwise their reasoning
could not refer to the case k — 1 = 1 for which the father’s statement is
actually new information for the muddy child.

As before, we can formalize this situation in modal logic. Nodes of the
Kripke structure are tuples (wy, ..., w,) € {0,1}" with w; = 1 if the ith child
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is muddy and w; = 0 otherwise. If there are three children n, we again have
a Kripke structure with the shape of a cube, but this time the equivalence
classes are parallel edges. The reason for this is that in each world, a child
considers possible precisely two worlds which are identical with respect to
the other children being muddy or not, but differ with respect to that child
itself being muddy or not. (contrary to the situation of three logicians in a
bar).

Also, there is a similar way to use this formalization to resolve the situa-
tion. After the father has stated that at least one of the children has mud on
his forehead, we would eliminate the node (0, ...,0). After he has asked his
question for the first time and no one answers “yes” (for k > 1), we would
eliminate all nodes with exactly one 1, for reasons already made clear. After
he has asked it for the second time and no one answers “yes” (for k > 2), we
would eliminate all nodes with exactly two 1’s, and so on. Eventually, after
the k-th question, only tuples with at least k + 1 1’s are left, meaning that
everyone will know that there are at least £ + 1 muddy children and thus
those will know about them being muddy.

1.3 Common Knowledge and Distributed
Knowledge

We next introduce three operators formalizing notions that are important
when reasoning about knowledge and that already have been in play in the
previous examples. Let GG denote any subset of the set A of agents.

e Fg: “everybody in G knows. ..”
e (Cg: “it is common knowledge among agents in G that...”

e Dg: “it is distributed knowledge in G that...”
Ezxample 1.3.1. The formula K;Cip3¢ says that agent 1 knows that ¢ is
common knowledge among agents 2 and 3.

The Eg—operator does not actually increase the expressivenes of the logic.
It can simply be defined as

K,wl Eqp <= K,w | /\ K,p.
aceG

Example 1.3.2. In the muddy children example with k£ > 1, even before the
father has said that there is at least one child with mud on his forehead, all
children knew this. Formally, F4—(0,...,0). If £ = 1, we could only say
Ea\{amuda,y (05 - -, 0), where @44y denotes the single muddy child.
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Now, we can define E2¢ := ¢ and Ej 'y := EgELy and based on that
the operator for common knowledge

K,wk Cqp <= K,w = E4p for all i € N

which cannot be expressed by a formula of standard modal logic any longer.
Semantically it stands for “Everybody knows ...” and “Everybody knows
that everybody knows ...” and “Everybody knows that everybody knows
that everybody knows ..., etc. ad infinitum.

Example 1.3.3. After the father has said “At least one of you has mud on

his forehead” this is commong knowledge among all children, or formally
CA<P1 V... Pn).

Furthermore, for a Kripke structure I, a group G of agents, a world v,
we define

RE(v) := {w : w is reachable from v by a path of length < k in U E.},
aclG

and its closure

R (v) = | RE(v).

keN
This enables us to express the Ej—operator and the Cg—operator in
graph—theoretical terms:

Lemma 1.3.4. 1. K,vE Elp <= K,w | ¢ for all w € RE(v).
2. K,v | Cop <= K,w |= ¢ for all w € RF(v).
We also note that there is a connection to the modal p—calculus™®, as
captured by
Remark 1.3.5.
Ko Cop <= K,vEvX.(pA /\ K, X).

aeG

To say that ¢ is distributed knowledge among the group of agents G we
use the Dg—operator which is defined as

K,w = Dgp <= K, z = ¢ for all z with (w, z) € ﬂ E,.

aeG

Note that for larger G, the set (1, ., tends to be smaller. Semantically, the
Dg—operator pools the insights of all the agents in G. A fact is distributed
knowledge in G if it holds at every world that is considered possible by every
agent in G.
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FExample 1.3.6. Two agents 1,2 play a card game with cards A, B,C. Each
agent gets one card, the third one is put face down on the table.

This creates six possible worlds, each described by a pair (X, X5), where
X; € {A,B,C} and X; # X,. Atomic propositions are P; x with ¢ € {1,2}
and X € {A, B,C}, stating that agent ¢ holds card X i.e.,

IC, (Xl,X2> |: Pi,X — X = Xz

We want to make some statements about this situation, particularly with
the new operators. Facts like IC, (X3, Xs) = KiP, x, N ~K;Pi_; x, ,, which
follow immediately from the rules of the game, are easy to say already. For
not so obvious sentences, let us illustrate the situation first.

12 (AB) L (A,C)_ D12

2 2
12 (C,B) (B,C)_ D1.2
1 1

12 (C,A) 5 (B,A)_ D12

Figure 1.2: Kripke structure of a card game for two players.

Exemplarily, we can now convince ourselves of the formulae
e K,(A,B) E Ki(PapV Poc) N KimKs P 4,
o IC, (A, B) ): C(Pl,A V Pl,B V Pl,C) AN C(PLA — (Pg}B V PQ’C>)7

— In fact, every formula that holds at all possible worlds is common
knowledge. This will be called Generalization Rule.

® IC, (A, B) ): D(PI,A VAN PQ,B>.

1.4 Properties of Knowledge

So far we have described a language with modal operators such as K, or Dg
and defined a notion of truth (semantics, logically speaking) which deter-
mines whether certain facts, written as a formula in this language, are true
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at some possible world. We have also used it already in various examples
and shown its usefulnes there.

Still, we have not argued yet whether this concept of knowledge actually
captures in general our intuitive understanding of knowledge appropriately.
We can attempt to do so by examining the properties of knowledge under our
interpretation. One way of characterizating the properties of our interpre-
tation of knowledge is by characterizing the formulae that are always true,
i.e., that hold at every node of every Kripke structure (that speaks about
knowledge). Regarding this, we will say “p is valid in K” and write K |= ¢
if K,w |= ¢ for all win K. Moreover, = ¢ if K |= ¢ for every (suitable)
Kripke structure K, and we will just say ¢ is valid in this case.

The first important property of our definition of knowledge we want to
talk about is that each agent knows all the logical consequences of his knowl-
edge. If an agent knows ¢ and knows that ¢ implies ¢, he also knows .
Formally speaking,

): (Kaw A KaW’ — 90)) — Kqp.

This holds because for arbitrary I and one of its nodes w, when assuming
K,wE K AN Kqo(p — @) we can deduce that I,z = ¢ and K,z ¢ — ¢
for all z € wE,, and thus K, w = K,p.

We call this Distribution Aziom (K). Note that it is actually an axiom
schema, representing all formulae of this form where ¢ and 1 have been
replaced by modal formulae, but we ussually go without this subtlety, also in
the case of other axioms/axiom schemas. The axiom suggests that our agents
are quite powerful reasoners. The same is suggested by the Generalization
Rule (cf. Example 1.3.6; second formula), which says that every agent knows
all the formulae that are valid in a given Kripke structure:

If € = ¢ then K = K.

If ¢ is valid in KC, then ¢ holds at all worlds w of IC, in particular for any v it
holds at all worlds w that agent a considers possible at v. Hence, I, v = K .
It follows that K | K .

Note that this is not the same as saying K = ¢ — K,¢ which is not
always true. An agent does not necessarily know all things that are true.
For example, in the case of the muddy children, it may be true that some
child has a muddy forehead but he might not know this. However, agents
do know all wvalid formulae. Intuitively, these are the formulae that are
necessarily true, as opposed to the formulae that just happen to be true at
a given world. Being able to determine all the valid formulae is what makes
our agents powerful reasoners once more.
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Although an agent may not know facts that are true, it is the case that
if he knows a fact, then it is true. Or put the other way around, an agent
cannot know what is not true:

= Kap = .

We call this property the Knowledge Aziom (T). It follows because the cur-
rent world of an agent is always one of the worlds that he considers possible.
So if K, holds at a particular world K, v, then ¢ is true at all worlds agent
a considers possible, in particular at IC,v. Here, we basically use that E, is
assumed to be reflexive. In contrast, for the Distribution Axiom and the Gen-
eralization Rule we did not rely on any assumptions about the edge relations
at all.

The last two properties we want to consider say that agents can do intro-
spection with respect to their knowledge. They know what they know and
what they do not know:

E K. — K K1,

IZ _'Kaw — Ka_‘ aw'

The first one we call Positive Introspection Aziom (4) and the second one
Negative Introspection Axziom (5). Like the Knowledge Axiom they do not
hold for Kripke structures in general but require certain assumptions on the
edge relations. For (4) E, has to be transitive, and for (5) F, has to be
FEuclidian, i.e., (v,w) € E, and (v, z) € E, imply (w, z) € E,.

Before we will prove these axioms we want to state a few general proper-
ties of some restrictions one can place on binary relations F, in

Lemma 1.4.1. 1. If E, is reflexive and Euclidian, then E, is symmetric
and transitive.

2. If £, is symmetric and transitive, then F, is Euclidian.
3. TFAE:

— FE, is an equivalence relation.

— FE, is symmetric, transitive and serial, the latter being that for
each v there is a w with (v, w) € E,.

— F, is reflexive and Euclidian.
L. .
Proof. 1. - E,vw g E,vv N E,ow % E,wv.

. Eucl.
- E,owNE,wz AN E,wv A Eqwz == Evz.
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trans.

2. BE,owAN Bz KA FE,wv A\ Evz: = Ewz.

3. Follows with 1. and 2.
]

Other knowledge axioms that are valid in Kripke structures with specific
properties only, are the so—called Consistency Aziom (D), that is =K,0, or
the axiom ¢ — K,—K,—p.

Theorem 1.4.2. 1. If E, is reflexive, then K = K,o — ¢ (T).
2. If E, is transitive, then K | K,p — K, K, (4).
3. If £, is Euclidian, then K | = K,p — K,~K,p (5).
4. If E, is serial, then K = —K,0 (D).
5. If E, is symmetric, then K |= ¢ — K,~K,—y.

Proof. 1. If K, v = K., then by reflexivness v € vE, and hence K, v |= ¢.
Thus, K,v | K, — ¢ for all v.

2. If K,v = Kup and (v,w) € E, and (w, z) € E,, then (v, z) € E, and
hence IC, z = ¢. So K,v | K,p — K,K,p for all v.

3. Suppose that K, v = =K, p, hence there exists z € vE, with I, z = —.
To prove that K,v | K,—K,p we have to show that for all w € vE,
there exists some v € wkE, with K,v | —¢. Since E, is Euclidian,
z € vE, and w € vE, imply that z € wE,. Set v := z.

4. K,v | K,0 holds if, and only if, vE, = (.

5. Assume KC,v = ¢. To prove that K,v E K,—K,~¢ we have to show
that for all w € vE, there is z € wE, with K, z = ¢. By symmetry we
can set z ;= v.

