Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, T. Ganzow, Ł. Kaiser

5. Übung Logik und Spiele

Abgabe: bis Dienstag, den 26.5. um 12:00 Uhr am Lehrstuhl oder in der Vorlesung.

Aufgabe 1

- (a) Sei (\mathbb{N}, s) die Struktur der natürlichen Zahlen mit der Nachfolgefunktion s(x) := x + 1. Geben Sie LFP-Formeln an, welche die Addition, Multiplikation und Exponentiation definieren, d. h. $\varphi_+(x, y, z)$ gilt genau dann, wenn x + y = z usw.
- (b) Geben Sie L_{μ} -Formeln an, welche besagen, dass
 - (i) es einen Pfad gibt, auf dem irgendwann nur noch Zustände aus P vorkommen;
 - (ii) auf allen Pfaden immer wieder ein Zustand aus P vorkommt;
 - (iii) auf allen Pfaden, immer wenn ein Zustand aus P auftaucht, es von diesem Zustand aus einen Pfad zu einem Zustand aus Q gibt.

Aufgabe 2

Sei $\mathcal{G} = (V, V_0, V_1, E, \Omega)$ mit $\Omega : V \to \{0, \dots, d-1\}$ ein Paritätsspiel. Wir sagen, dass \mathcal{G} nichtterminierend ist, wenn jeder Knoten mindestens einen Nachfolger hat. Weiter sagen wir, dass \mathcal{G} ein Solitärspiel ist, wenn jeder Knoten $v \in V_1$ höchstens einen Nachfolger hat.

Eine Funktion $f: V \to (\mathbb{N}^d \cup \{\top\})$ heißt (absteigendes) Fortschrittsmaß für \mathcal{G} , wenn für alle $v \in V$ mit $f(v) \neq \top$ folgende Bedingungen gelten:

- (i) Ist $v \in V_0$, dann gilt $f(w) \leq_{\Omega(v)} f(v)$ für alle $w \in vE$;
- (ii) ist $v \in V_0$ und $\Omega(v)$ gerade, dann gilt $f(w) <_{\Omega(v)} f(v)$ für alle $w \in vE$;
- (iii) ist $v \in V_1$, dann gibt es ein $w \in vE$ mit $f(w) \leq_{\Omega(v)} f(v)$;
- (iv) ist $v \in V_1$ und $\Omega(v)$ gerade, dann gibt es ein $w \in vE$ mit $f(w) <_{\Omega(v)} f(v)$;

wobei \leq_i die in der Vorlesung definierte lexikographische Ordnung auf den ersten i Komponenten von Tupeln aus \mathbb{N}^d mit maximalem Element \top bezeichnet.

(a) Sei \mathcal{G} ein endliches, nicht-terminierendes Solitärspiel, in dem Spieler 1 von jedem Knoten gewinnt. Für $v \in V$ und $i \in \{0, \ldots, d-1\}$ sei $\Pi_i(v)$ die Menge aller unendlichen Pfade durch \mathcal{G} , die in v starten und keinen Knoten der Priorität v0 enthalten, sowie v1 die maximale Anzahl von Knoten der Priorität v2 die auf einem Pfad v3 enthalten, vorkommen kann, d.h.

$$a_i(v) = \sup\{|\{k \in \mathbb{N} : \Omega(\pi(k)) = i\}| : \