]

In particular, with Lemma 1.4.1 it follows that all these axioms hold if F,
is an equivalence relation; they are valid in all Kripke structures that speak
about knowledge.

Now that we have established several logical consequences of graph prop-
erties, we ask ourselves whether their converse also holds, so for example
whether for each Kripke structure K with K | K,p — ¢ it is reflexive.
The answer is no, at least not in this direct way. As a matter of fact, there
exist Kripke structures which are models of all axioms from Theorem 1.4.2
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but E, is not even reflexive, like the following one with atomic proposition
P ={v,w}.

K: v w D

K is obviously not reflexive. To see that it satisfies the axioms from
Theorem 1.4.2 is straightforward after one has observed that IC, v =y, K, w
(i.e., for every modal formula ¢ we have that ,v E ¢ & K,w = ¢),
provable by a simple induction on the structure of modal formulae or directly
following from that fact that v and w are bisimulation invariant*.

We are only able to establish a correspondence in both directions between
the axiom systems and graph properties if we generalize our notion of a
Kripke structure to that of a Kripke frame.

Definition 1.4.3. For a finite set A of agents, a Kripke frame is a structure
F = (W,(E,)aca). A Kripke structure is based on F if it expands the frame
by interpretations P; C W.

Definition 1.4.4. A class C of frames is characterized by a set ® of modal
axioms if for every Kripke frame F we have that F € C if, and only if, K = ®
for all (suitable) Kripke structures based on F.

With these definitions we can formulate the backwards correspondence
to Theorem 1.4.2 as in

Theorem 1.4.5. For every frame F that is not reflexive, transitive, Euclid-
ian, serial or symmetric, we can find a Kripke structure based on F which
falsifies an instance of the corresponding axiom of Theorem 1.4.2.

Proof. 1. F = (W, E,) being not reflexive implies that there is some v €
W such that (v,v) ¢ E,. Set P := W \ {v}. Then, K = (F,P),v =
K,PAN—-P,soK,v},: K,P— P.

2. F = (W, E,) being not transitive implies that there are v, w, z with
(v,w), (w,2) € E, but (v,z) ¢ E,. With P := W \ {z}, we have that
K = (F,P), vt K,P — K,K,P.

3. F = (W, E,) being not Euclidian means that there exist v, w, z with
(v,w), (v,2) € E, but (w,z) ¢ E,. Thus, for P := W\ {z} it is
K = (F,P), vt ~K,P — K,~K,P.

4. F = {W, E,) being not serial implies that there is some v with vE, = )
and thus IC, v £ = K,0 for any K based on F.
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5. F = {W,E,) being not symmetric means that there are v,w with
(v,w) € E, but (w,v) ¢ E,. For P := {v} we have that (F, P),v =
PAN-K,~K,—-P.

[

1.5 Completeness

So far, we attempted to characterize the properties of knowledge, that is,
the properties of Kripke structures modeling knowledge of actors in a certain
setting, in terms of valid formulae. All we did though was to list some valid
properties. There is little reason for us to believe that there are no additional
properties (that are not consequences of those we listed). In this section, it
is our goal to give a characterization of the valid properties of knowledge
which is actually complete. In other words, we want to find a sound and
complete axiomatization of Kripke structures that speak about knowledge.
Remember that an axiomatization or axziom system is a collection of axioms
and inference rules. A proof in the axiom system consists of a sequence of
formulae, each of which is either an instance of an axiom in AX or follows
by an application of an inference rule. A proof is said to be a proof of the
formula ¢ if the last formula in the proof is ¢. We say ¢ is provable in AX,
and write AX F o, if there is a proof of ¢ in AX. Now, an axiomatization is
complete with respect to a class of structures if every formula that is valid in
this class of structures is provable in AX. It is called sound if every formula
which is provable in AX is valid with respect to the class of structures.

We start by defining several axiom systems. The first one we call (K) and
it consists of the following two axioms and two inference rules for a fixed set
of agents A:

e All instances of propositional tautologies (PL).
o K, NK (v — ) — Ky (K).
e From ¢ and ¢ — ¢ infer ¢ (R1) (Modus Ponens).
e From ¢ infer K,p (R2) (Knowledge Generalization).
We can add further axioms and obtain some more axiom systems:
e Add (T) (Knowledge Axiom) to (K) and call it (T).
e Add (D) (Consistency Axiom) to (T) and call it (D).
e Add (4) (Positive Introspection Axiom) to (D) and call it (S4).
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e Add (5) (Negative Introspection Axiom) to (S4) and call it (S5).

The names of these axiom systems denote its most important axiom. We will
see that each of them is a sound and complete axiomatization of a certain
class of Kripke structures.

First, we intend to show that (K) is a complete axiomatization for modal
logic in general, i.e., that if K = ¢ for all Kripke structures K (with E,
not necessarily an equivalence relation), then ¢ can be derived by (K). To
this end we want to introduce some notation. An axiomatization for a logic
L we denote by AX. We write AX F ¢ if AX proves . We say that ¢
is AX —consistent if AX t/ —p, and that {¢1,...,9,} is AX—consistent if
P1 A ... ANp, is. Further, ® C L is AX—consistent if all finite subsets &, C &
are. ® is a mazrimal AX —consistent set in L if ® is AX—consistent but for
every ¢ € L\ @, the set & U {p} is not AX—consistent.

With this we show the following rather technical lemma.

Lemma 1.5.1. For any axiomatization AX that includes every instance of
(PL) and (R1), for a countable logic £ that is closed under propositional
correctives (so that if ¢ and v are in L, then so are ¢ A1 and —g), every
AX—consistent set ®y can be extended to a maximal AX—consistent set ®.
Further, maximal AX—consistent sets ® have the following properties:

1. If ¢ € L, then either p € ® or —p € P,

2. pNYpeP = p,ped,

3. if € ®and Y — ¢ € ®, then also p € P,
4. if AX F o, then p € ®.

Proof. Fix 41,1, ..., an enumeration of £. Construct a sequence &g C &; C
- of AX—consistent sets, where ®, is the set we want to extend to a maximal
AX-—consistent set, and ®;41 := ®; U {¢;} if this set is AX-consistent, and
D, 1 := &, otherwise. Now, let ¢ := UZ.GN ®,. Because all its finite subsets
are contained in some AX-—consistent ®; and are thus AX—consistent, ® is
AX—consistent. On the other hand, if ¢ ¢ ®, then ¢ = 1; for some i and
O, U {¢} was not AX—consistent. Hence, ® U {¢/;} is not AX—consistent. It
follows that ® is a maximal AX—consistent set.
To see that maximal AX—consistent sets have all the properties we claimed,
let ® be an arbitrary maximal AX—consistent set.

1. As @ is consistent, ¢ and =y cannot be both its member. If none is in @,
then because of its maximality neither ® U {¢} nor ® U{—p} are AX—
consistent. By definition of AX-—consistency of sets this means that
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there exist ¥y, ..., g, ¥, ...,y € ®such that AX F =(P1A. . . AYAp)
and AX F =(¢] A ... Ay A —p). With purely propositional reasoning
we can conclude that AX F =((1 A . AV AQ)V(YLA AU A=)
and thus that ® U {¢ V —¢} is AX-inconsistent, implying that ¢ is
AX-inconsistent, which is contradicts our assumption.

2. If o Ay € @, then ¢ € ® because otherwise ~p € ® and ¢ would not
be AX-—consistent. Conversely, if ¢, € ®, then ¢ A € ® because
otherwise = (¢ A) € ® and {¢, 1, (¢ A1)} C & is AX—inconsistent.

Like 2., 3. and 4. can be shown easily using 1. O]
We continue with proving the actual Theorem.

Theorem 1.5.2. (K) is a sound and complete axiomatization for modal
logic.

Proof. Given that the axioms of (K) are valid and its inference rules are
sound, it is straightforward to prove that (K) is sound by induction on the
length of the proof

To prove completeness, we must show that every modal formula which is
valid with respect to every suitable K is provable in (K). It suffices to prove
model existence for (K)-consistent formulae, i.e.:

For every (K)-consistent ¢ € ML, we find £ and w € K such that K, w |= ¢.

Suppose we can prove this and ¢ is a valid modal formula. If ¢ is not provable
in (K), then neither is ==, so, by definition, = is (K)-consistent. It follows
with our assumption that - is satisfiable, contradicting the validity of .

We prove model existence for (K)-consistent formulae by constructing a
generic model K, called the canonical structure. It has a node wg for every
maximal (K)—consistent set ®:

W, := {we : ® is maximal (K)-consistent in ML}.

To define the edges, for & C ML we let ®/a := {p : K,p € ®} be the set of
all formulae in ® which agent a knows. Now,

E, = {(we,wy) € W, x W, | &/a C U},

P, = {ws € W, | P, € }.
We claim that for all & and ¥, we have that

Ke,we =< @€ d.

To show this, we proceed by induction on the structure of the formulae.
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o If ¢ = P, is an atom, the claim is immediate from the definition of /..

o If p = =), then K., we E ¢ & K¢, we %w&»wgzq)@m%":'i"“gpe
P.

o If p =9 AV, then K,,we = ¢ & K., we | ¥ and K., we = ¥ L5
® max. cons.
P, ded T ped.

e For the interesting case, assume that ¢ is of the form K, .

“<”: If ¢ € &, then v € ®/a, and, by definition of E,, we have
that ¢ € ¥ for all wy € weF,. Thus, by the induction hypothesis,
Ke,wy | 9 for all wy € weE,. This directly implies K., we = .

“=7: Assume K., we = ¢. It follows that the set ®/a U {—¢)} is not
(K)—consistent. Otherwise, by Lemma 1.5.1, it would have a maximal
(K)—consistent extension ¥ and by construction wy € weFE,. With the
induction hypothesis, K., wy = —1. Hence K., we [~ K410 = ¢, which
is a contradiction to our original assumption. Since ®/a U {—1} is not
(K)—consistent, there must be a finite subset {¢1, ..., @k, 710} which is
not (K)—consistent. With propositional reasoning , we have

(K) F o= (or1 = (= (o1 =) ..0).
By Knowledge Generalization, we have
(K)F Ko(or = (pe1 = (o= (o1 = ¥)..0).
To continue, we need the following

Lemma 1.5.3.

(K)F Ky(or = (o1 = (.. = (o1 =) ..0) —
Kook — (Kopp—1 = (.. = (Kop1 = K) .. .)).

Proof. Set

ar = = (pp1 = (o= (1 = Y) L)) = pr — ag_1,

and

Br = Ko, — (Kagpk—l — ( e (KaSO1 — Kaw> .- ))
= Kupr — Br-1-
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With this we can rewrite the claim of the lemma to

(K) [ KaOék — ﬁk

Now, if k = 1, the claim is (K) F K,(¢1 — ) = (K.p1 — K1), which
is up to propositional equivalence just an instance of the Distribution
Axiom K, (p — ) N Kop — K.

If k£ > 1, then by the induction hypothesis we know that (K) - K1 —
Br_1. Similarly like for £ = 1, we use the version of the Distribution
Axiom (K) F K,(pr = ap_1) = (Kupr — Koap_1). When replacing
Kyap_1 by Br_1, we get (K) F Ky (pr — ax_1) = (Kopr = Br—1). O

With Modus Ponens, the claim from the lemma together with the claim
right before it can be inferred to

Ka@k — (Ka@k—l — ( ce (Ka901 — Kaw) . ))

Since @1, ..., € ®/a, it follows that K,p1,..., K.pr € ®. By part
4. of Lemma 1.5.1 applied repeatedly, we have ¢ = K, € .

O

Note that the canonical structure . is infinte. In the following we will see
that for a given formula ¢ we can refine the construction so as to produce a
finite model for this formula. The main idea is to only use sets of subformulae
or its negations of ¢ as nodes in the model. Towards this end, we define

Sf(p):={1: 1 is a subformula of ¢},

and
Sf(p) = Sfle) {2 :v e Sf(e)}
Further,

Con(p) :={P C Sf7(p) | ® is maximal (K)-consistent inside Sf7(p)}.
A proof almost identical to that of Lemma 1.5.1 can be used to show that

e cvery (K)—consistent subset of Sf7(¢) can be extended to a set ¢ €
Con(p),

e and every ® € Con(yp) contains either ¢ or —p for every p € Sf7(p).
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Now, the construction of the model for ¢ is similar to IC.. If we call it
Ky, then K, := (W, (Ea)aca, (Pi)icr), where W, := {wg : ® € Con(y)},
E, = {(wg,wy) : ®/a C ¥V}, and P, ;= {we : P; € ®}. Analogously, we can
then prove that K,,we = ¢ < ¢ € @ for all ¢ € Sf7(p).

Corollary 1.5.4. If ¢ € ML is (K)—consistent, then ¢ is satisfiable in a
Kripke structure with at most 215l < 2l#l states. We call this small model

property.

Analogous statements are true for (T)—, (S4)—, and (S5)—consistent for-
mulae. For (T)-consistent formulae ¢, consider K, whose nodes are wg for
the maximal (T)—consistent subsets ® of Sf7(¢). Since we have in (T) the
axiom K,p — ¢ it follows that ®/a C ®. So E, is reflexive. Hence, every
(T)—consistent ¢ is satisfiable in a reflerive Kripke structure with at most
214l states.

For an (S4)—consistent ¢ we need a more involved construction to guaran-
tee the transitivity of E,. Let us first illustrate the difficulty here. Consider
¢ = K,P and the following maximal (S4)-consistent subsets of Sf7(¢):
O, = {K,P, P}, ®y := {~K,P, P}, &3 := {~K,P,~P}. We have ®,/a C &,
and ®o/a C &3 but ¢ /a € D3, so if we used the same construction again, I,
would not be transitive. To solve this, take F, := {(we,wy) : ®/a C ¥/a}.
Then, ®/a C ¥/a C O/a = ®/a C ©/a. Thus, every (S4)—consistent ¢ is
satisfiable in a KC of size at most 2/#/ which is reflexive and transitive.

For (Sh), E, := {(we,wy) : /a = ¥/a} is an appropriate equivalence
relation.

Corollary 1.5.5. For modal logic:

1. (T) is a sound and complete axiomatization with respect to reflexive
Kripke structures.

2. (S4) is a sound and complete axiomatization with respect to reflexive
and transitive Kripke structures.

3. (Sh) is a sound and complete axiomatization with respect to reflexive,
symmetric and transitive Kripke structures.

Proof. Completeness follows from the respective small model property. Here
we use again that for showing completeness it is enough to show model exis-
tence for formulae consistent with the respective axiom system (as explained
at the beginning of the proof of Theorem 1.5.2). To see soundness, remember
Theorem 1.4.2.

We would like to add that the axiom ¢ — K,—K,—~¢ is a consequence
of (D) and (5). This refers to the correspondence of this axiom to the
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symmetry of E, like shown in Theorem 1.4.2 and Theorem 1.4.5. In that
sense we uphold that (T) corresponds to reflexivity, (4) to transitivity, and
¢ — K,~K,~¢ to symmetry. U

Finally, without proof, we state the following theorem.

Theorem 1.5.6. Denote by (K)©, (T)°, (S4)€, and (S5)¢ the respective
axiom system extended by

® Egp < Nicg Kip (C1),
e Cap = Ec(p A Cayp) (C2),
e From ¢ — Ei(¢ A ) infer ¢ — C,¢p (Induction Rule).
Then, for modal logic extended by the common knowledge operator:

1. (K)®is a sound and complete axiomatization (with respect to arbitrary
Kripke structures).

2. (T)€ is a sound and complete axiomatization with respect to reflexive
Kripke structures.

3. (S4)¢ is a sound and complete axiomatization with respect to reflexive
and transitive Kripke structures.

4. (S5)¢ is a sound and complete axiomatization with respect to reflexive,
symmetric and transitive Kripke structures.

1.6 Complexity

The satisfiability problem of an axiom system AX is the question whether a
given formula is satisfiable within the class of structures axiomatized by AX,
or equivalently, whether the formula is AX—consistent. From the small model
property it follows that the satisfiability problems for all considered variants
of modal logic are decidable in NEXPTIME. Indeed, it is not difficult to see
that their evaluation problem (given IC,w and ¢: decide whether IC,w = @)
is decidable in time O(||K|| - |¢]).

This upper bound is probably not optimal. As a matter of fact, the
following complexities hold:
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NP-complete: (S5) where |A] =1
(K),(T),(S4) with arbitrary |A]
(S5) with |A] > 1

(K)€, (T)C with arbitrary A
(S4)€, (S5)C with |A| > 1

PSPACE-complete:

EXPTIME—-complete:

Figure 1.3: Complexities of satisfiability problems of various axiom systems.

We are going to provide a proof for SAT(S5) being NP—complete if |A| =
1, and SAT(K) being PSPACE-complete.

Theorem 1.6.1. SAT(S5) for |A| = 1 is NP—complete.

Proof. NP-hardness holds since clearly SAT(S5) must be at least as hard as
the satisfiability problem for propositional logic: a propositional formula is
satisfiable if, and only if, it is satisfiable as a formula in modal logic with
propositional variables translated to atomic propositions by a Kripke struc-
ture with whatever restrictions on its edge relations.

To prove that SAT(S5) € NP for |A| = 1, we observe that for a Kripke
structure K whose (single) edge relation F, is an equivalence relation like it
is the case for those axiomatized by (S5), if we have that IC,v |= ¢, then also
K 1w, w = ¢, where [w] is the equivalence class of w with respect to E,,
and /C {p, is the restriction of K to [w]. This is because every node which is
relevant for the evaluation of ¢ at v in K is reachable from v and thus, since
|A| = 1 and E, is an equivalence relation, is in the same equivalence class as
v. In fact, every component of K is an E,—clique.

Now, assume that a formula ¢ is satisfiable at node w in a Kripke struc-
ture KK = (W, Eq, (P,)ier), where E, =W x W. Given such a model, let

O = {K.p € Sf(p) | K,w = ~Ka}.

For every K, € ®, there is a node v, € W with IC, v, = —¢. Let K’ be the
restriction of K to {w} U {vy : K¢ € ®}. We claim that K, w |= ¢. Since
IK'| < ||, this would prove the theorem.

Concerning the claim, we show via induction that for all ¢ € S f(p) and
all v € W’ (in particular ¢ and w themselves) we have that

K,vEv s K vE1.

This induction is trivial in all cases except for ¢ = K, 1:
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o7 Ko b Ked &5 Kz Evforall z e W "2 K2 E 9 for all
ceW E K 2= forall ze W 2L K v = K.

=" Kou KW LN K,v | —K.0 LY K,z E =9 for some z (ng“

Kow = K9 25 K9 € @ 25 30, € K2 Koy = -0 255 K vy,

—9 VREE e e - K0,

Theorem 1.6.2. SAT(K)=SAT(ML) can be decided in PSPACE.

Proof. Let ¢ be a modal formula, for technical reasons in positive normal
form, i.e., negations occur only in front of atoms. In order to not lose ex-
pressive power, we now have to allow also the (a) operator.

First, we define the closure Cl*(p) of a formula ¢, by

* (p,0) € CT*(p),

o (Yo i)e Cl*(p) = (¥,i), (0,1) € Cl*(p), for o = A, V,
o ((a)ih,i) € Cl*(p) = (¢,i + 1) € Cl*(¢),

o ([ai,i) € Cl(p) = (4,1 + 1) € Cl*(¢),

o (2P;,i) € Cl'(p) = (P;,1) € Cl*(yp).

Based on that, for each i = 0,...,md(p) := argmax; 3 (¢, i) € CL*(p), we
define

Cl1D = {4y : (1,1) € CI*(¢)} C ML.
We call a I' C Cl%(y) propositionally correct if for all
e literals (=) P; € Cl(p), we have P; € ' & —P; ¢ T,
e conjunctions (P AY) € I' = 1,0 €T,
e disjunctions (¢ V) e'=¢ €T or ¥ €.
It is easy to see that we can check efficiently whether a given I' C CI1®) ()

is propositionally correct. With this we formulate the following algorithm
“Check(T",7)”.
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Known: ¢ and CIY(p) for j =0,...,md(y)

Given: I' C CI0)(yp)

Check whether I' is propositionally correct. If not, reject;
for (a)y € I' do

Guess Iy, C C1H) () with
) 1/) c Pw,
o {J:]alvel'} CTy;

Call Check(I'y, 7+ 1). If it rejects, reject;

end

Accept;
This is a non—deterministic algorithm requiring space O(|p|*). We claim that
we can decide SAT(K) with this algorithm. The procedure is as follows: For
a given p € ML,

1. compute Cl*(¢p),

2. guess I', C Cl°(yp) with ¢ € Ty,

3. check (I'y,0).

Let us prove this:

w_”.
=

Assume ¢ is satisfiable with IC,u = . Then, the procedure accepts
with the following guesses:

The first guess is 'y, := {1 € C19(p) | K, u |= ¢}. This is obviously a
subset of CIO(y) and ¢ € CI1®(y) is a member. Also, by definition,
it is propositionally correct.

We continue such that for every call of Check(I',7) some node v(I")
is fixed. For Check(I',,0) set v(I',) := u. Inside Check(I',?), for all
(ayy € T select some w(I'y) with (v(I'),w(T'y)) € E, and K, w(T'y) E ¢
(which is possible since IC, v(I") = (a)v), and let I'y, == {¥ : K, w(['y) =
v}. This is a valid guess since the set is propositionally correct, and it
contains ¢ and all ¥ with [a]Y € I'y. The latter because from [a]d € T
it follows K, v(I") = [a]¥ which implies that IC, w(T'y) = 9.

: Now, assume that the algorithm accepts. Based on this, we construct

a finite tree model of . To this end, for every call of Check(I', i) we
create a node v and set I, := I'. In the first call Check(I'y,, 0), we create
the root w with I', := I',. Further, inside Check(I',%), if the current
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node is v (with I', = T'), for each (a)1) € I" create a new a—successor
w(v) of v and set L'y(y) := Ty

This produces a finite tree (V, (Ea)aca). Set P} :={v: P; € [',}.

We claim that T := (V, (Ea)aca, (P})jer),u F ¢. By induction over
the structure of the formula we will show that

vel,=T,vE1.

In particular, since the algorithm accepts and thus ¢ € I', = I, this
implies T,u = ¢. We know that ¢ € T, € Cl¥(y) is a positive
Boolean combination of (=)P; and (a)d, [a]d with ¢ € CI10+Y| hence
these are the cases we have to consider.

(IB.) If v = P; € T,, we have T,v = ¢ by definition of P;. If
Y ==P; €Ty, we have T,v |= ¢ by definition of P] and the fact that
because I, is propositionally correct P; ¢ I',,.

(I.S.) As T, is propositionally correct, for ©» = ¢ Ay and p =9V x we
can use the induction hypothesis immediately. If ¢» = (a)d, then we
created an a—successor w(v) € V of v and set I, (9) := I'y. By definition
of the algorithm we have that ¢ € I'y = I',,(9) which, with the induction
hypothesis, implies that T, w(d) = ¢, and hence T,v | 1. Finally,
consider the case of ¢ = [a]). Remember that we constructed for each
(a)x € T’y an a—successor w(x) of v and set I'y(,) := I'y. These are
all a—successors the node v has. Because of how the algorithm chose
Iy, we know that {¢ : [a]{ € I',} CT'y = I'y(y. In particular, ¥ € I,
for all successors w of v, which, with the induction hypothesis, implies
T,w | ¥ for all successors w of v. We conclude that 7, v |= 1.

O
The following is a nice general consequence.

Corollary 1.6.3. Every satisfiable formula ¢ € ML has a tree model of
height not larger than md(y) and branching degree not larger than |p|.

Before we prove PSPACE-hardness of SAT(K), we show that there are
modal formulae of ever increasing length which force its models to be expo-
nential with respect to their length. The proof of this prepares for the proof
regarding PSPACE-hardness.

Theorem 1.6.4. There is a sequence of formulae (¢, )nen in ML such that

L. |on| € O(n? - logn),
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2. o, is satisfiable,
3. if K, w = ¢y, then || > 2™
Proof. We use variables X1,..., X, Yy, ..., Y, and define

_YO/\ﬂYI/\/\ HaABAY),
1=0
where
n+1
a= Y=Y,

=1

8= \Yi = (Xi = [ X)) A (=X = [a]=X))),

[\ Yi A =Yi) = ((a) A (e,

+ . -
v =Yg A Y A X, and v =Y A Y A Xy

Note that |p,| € O(n? - logn). The logarithmic term stems from the fact
that we have to binary encode the counters of the variables X;,Y;. Now,
the intended model of this formula is a full binary tree of heigt n, defined
as 7; = (W, Ea, (Xi)1§i§n7 (Y;‘)Ogign—i—l); with W = {O, 1}§n’ Ea = {(U,U) :
v=ulorv=ul},Y;={v:|v]| >i}, X; ={v:|v| >iand the i—th bit of v
is 1}. Indeed, it is an easy exercise to check that 7T,,¢ | ¢,, where ¢ is the
so—called empty word {0,1}°.

The trickier thing to show is that every model of ¢, has size at least 2.
Towards this, we prove the following claim: Let K,u &= ¢,. Then, for all
j=0,...,nand w = wy...w; € {0,1} there is a state v(w) € V that is
reachable from u in j steps with

Kow) EY;A-YiaA N\ Xin

i<jawi=1 i< ;=0

By definition of these formulae, all the states v(w) would be different and
thus this is enough to show that || > 2" = |{0,1}"|. If j = 0, meaning
that w = ¢, we simply choose v(w) := 0. If j > 0, then w = w'w;, where
w' € {0,1}! and w; € {0,1}. By the induction hypothesis, there is a v(w’),
reachable from u in j—1 steps and (x) I, v(w’) = Y,_1 AY; AN Xi N
/\ijwgz0 —X;. Now, because IC,u is a model of ¢, and v(w’) is reachable
from w in not more than n steps, we know that IC,v(w’) E a A B A~y. With

1<jw;=1
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(%) we have K,v(w') = Y;_1 A =Y; A~ in particular. By definition of + this
implies that there are successors 2", 2z~ of v(w’) such that K, 2% }=~_ | and
K,2= | v, We define v(w) := 2" if w; = 1 and v(w) := 2z~ if w; = 0.
Then, by definition of v;", /v, we have K, v(w) | Y; A =Y A X;/-X,
depending on whether w; = 1 or w; = 0. With K,v(v') = § we can
conclude that K,v(w) F X; & Kv(w') E X; for j = 1,...,7 — 1, so
in particular K, v(w) B Ao 1p21 Xi A Nicj1.0,—0 7Xi- Altogether this
shows the claim. O

Theorem 1.6.5. SAT(K) is PSPACE-complete.

Proof. We have already shown in Theorem 1.6.2 that SAT(K) € PSPACE.
To prove hardness, we reduce QBF to it. That is, given a quantified Boolean
formula p = Q1 X5 ... Q, X, ¥(X1, ..., X,) with Q; € {3,V} and ¢ a propo-
sitional formula, construct a modal formula ¢* such that ¢ is satisfiable if,
and only if, ¢* is true.

The construction we use is almost the same as that from the proof of the
previous Theorem 1.6.4 except that not all possible valuations of Xy,..., X,
appear as states of IC but only those that are necessary to make the formula
true.

We define

p" =Yg A=Yi A Nlal (@ A B A7) Ala]™,

=0

where

Vo 1= /\ Yi A=Yi = (@) Ada)y A /\ Yi A =Yi = ()% V(@)
i:Q; =V 3:Q;=3

*

and «, 3,7;",7; like in the proof of Theorem 1.6.2. Obviously, ¢* is com-
putable from ¢ in polynomial time.

Let us show that if ¢ is true, then ¢* is in SAT(K). To this end, let
0i(X1,..., Xi) = Qi1 Xig1 ... QuXpp for i = 0,...,n. Now, define K, :=
(W, Eq, (Xi)1<i<n, (Yi)o<i<ni1) as the restriction of the full binary tree 7,
from the previous proof to {w € {0,1}" : i < n,@;wy,...,w;] is true}.
Then we already have K,,e |= ¢*. To see this, first note that because ¢
is satisfiable, ¢ is actually a node in K,. Next, consider an arbitrary node
w = wp...w; with 0 < i < n. We want to show that it is a model of ~,,.
By definition of IC, we know that ¢;[w] is true. If Q;41 =V, this means that
ir1|w, 0] as well as @;41[w, 1] is true which implies by definition of /C, that
both w0 and w1 exist as successor nodes in Ky, and hence Ky, w = (a)y;" A
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(a)v; . If Q;+1 = 3, then we can argue analogously for K,, w = (a)7;"V(a)7; .
Hence, Ky, w [= ,. Finally, every node with distance n from ¢ is a word of
length n that satisfies ¢ by definition of W.

For the reverse direction assume that ¢* is in SAT(K). We have to show
that ¢ is true. Let K,u | ¢*. For each v in K and i < n, define ¢! =
Qi1 Xiy1 - QuXp|wy, ... w;], where w; := 1 if L,v E X; and w; := 0
if K,v | —X;. We claim that if a node v is reachable in i steps from u
and K,v = Y; A =Yy, then ¢! is true. A proof can be conducted via
induction over i, starting from ¢ = n. So let v be a node reachable from u
in n steps. Then, since K,u = ¢* = K,u | [a]™, we have that K,v = 9
which is by definition of w; the same as saying that ¥ (wy,...,w,) = @2 is
true. Consider now the case i < n. We know that K,u = [a]'(a A B A 7,),
hence K,v = a A B A7, Since also K,v = Y; A =Y;44, we know that
Ko (a)y Aa)y if Qipa =V and K,v | (@) V (a)y; if Qipr = 3.
Qi+1 = V: there exist vy, v; such that (v, v), (v,v1) € E, and K, vy = Y41 A
=Yoo A 2X;11 and K, v | Vi A Y0 A Xipq. Together this implies with
the induction hypothesis that ¢}, = ¢} (Xi11/0) and ¢;}, = ¢@F (Xt /1).
As a consequence, VX197, ; = ¢} is true. The case for ;41 = 3 can be
handled analogously. Now, if i = 0, then v = u and K, u = Yy A =Y;. Thus,
K,u = ¢§ = 1, which shows the claim. O
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Chapter 2

Reasoning about Uncertainty

Like with reasoning about knowledge, many representations of uncertainty
start with a set of possible worlds. But now, in the case of uncertainty
instead of knowledge, we also assign probabilities to possible worlds or sets
of them, describing the assumed likelihood of that world, respectively one in
that set of worlds, being the actual world. Capturing uncertainty like this
with probabilities is perhaps the best—known approach and we begin this
chapter by elaborating on it.
FExample 2.0.6. Rolling a dice has six possible outcomes, so we describe this
situation by six different worlds. Assuming a traditional dice is used, we
assign to each world the probability 1/6. The probability of a set of worlds
is just their probabilities added up.

For technical reasons, it is typically assumed that the set of sets of worlds
to which probabilities are assigned (F in the following definition) satisfies
some closure properties:

Definition 2.0.7. An algebra over W is a set F C P(W) such that
1. WeF,
2. UVeF=TUUUVEF.

We call F a g—algebra if it is closed under countable union.

In the current context, W would be the set of all possible worlds. Note
that F can be a real subset of P(WW), which means that a probability is
assigned not necessarily to every set of worlds.

We also have some requirements concerning how probabilites are assigned
to possible worlds (we call the function that maps worlds to their probability
the probability distribution or probability measure and it is usually denoted

by p):

29
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Definition 2.0.8. A probability space is a triple (W, F, u), where F is an
algebra over W and u: F — |0, 1] is such that

Lop(W) =1,
2. UNV =0= puUUV)=puU)+uV) forall U,V € F.

This definition directly implies u(@)) = 0 since because W and () are
disjoint,
L=p(W) =p(WuUb) =pW)+u@®) =1+ u@).

Further, 2. implies finite additivity: If Uy, ..., U, are pairwise disjoint, then

w(UyU...UU,) = ZM(UZ-).

With this we can conclude that for finite W and F = P(W), any proba-
bilty measure can be characterized as a function p: W — [0, 1] such that
Y wew M({w}) = 1. That is, it suffices to define a probability measure p only
on the elements on W; it can then be uniquely extended to all subsets U
of W by u(U) == 3 ,co p({w}). If W is countably infinite, it is typically
required that F is a o—algebra, and that p is countably additive, so that if
Ui, U,, ... are pairwise disjoint sets in F, then pu(lU,cn Ui) = D ey (Us).

2.1 Ramsey’s Argument

One approach to justify the requirements of Definition 2.0.8 of a probability
space is known under the name Ramsey’s Argument. It is based on our
intuition with respect to betting behaviour. Let us explain this argument in
the following. Given a set W of worlds and a subset U C W, consider an
agent who can evaluate bets of the form “If U happens (i.e. if the actual
world is in U) then I win 1 — « while if U does not happen I lose o”, where
0 < a < 1. Denote such a bet by (U, a). The bet (U,1 — a) is called the
complementary bet to (U, «); the agent loses 1 — « if U happens and wins «
if it does not.

As a convention, the larger a result is, the more desirable we consider it
to be. With this, note that (U,0) is a “can’t lose” bet for the agent. He
wins 1 if U is the case and loses 0 otherwise. The bet becomes less and less
attractive as « gets larger. Eventually, (U, 1) is a “can’t win” bet. The agent
wins 0 if U is the case and loses 1 otherwise; the worst possible bet.
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Now, suppose the agent must choose not just between individual bets but
rather between sets of them. Instead of sets of bets we often say books. The
payoff ||Bl|, of a book B on a world w € W is understood to be

Yo l—e- ) o«

(U,a)eBwelU (U,0)eB:wgU

We assume that the agent has a preference order > defined on sets of bets.
Here, “preference” shall not mean “strictly better” but merely “at least as
good”. So B = B’ means that the agent prefers B over B’ or is indifferent
between them. The preference order does not need to be total, that is, there
might be books that are incomparable. However, if an agent is rational in the
sense of the following four rationality postulates (R1) — (R4), then certainly
some sets are comparable.

(R1) If ||B||lw > ||B|]w for all w € W — we also say book B guarantees to
give at least as much as B' — then B > B'. If a book B guarantees to
give more than B’ (i.e., if ||B||, > ||B'||« for all w € W), then B >~ B'.

Let us exemplify the conditions on a and § if B guarantees to give at
least as much as B’. For the sake of simplicity, we assume that the
book B consists of only (U, «) and the book B’ consists of only (V, /).
Now, the following must hold:

1. fUNV # 0, then o < 3. This is because on any w € U NV, the
agent wins 1 — a = ||B||,, with the bet (U, «), and 1 — 5 = ||B'||,
with the bet (V,3). For ||B||, to be not less than ||B’||,, this
clearly requires 1 — a > 1 — 3, implying o < 3.

2. fUNV # 0, then o < 3 since for a w € U NV we must have
—a =Bl > [|B||lw = —B-

3. HUNV #0, then a = 0 and 8 = 1 since foraw € UNV we
must have —a = ||Bl|, > [|B'||o =1 — 5.

(4.) U NV # 0, then there is no condition on «, 3 since it always
holds that 1 — a = ||B||s > ||B'||w = — 5.

We note that for (U, a) = (U, 8) to hold, the above tells us that this is
the case exactly if & < . This should seem reasonable.

(R2) Preferences are transitive: By = By = By = By = Bs.

(R3) One can always compare between complementary bets: for all (U, ),
we have (U,a) = (U,1 —a) or (U,a) 2 (U,1 — ).
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Note that this is indeed an assumption. In some cases it might also
be considered reasonable to instead have thresholds a; < ay such that

(U,a) = (U,1 — ) for a < o, (U,1 — ) = (U,a) for a > ap, but
have no preference for o € (ay, ).

(R4) Pointwise determinacy of preferences: if (U;,oq) = (V;, ;) for i =
1,...,n, then {(U, ;) :i=1,....n} = {(V;,5;) :i=1,...,n}.

Although this postulate certainly seems reasonable, there are subtleties.
For example compare (U,1) and (V,;107%), where V is an extremely
unlikely event, say a lottery win which is a million times the payoff in €.
One may reasonably prefer (V,107%) which gives (1 —107%)-1000000 =
999999€ if w € V and (—107%) - 1000000 = —1€ otherwise to (U, 1)
which is set to always gives 0€. We could argue that even if the chances
to win the lottery are quite low, the stake is low, too, so it does not hurt
to take the risk. On the other hand, consider the book B, consisting
of n copies of (U, 1) compared to the book B/, consisting of n copies of
(V,1079). According to (R4), B!, = B,,. But for n of high dimension,
say n = 109, the agent might not accept to risk loosing n-107%-1000000€
for a very small chance to win n - (1 —107%) - 1000000€ since the stake
is too high, regardless of whether the potential win would also be much
higher.

These rationality postulates make it possible to associate with each set U C
W a number oy, which intuitively is a measure of the likelihood of U (from
the perspective of one agent). We set ay := sup{a : (U,a) = (U,1 — a)}.
This is based on the following insights. It is a consequence of (R1) that
(U,0) = (U,1). Asobserved earlier, as o grows, (U, &) becomes less attractive
and (U, 1 — ) becomes more attractive. Since again with (R1) we have that
(U,0) = (U,1), we can see that there is some point o* at which, roughly
speaking, (U, o) and (U, 1—a*) are in balance (remember that (R3) requires
the bets (U, a) and (U, 1 — ) to be always comparable). We defined oy to
be a*. Indeed, it is not hard to show that for an agent who is rational in the
sense of (R1) — (R4), we have that (U, a) = (U,1 — «) for all a < ay and
(U,1 —a) = (U,a) for all & > ay. It is not clear, but also not important
as the difference would be very slim, what happens at «y itself; the agent’s
preferences could be either way. We said that we see oy as an indicator of
how likely the agent deems U. This is because we assume that the more he
is willing to bet on U (the larger sup{a : (U,a) = (U,1 — «a)}), the more
likely he consideres it to be actually true.
The core insight of Ramsey’s argument can now be stated in

Theorem 2.1.1. Consider some Uy, U, € W with U; N Uy = (). An agent
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satisfying our rationality postulates guarantees that oy, v, = ay, U ay,. In
particular, the function defined by pu(U) = ay is a probability measure.

This is our desired justification for requiring the assignments of numbers
to subsets of W to be a probability measure: if an agent behaves rationally
in the sense of (R1) — (R4), then he assigns numbers to subsets of W like a
probability measure.

Proof. First of all note that (W) = ay = 1 follows directly from the fact
that for all @ and w we have that ||[(W, o), =1—a > a—1=|[(0,1—a)||w,
and thus (W, «) = (0, 1 —«), so in particular sup{a : (W, ) = (0,1—a)} = 1.

To prove that ay,uy, = ay, + ay, for disjoint Uy and Us, we assume the
opposite that there are Uy, Uy with U3y N Us = ) but ap,u, # au, + au,.
We show that this implies that there is a so—called Dutch book B such that
B = B. Here, B is a Dutch book if it has a guaranteed negative payoff:
||B]] < 0 for all w € W, and B is the book comprised of all the complements
of bets in B. Since ||(U,@)||w + ||(U,1 — @)||» = 0 for all w, which implies
1Bl + |1B||w = 0, and hence ||B||,, < ||B||w, We could conclude with (R1)
that B > B, contradicting our assumption.

Towards this, let ay, + ay, < ay,uy, (the case of “>” follows similarly).
There exist a; > ay,, a2 > ay,, and a < ay,uy, With oy +as < a (by density
of [0,1]). Then, by our selection of a’s, we have (U, ;) < (U, 1 — ay),
(Uy, a3) < (U, 1 — @), and (U UUs, 1 — ) < (U UUs, ). Let

B .= {(Ul, 1— 051), (U2, 1- 042)7 (Ul U U27a)}7

E = {(Ul,oq), (UQ,OZQ), (U1 U UQ, 1-— Oé)}

By (R4), B = B. But B is a Dutch book:

—1l4+a+as+1l1—a, wel;
[Bllw=qar—1+ay+1—aq, w € Uy =a;t+ay—a<0.
ay + as — a, w e U Ul,

O

2.2 Problems with Probabilities for Uncer-
tainty

Desprite its widespread acceptance, using probabilities to represent uncer-
tainty is not without problems. One is illustrated in the following
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Example 2.2.1. Suppose there is an urn which contains 100 marbles of which
30 are red and the others are blue or yellow with an unknown distribution.
An agent is to place a bet (U., ) on a color ¢ € {r,b,y} which gives 1 — «
if w = ¢ and —a otherwise. Experiments show that people tend to favor red
over blue and yellow. However, if they are asked to choose between just blue
and yellow, they are indifferent. It is legitimate to interpret this like that
they consider blue and yellow equally likely as an outcome. But this would
mean they had better chosen blue or yellow instead of red in the first place
because of a higher chance of winning (0.35 > 0.3).

We deduce that it is at times rather tricky to consistently assign proba-
bilites to all possible worlds — which is one weakness of this concept. One
possible solution is to not consider one probability measure but a set of them,
so that the agent is not required to make a definite choice on probabilites of
events whose likelihood he does not understand. In the example above, this
would mean that the agent’s uncertainty about the probabilites can be repre-
sented by P := {pq : @ € [0,0.7], o (r) = 0.3, 1 () = @, pa(y) = 0.7—a}. An-
other way would be to make only some subsets (those that are understood by
the agent) measurable. In the example above, F := {0, {r},{b,y},{r,b,y}}
would be a good choice.

Now, if we consider a set of probability measures instead of a single one, it
becomes unclear to say how probable we consider a certain event. It might be
inpractical to always speak about the whole range of probabilities we assign
to an event as given by our set of probability measures. A solution to this
problem is to concentrate on the lower or upper end of the range. So define,
given a set P of probability measures on W,

the lower probability of U: P.(U) := inf{u(U) : u € P},

and
the upper probability of U: P*(U) := sup{u(U) : u € P}.

In the example we would have P.(r) = P*(r) = 0.3,P.(b) = P.(y) = 0,
and P*(y) = P*(y) = 0.7. Also with the second approach of taking only
some subsets to be measurable there is a problem. We might want to give
a measurement for a subset that our probability function is not explicitly
defined on, despite the uncertainty that goes with this. Again there are two
ways of dealing with this issue of extending the probability distribution u
from F to the entire set P(WW): For arbitrary U C W, define

the inner measure p,(U) :=sup{u(V):V C U,V € F},

and
the outer measure p*(U) = inf{u(V):V DU,V € F}.
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For W finiteand U € F: pu*(U) = pu.(U) = p(U). In general: pu.(U) < p*(U).
The following theorems establish connections between the lower and up-
per probabilities and the inner and outer measures.

Theorem 2.2.2. Let p be a probability measure on a subalgebra F C F’
and let P, be the set of all extensions of y to F'. Then, 1. (U) = (P,).(U)
and p*(U) = (P,)"(U) for all U € F'.

Without proof.

Theorem 2.2.3. Consider a preference relation > on books on W, satisfying
the rationality postulates (R1) — (R4). Then, there is a set of probability
measures P such that for any U C W we have that P.(U) = sup{a : (U,«a) =

(U,1—a)} and P*(U) =inf{a: (U,1 —a) = (U,«a)}.

Without proof.

2.3 Plausibility Measures

In this section we will consider an approach to representing uncertainty which
generalizes the approach based on probabilities that we had so far. Instead
of probabilities we now use what are called plausibility measures. Where
a probability measure maps sets in an algebra F over a set W of worlds
to [0, 1], a plausibility measure maps sets in F to some arbitrary partially
ordered set, in which sense it is more general. If Pl is a plausibility measure,
P1(U) denotes the plausibility of U. If PI(U) < PI(V), then V is at least
as plausible as U. Because the ordering is partial, it could be that the
plausibility of two different sets is incomparable. This means that an agent
may not be prepared to order every two sets in terms of plausibility.

Formally, a plausibility space is a tuple S = (W, F,Pl), where W is a
set of worlds W, F is an algebra over W, and Pl maps sets in F to some
set D of plausibility values partially ordered by a relation < (so that < is
reflexive, transitive, and antisymmetric). D is assumed to contain two special
elements, T and L, such that 1. < d < T for all d € D. Note that <, 1, and
T of course depend on D but we omit a respective index since D is usually
clear from the context. Finally, the following three requirements on S must
be met:

1. P1(0) = L.
2. PI(W) =T.
3. If U C V, then PI(U) < PL(V).
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It is straightforward to verify that by definition, probability measures,
lower and upper probabilities, inner and outer measures are instances of
plausibility measures, where D = [0,1], L =0, T = 1, and < is the standard
ordering on the reals. Particularly, in all these examples plausibility values
are totally ordered.

To see that the ordering of plausibility values is not always total, consider
a set P of probability measures on W. Both P, and P* provide a way of
comparing the likelihood of two subsets U and V of W. The two ways
are incomparable; it is easy to find a set P of probability measures on W
such that P,(U) < P.(V) but P*(U) > P*(V). But rather than choosing
between P, and P*, it is possible (and sometimes preferable) to associate a
different plausibility measure with P that captures both. Towards this, let
D :={(a,b) : 0 < a <b< 1} and define (a,b) < (¢/,V) & a<d Ab<V.
This puts a partial order on D with L = (0,0) and T = (1,1). Now,
define Plp, p+(U) := (P.(U), P*(U)). Clearly, this definition satisfies all the
requirements on a plausibility measure, but it puts only a partial order on
events.

The problem with only considering lower and upper bounds or even a
combination like Plp, p- is that they lose information in many situations.
Suppose for example that we have an urn with 100 marbles whose color is
either red, blue, or yellow. Now, consider the following two experiments:

1. At most 50 marbles are blue and at most 50 marbles are yellow. There
is no information about the number of red marbles. Formally, that is

P = {p: ul(b), ply) < 0.5},

2. There are exactly as many blue as yellow marbles. Again there is
no information about the number of red marbles. Formally, that is

P =A{p: p(b) = p(y)}-

Obviously, P’ C P, but P, = P, and P* = P’*. So the fact that P’ provides
more information than P is lost when only lower and upper probabilites are
considered.

To not lose this kind of information, we define yet another plausibility
measure. For this, we let Dp := {f: P — [0, 1]} be the set of all functions
from P to [0, 1]. The standard pointwise ordering on functions, that is, f < g
if f(u) < g(p) for all p € P, gives a partial order on Dp. Clearly, T(u) =1
and L(u) =0forall peP. For UC W, let f: P — [0,1]; 4 — u(U), and
define the plausibility measure Plp by taking Plp(U) = fy. Then, Plp(U) <
Plp(V) < pu(U) < (V) for all p € P, which is exactly what we wanted. In
particular, Plp: # Plp since Plp(U) < Plp/(U) < fu < fl, & fu(p) < fi,(1)
forall p e P,y € P, and p(U) < p/(U) for some p € P, p’ € P’
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Plp is indeed a plausibility measure, since Plp(0) = fy = L, Plp(W) =
fw=T,and if U CV, then pu(U) < p(V) for all p € P.

To see how this representation works, let us consider again Example 2.2.1,
where we had P = {p, : a € [0,0.7], ua(r) = 0.3, 1o (b) = a, u(y) = 0.7 — a}.
Then, for example

b PIP(T) = fr, where fr(:ua) = 0.3,
e Plp(y) = f,, where f,(1a) = 0.7 — a,

e Plp({r,b}) = f(rp}, where fip1(pa) = 0.3+ a.



38

CHAPTER 2. REASONING ABOUT UNCERTAINTY



Chapter 3

A Probabilistic Logic: PCTL

In this chapter, we present an example of logic where probabilities are incor-
porated directly in its syntax and semantics.

This logic is called PTCL, for probabilistic computational tree logic, and
is based on the compuation tree logics C'T'L and C'TL*. These logics are very
important for formal methods in hardware and software verification.

We first recall the defintions of CTL and CTL*. Formulae of these logics
are evaluated over transition systems K = (V, E, (P,);c;) with vE # () for all
v € V (we can easily guarantee this via adding a self-loop on nodes supposed
to be leaves). A path in K is an infinite sequence p = wvyv; ... € V¥ with
(wi, wiy1) € E for all i. Let us first define CTL*. Tt has state formulae ¢
and path formulae m, defined by the mutual induction

pu=PF|-p|lpAp|Er|Am,
Tu=p|-w|TmAT| X7 | nUT.

For all paths p = vgv; ..., let p[i] = v;v;41 ... Then, we define the semantics
like

e ,v = Er & there is a path p starting at v with K, p =,

e ,v = Ar & all paths p starting at v satisfy IC,p =,

K,pEp:e K v |E e, where p = vguy .. .,

K.pl Xm = K pll] |,

K, p |E mUmy < there exists an ¢ > 0 such that I, p[i] = o and for
all j <17 we have that K, p[j] = m.

39
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Now, CTL is the restriction of CTL* admitting only path formulae of the

form X¢ or U, where ¢, 1) are state formulae. Equivalently we can think
of CTL as defined by

pu= P ool one | EXe | AXp | E(gUp) | A(eUyp).
We write Fo for 1Up and Gy for ~F—p. A few exemplary formulae are
e EFp — a state where ¢ holds is reachable (from the current state),
e AG—(p A1) — in all reachable states, ¢ and 1 exlude each other,
e AGAFp — on all paths, ¢ holds infinitely often.
Further, we want to name a couple of properties:
e CTL and CTL* are invariant under bisimulation.

e CTL admits efficient model checking. That is, given K, ¢, it can be
decided in time O(||||-|¢|) at which states of K the formula ¢ is true.
On the other hand, model checking for CTL* is PSPACE-complete.

e CTL and CTL* both have the finite model property, that is, if a CTL-
or a CTL*~formula has any model, then it also has a finite one.

e Satisfiability for CTL is in EXPTIME.

Now, we can introduce the probabilistic variant PCTL with the following
syntax:

=P | —¢|eANe|Ps(r), where J C [0, 1] has rational bounds,
T u=Xp | Uy | pUS"p for n € N.

Sometimes we write things like P55 for P 5] or P—; for P} 5;, etc. Seman-
tically, we define K,p = @U=" if there is an i < n such that K, p[i] =
v and KC,plj] E ¢ for all j = 0,...,4 — 1. To define the meaning of
P;(m), we introduce the concept of Markov chains. These are structures
K= (V,Ai,(P)ier), where A: V x V — [0,1] is a transition path function
such that for all v we have that > ., A(v,w) =1, and i: V — [0,1] with
Y vev i(v) = 1 is the initial distribution.

Example 3.0.1. Simulation of a dice by a fair coin. Each edge has probability
1/2. Aleaf n =1,...,6 is reached with probability exactly 1/6, so we have
IC, Vo }: ]P’l/ﬁ[}"n}
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Let Paths(KC) be the set of all infinite paths vgv; . .. such that A(v;, v;4q) >
0 for all . Furthermore, FinPaths(K) is the set of all finite paths, and for
an f € FinPaths(K) let

o(f) = {p € Paths(K) | f < p}

be the set of infinite paths that are identical to f up to its length. We
associate with IC the o-algebra which is the smallest to contain o(f) for
every f € FinPaths(K). Now, define a unique probability measure on this
o—algebra:

plo(vy. . vn)) =i(vo) - ] Alvs,vj51).

0<j<n

Lemma 3.0.2 (Measurability Lemma). For every PCTL path formula 7 and
every state v of a Markov chain IC, the set

Paths(v,7) := {p € Paths(v) | K,p =7}
is measurable, where Paths(v) := {p € Paths(K) : p starts at v}.

Proof. Paths(v,m) is a countable union of sets o(f) for f € FinPaths(K).
To see this, we consider the following three cases.

o m=Xp: Paths(v,m) = J{o(vw) : K,w = ¢}.

o = US"Y: Paths(v,m) = J{o(vo...v:) i <n,K,vi E,Kvj E o
for j=0,...,i—1, vg = v}.

o T = UY: Paths(v,m) =, Paths(v, pU="1)).
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]

With this, we can define the semantics for P;(7) as follows:
K,v = Py(n) & p(Paths(v,m)) € J.

Ezample 3.0.3. A Markov chain K with K, s £ AF(+) but K, s = Py F(+).

Without giving a proof, we want to note that model checking for PCTL,
that is, given a finite Markov chain K and a state formula ¢ € PCTL deciding
whether IC, v = ¢, can be decided in time ||K||M) - npas - [0]. Here, npqq is
the maximal n such that ¢ contains a subformula @ U="p,.

3.1 QPCTL

We want to introduce the so—called qualitative fragment QPCTL of PCTL,
defined as

p =P | e @ Np | Pso(m) | Poy(m),
T =X | pUep.

Let us investigate the relationship of QPCTL to CTL. Towards this, we
associate with each Markov chain K the transition system QK := (V, E, (P;)icr)
with F = {(v,w) : A(v,w) > 0}. For a ¢ € PCTL and a ¢’ € CTL, we
say @ = ¢ if, and only if, for all Markov chains and their states IC, v, we
have that ;v | ¢ & QK,v | ¢'. To give an example, remember that as
illustrated in Example 3.0.3, QK,v | AFp = K,v = P_;(Fyp), but the
converse does not hold, so AFyp # P_i(Fp). With the following lemma, we
further generalize this and show that QPCTL is not contained in CTL.

Lemma 3.1.1. There exists no CTL-formula that is equivalent to P—; (F)
or to P+o(Gyp), even for atomic .
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Proof. To see this, assume that ¢’ € CTL is equivalent to P_o(FQ), where
@ is an atomic formula. Now, consider for p € [0,1] the following infinite
transition system:

ICP: () 1 2

3 4
Q"—— S N
11— l—-p 1—p 1-—p

It is not hard to see that for p < 1/2, state 0 is almost surely reached
infinitely often, whereas for p > 1/2 the chain moves to the right:
K,n =P (FQ) and K,n =Py (GFQ) for all n > 0.
Thus,
K14, 1 EP_(FQ) and K34, 1 | —P,—i (FQ), but QK14 = Q54

On the other hand, CTL is also not contained in QPCTL:

Lemma 3.1.2. No QPCTL-formula is equivalent to AF ¢ or to EGyp, even
for atomic .

Proof. Consider the following transition systems:

K,: Yo V1 Vg Un—1 +— Up
r.o 1 ;1 ;1 / 1 ’
Ky 26)3 vy v aE Vp_q — U,

We have that
K, vl = AFQ and K, v, = AFQ.

Define for ¢ € QPCTL the nesting depth d(¢) of P,~operators in . If
d(p) < n, then K,,,v, E ¢ < K/ ,v), = ¢. Hence, p £ AFQ. ]
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Chapter 4

Logics for Dependence,
Independence, and Imperfect
Information

All the concepts with respect to uncertainty we introduced so far were about
representing the uncertainty itself (e.g. by assigning probabilites to events
according to how likely we consider them to occur). In contrast, this chapter
logically formalizes not uncertainty itself but rather a feature of situations
that is often responsible for whether there is uncertainty in the first place —
and what kind of uncertainty — or not.

What we are referring to is the notion of dependence and independence. If
two events A and B (completely) depend on each other, then from certainty
about A we gain certainty also about B. On the other hand, if A and
B are (completely) independent, then the uncertainty about B will remain
on the exact same level even in the wake of gaining complete information
about A. When we want to capture logically the ideas of dependence and
independence we quickly realize that this is possible not without some new
ideas. Let us illustrate the problem behind this with an example: Compare
the statements “y depends on x” or “z and y are independent” to “z divides
y”. To reason about the latter we fix a structure 21 where divisibility is
well-defined, and an assignment s: {z,y} — A. Now, we determine whether
2 =5 “x divides y”. On the other hand, dependence and independence do
not manifest themselves for a single assignment but only in larger amounts
of data. So we need alternatives to the normal Tarski-style 2 |=;“x and
y are independent” for a reasonable evaluation of such formulae speaking
about dependence or independence. This chapter is dedicated to analyzing
a couple of those alternatives.
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4.1 Henkin Quantifiers and Independence Friendly
Logic

The idea of Henkin quantifiers (also called branching quantifiers) is the fol-
lowing. Consider the FO-formula

VaeIoVyJup(z,y, u,v).

Clearly, the choice of v might depend on u. The Henkin quantifier prevents
this and makes v and u independent:

Vadu
(Vrm) etoo.

Its semantics can be defined quite simply with Skolem functions:

Ak (:Zgg) o(x,y,u,v) & there exist f,g: A — A such that

(A, f,9) EVaVyp(z, fx,y,gy).

Alternatively, we can base the semantics of the Henkin quantifier on a model
checking game with imperfect information (as opposed to model checking
games for normal FO, where both players have perfect information). In
the model checking game for 2l and (VxEluVyElv) o(x,y,u,v), Falsifier choses
x + a, Verifier choses u + b, Falsifier choses y — ¢, and Verifier choses
v +— d. Here, the choice of d may depend on ¢ only, not on a or b. This is
why we say the game has imperfect information. We imagine Verifier having
no information about the choices of Falsifier regarding = and y.

What might be counterintuitive: this requirement actually increases the
expressive power of the logic. In classical FO it is always efficiently decidable
(in LOGSPACE) whether a given finite structure is a model of ¢. On the
other hand, consider the Henkin quantifier

(@3?)<x=yav=uwu=0vu=1vv=2>A<Ewﬂ*“>-

It is not hard to see that for a graph G = (V, E) and three distinct nodes
0,1,2 € V, we have that GG, 0, 1, 2 is a model of this quantifier if, and only if,
G is 3-colourable. Thus, it defines an NP-complete problem.

Another approach to capture dependence and independence by extending
FO with a new quantifier is the so—called independence friendly logic (IF-
logic). If ¢ is a IF-formula, x a variable, and W a finite set of variables,



4.2. DEPENDENCE AND INDEPENDENCE AS ATOMIC STATEMENTSAT

then also (3x/W)p and (Va/W)p are IF-formulae. In these quantifiers, the
variable x is supposed to be independent from those in .

Let us first define its semantics in terms of game-theory. In the evaluation
game for (Qz/W)ep, the value for z must be chosen independently from the
values of variables in W. We realize this formally by a contraint on strategies
requiring that at two positions (Qzp, s) and (Qzyp, s’) with s(y) = s'(y) for
all y € W the same values for  must be chosen. The rest is like the normal
model checking game: ¢(a) is true if Verifier has a winning strategy.

Also with this logic it is possible to define NP—complete problems. For
example consider

VaVy(Fu/{y}) Bv/{z,u})((z =y s u=v) A (u=y — v=21) A Ezu).

A graph G = (V| E) admits a perfect matching if, and only if, it is satisfies
this formula.

We can define the semantics of (Qz/W) also by replacing existential
quantifiers (3z/W) with Skolem functions where arguments are the variables
outside W. The above formula for perfect matching then becomes

fIgVavy(e =y = fr=gy) N(fr =y = gy = x) N Exfx,
which is equivalent to
AfVx(ffex=x N Exfz).
Without proof we state

Theorem 4.1.1. IF-logic = X1.

4.2 Dependence and Independence as Atomic
Statements

There is a different approach which, rather than stating dependencies as
annotations of quantifiers, treats them as atomic statements. To cope with
the fact that dependence and independence are concepts that speak about
multiple and not singular data, the model-theoretic semantics is then in form
of sets of assignments instead of a single one. Sets of assignments are called
teams.

Assignments are usually denoted by s: V. — A, where V is a set of
variables and A is the universe of a structure 2. Teams are denoted by X.
All assignments in a team have the same domain and codomain. Note that
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V can be empty. There are two teams with domain (), namely X = ) and
X = {0}.

A dependence atom is a term =(T,y) which means “y is determined by
z”7, or “y is functionally dependend on z”. For a team X of assignments
s: V. — A, where V = {x1,...,x,,y}, this means

n

AE=x =(T,y) & /\ s(z;) = §'(x;) = s(y) = §'(y) for all s,5" € X.

i=1

Important is also the expanded form of dependence atoms =(Z,7), saying
that all variables from ¥ depend on Z. With =(y) we express that the value
of y is constant in X.

An independence atom x_Ly for us is not just the negation of a dependence
atom. Rather than stating that two events are not dependend, it is supposed
to express that two events are completely independent in the sense that every
possible pattern of values for (z,y) occurs. Formally, this means

AExxzly & (Vs, s € X)(3s" € X)(s"(z) = s(x) As"(y) = §'(y)).

Let us illustrate this definition with an example.

Example 4.2.1. Suppose you know X and that some assignment s is in X.
Now, you want to gather information about s(y). If you are told s(z) with
xLly, then you cannot infer anything about s(y). Indeed, for all potential
values a € {a : (3 € X)s'(y) = a} of s(y), there is by definition of z Ly a
s" € X with s"(z) = s(x) and s"(y) = a.

A special case of independence is when one of the variables is a constant
as in the following two examples. In fact, it is not hard to see that a constant
is independent from every other variable including itself: =(z) =z Lx.

Example 4.2.2. Galileo: The time of descent is independent from the mass.

Example 4.2.3. Einstein: The speed of light is independent from the ob-
server’s state of motion.

Like with dependence atoms, we can naturally generalize independence
atoms to speak about tuples of variables, written as ¥ 1y. Let us generalize
this even further to

T1l:y e (Vs,s' € X)s(z) = §'(2)
— (3" € X)s"(Z) =s(Z) =Z) N "(T) = s(T) A" (Y) = ' (7).

Directly from their definition, we have the following relationships between
dependence atoms and independence atoms regarding their expressiveness:
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o =(2,7) = TL:y (select " :=5).
e Tl.y==Z,zNY) (s(znNy)=5"(TNy) =5@NY)).
e It follows that =(2Z,7) < T L;7.

So dependence is a special case of the general form of independence.
Besides dependence and independence, there are other atomic properties
of teams worth investigating:

e Inclusion * C ¥y with

AExTCy:& (Vse X)(Is' € X)s(T) = §'(7).
e Exclusion Z|y with
A=y Ty = (Vs, 8" € X)s(T) # 5 (7).
Also, =(7,7) and T|y are downward—closed:
AExp,Y CX = ARy g,
whereas T C 3 are not downwards closed, but closed under unions of teams:
If X = JX; and A f=x, Z C g for all i € I, then A f=x T C 7.
iel
4.3 Team Semantics for Logics of Dependence
and Independence

Now, we add logical operators V, A, d,V to the various forms of dependency

atoms to obtain full-fledged logics for reasoning about dependence and inde-
pendence:

e Dependence logic: FO + =(7, 7).
e Independence logic: FO 4 7 17.
e Inclusion logic: FO + 7 C7y.

We always assume formulae of these logics to be in NNF such that negations
are applied only to FO-atoms. It is still necessary to extend the definition
of team semantics to FO.

Our goal is to have

AEx o A pforall s e X.

Thus, we define the semantics of a formula ¢ inductively as follows.
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e Ay p:& Ak, pforall s € X, if ¢ is an FO-literal.

° Ql)zxgpzw/\ﬁzémkxwand%l):xﬁ.
e Ay o=y V1Y IYIZwith X =Y UZ and A =y ¢, A =z 0.

Observe that this definition causes unusual behaviour, for example we
have that =(z) # =(z) V =(z). But is is certainly the one consistent
with our semantic goal.

It also allows us to express NP—complete problems such as 3-SAT.
Towards this, with a propositional formula ¢ = A (X;, V Xi, V X))
we associate the team

Z, = {(clause, position, variable, parity) — (i, j, X, 0) :

in clause ¢ at position j, the variable X occurs with parity o}

with domain {(clause, position, variable, parity)} and codomain as in-
duced by ¢. We claim that ¢ is satisfiable if, and only if,

A =z, =(clause, position) V =(clause, position) V =(variable, parity),

where 2 is just (codomain(Z,)). Now, the latter holds if, and only if,
Zy, = Z1 U Zy U Zs such that

1. A =z, =(clause, position),
2. A =z, =(clause, position),
3. A =z, =(variable, parity).

With this, the only requirement on Z; and Z, is that both contain
at most one variable per clause, so that Z3 must contain at least one
variable for each clause. Each time a particular variable occurs in Zs,
it has to occur with the same parity, so we can use it to make the
respective clauses true.

o A Ex ¢ =V & A Expyoa ¥ Here, Xy — A] is defined as
the set {sly — a] : s € X,a € A}, where sly — a] denotes the
extension/update of s by mapping y to a.

e A =x ¢ = Jyy :& there is a function F: X — P(A) \ {0} such that
A E=xpysr ¥, where X[y — F] = {sly —a] : s € X,a € F(s)}.

One might legitimately ask why not say that 2 |=x Jyu :< there is a
function F': X — A such that 2 =y, r():sexy ¥. In fact, there is no
difference between these two ways (we call the first one laz semantics



4.4. FROM TEAM SEMANTICS TO TARSKI SEMANTICS 51

and the second one strict semantics) for FO and also for dependence
logic. But for stronger logics, only lax semantics works the way we
want it to.

For example consider 3z(z C 2z Ay C z). In lax semantics, this formula
is a tautology, since we are allowed to extend z and y by different values
so that we can set F'(s) := {s(x), s(y)}. On the other hand, under strict
semantics ¢ says something else. Consider the team X consisting of the
two assignments (z — 1,y — 2,u— 1) and (z — 1,y — 2,u — 2). It
is easy to see that this team induces a model of our formula since also
here we can make two different selections. Now, consider X [ {z,y}
which is {(z — 1,y — 2)}. Clearly, this is not a model any more.
Thus, strict semantics violates the locality principle that the meaning
of a formula only depends on the variables free in it, which is why we
deem it not the right choice.

With lax semantics, we can express problems that are even beyond L.
For example (A, <) = 3z3dy(y < z Ay C x) is true if, and only if, (4, <)
contains an infinite descending chain. To see this, note that the formula is
satisfied exactly if there is a team X with domain {x,y} such that (4, <
) Exy<axzAy Caz. So X is a set of assignments s: (x,y) — (a,b) such that
b < a and there is an assignment s' € X with §': (z,y) — (b,¢). Now, the
same must hold for s’, and so on ad infinitum.

Note that all these logics have the empty set property: 2 =y ¢ for all ¢.
Further it is easy to see that the properties of being downwards closed, or
closed under union of teas is preserved by the semantic rules of all logical op-
erators. Hence the fact that dependence and exclusion atoms are downwards
closed extends to all formulae of dependence and exclusion logic. Similarly
the fact that inclusion atoms are closed under unions of teams extends to all
formulae of inclusion logic.

For pure FO-formulae we have the following flatness—property:

AEx o AE eforall se X & A, pforall s € X.

4.4 From Team Semantics to Tarski Seman-
tics
To understand the expressive power of the introduced logics with team se-

mantics, we want to express them with classical Tarski semantics of which
we already have extensive knowledge with regards to expressiveness.
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For sentences ¢ we simply put & = ¢ & A =g ¢. For formulae ¢(7)
with free variables we have to represent a team with classical methods. What
we will do is to identify with a team X of assignments s: {zq,...,z} — A
a k-ary relation rel(X) := {(s(x1),...,s(z)) : s € X} C A*. Then, if ¢(7)
has vocabulary 7, we will translate it to a formula ¢* of vocabulary 7w { X}
that can be evaluated with Tarski semantics, as captured in

Theorem 4.4.1. For every formula ¢(7) of dependence/independence/exclusion
/inclusion logic there is a sentence ¢*(X) of vocabulary 7@ {X} in ¥} such

that A Ex ¢(7) & (A, X) | ¢*(z).

Proof. Let ¢(T) be one of the different kinds ot dependence atoms. Further,
define (i) :=1y,...,4, and Ty = (T4, ..., T4, ).

o (T, T() ~ VEVG(XT A XT AT =§(> TG =U)-
® T(;) CYy ~ VI(XT — E@(X@/\f(i) = y(j)»‘
o T() Lo T ~ VIVY(XT A XY ATk =Y

— Hf(XZ /\ T(k)y = Z(k) N\ T(i) = Z(3) y( ) = E(i)»‘

e aT

(@) NI(T

o () VI

o Vyy(T,y) ~ IV (VIVY(XT < YTy) Ay (Y)).
)

FO-literal ~ VZ(XT — a(T)).

)~ *(X) ANUH(X).
)~ YIZ(VZ(XT <> YTV ZT) AY*(Y) AN9*(2)).

&I

)
) A
)V

o Jy(T,y) ~ WY (VZ(XT ¢ JyYTy) Ay (Y)).
0

This theorem shows that all those logics are contained in $1. We want to
be more precise about dependence and inclusion logic. Remember that those
are closed under subteams. On the other hand, the corresponding statement
for 31 is clearly not true, i.e., for ©* € i in general we not have that
(A, X) = ¢* implies (A,Y) = ¢* for every Y C X. Thus, dependence and
inclusion logic are strict fragments of X1. We will see that we can easily give
a more concise characterization of this fragment.

Theorem 4.4.2. For every ¢(Z) of dependence and inclusion logic there is
a sentence p*(X) € ¥} in which the predicate X for the team occurs only
negatively such that 2 Ex ¢(T) & (A, X) = ¢*.
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Proof. All we have to do is to convince ourselves that we can replace “<”
by “—” in all formulae ¢*(X) from the previous proof except those for in-
dependence and exlusion atoms. But this follows immediately from the fact
that dependence and inclusion logic are downward—closed. ]

4.5 Model Checking Games for Logics with
Team Semantics

Recall the classical model checking games for FO, where for a formula ¢ in
NNF we play a reachability game G = (A, p) = (V,Vy, V1, T, E, I), where V}
are positions of Player 0 (Verifier), V; are positions of Player 1 (Falsifier),
T are terminal positions (those with no outgoing edges), V = VoWV, W T,
ECV\T xV,and V = {(¢, s) : ¢ subformula of ¢, s: free(y) — A}. I
is the set of initial positions; here: I = {(¢,0)}.

We have 2 = ¢ < Player 0 has a winning strategy for G(2, ¢). At a
position v € T, Player 0 has won if v € Win C T, Player 1 has won if
ve T\ Win. Here, Win = {(¢,s) € T | W =5 ¥}

Now, different from the common approach, we think of a strategy for
Player 0 as a subgraph S = (W, F) C (V, E) such that

L.veWnVy=vF #0,
22 veWnVy =vF =vE,
3. FCWxWnNE.

S = (W, F) wins from X C I if X C W and all players that start at some
v € X and are consistent with S reach a winning position w € Win.

We know that given a reachability game (G, Win) on a finite game graph,
one can compute in linear time O(|V|] + |E|)

e the maximal subset X C I from which Player 0 can win, and
e a winning strategy from X.

Let us first introduce model checking games for logics with team semantics
that use a reachability condition. That is, we want to reduce the model
checking problem 2 =x ¢ to a reachability game G(2A, X, ¢). Positions are
(,Y), where Y is a team of assignments s: free(y)) — A. Player 1 moves
from (11 Ao, Y) to (¢, Y | free(w;)) for an i € {1,2}, and from (Vze),Y)
deterministically to (¢, Y[z — A]). On the other hand, Player 0 moves from
(Fz¢,Y) to a position (¢, Y[z + F]) for some F: Y — P(A)\ {0}. At
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(11 V 102,Y) Player 0 selects Y;,Ys such that Y3 UYs = Y, and moves to
(i, Y; | free(yy)) for an i € {1,2}. Terminal positions are (¢,Y"), where
Y is a literal. Finally, Win is defined as {(¢,Y) : ¢ is a literal, 2 =y ¥}.
This model checking game for a formula evaluated with team semantics is
essentially a model checking game for its translation into ¥.}. Note that the
size of the game is exponentially larger than that of the first—order game for
. Als, due to its involved definition it is unclear how to extract complexity
results.

This motivates us to develop another apporach that is more revealing in
the sense that it puts the complexity in the winning condition rather than
in the game graph. In fact, this time we will keep the game graph as for FO.
But the winning condition Win for Player 0 is now a subset of P(7T') instead
of a subset of T itself. To win, Player 0 needs a (non—deterministic) strategy
S = (W, F) C (V,E) such that the set of terminal positions reachable by a
play from X C I belongs to Win. In other words, if W is the set of nodes
reachable from X by edges in F', then W N T has to be in Win.

Theorem 4.5.1. The problem whether a given second—order reachability
game G (with a compact description of Win) admits a winning strategy for
Player 0 is NP—complete.

Proof. Clearly, we can efficiently guess a strategy S and check whether it is
winning, hence the problem is in NP.

To show NP-hardness, we reduce SAT to it. Given a propositional for-
mula ¢ in CNF consider G(p), where

e Player 1 moves from ¢ to one of the clauses C,
e Player 0 moves from C' to one of its literals (C,Y).

Terminal positions in the game are T := {(C,Y) : C clause of ¢, Y €
C}. The winning set is Win := {U C T | U contains no conflicting pair
(C,Y),(C",=Y)}. Then, 0 has a winning strategy from ¢ if, and only if, ¢
is satisfiable. O

Let us now define a model checking game for a logic with team semantics
that extends FO by some of the several dependence atoms. Take the same
game graph G(2, ¢) as for FO and make sure that distinct occurrences of
the same subformula are represented by distinct nodes. The set of initial
positions is I = {(¢,s) : s: free(p) — A}. For any U C V and ¢ a
subformula of ¢, let Team(U,¢) := {s: (¢, s) € U}. Then,

Win :={U CT : A Ereumu,y) ¥ for all literals 1},
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where T := {(¢,s) € V | ¢ is a literal in ¢}.

By a straightforward induction, which we will not explicate here, the win-
ning condition on S = (W, F') translates from the literals to all subformulae,
so that S = (W, F) is a winning strategy from X C [ if, and only if, for all
subformulae ¢ of ¢ we have that 2 =reamw,y) V.

Theorem 4.5.2. For every structure 2 and every team X of assignments
s: free(yp) — A, we have that

A =x ¢ < Player 0 has a winning strategy for G(2, ¢) from
Ix :={(p,s):s€ X}, i.e, a winning strategy S = (W, F)
with Team(W, p) = X.

Recall that in the previous theorem we showed that whether a given game
graph G with a compact description for Win admits a winning strategy for
Player 0 is NP—complete. Now, the size of a model checking game G(2A, ) on
a finite structure 2 is bounded by ¢ - |A[**") where width(y) is defined
as max{|free(y)| : 1» subformula of ¢}. Thus, the model checking problem
for logics with team semantics on finite structure is in NEXPTIME and in
NP for formula of bouned width (provided that atomic dependencies can
be evaluated in polynomial time; the atoms we looked at certainly are). In
fact, one can show that for dependence/independence/exclusion logic it is
NEXPTIME-complete even for % = {0,1} and X = {0}, and NP-complete
for formulae of bounded width.



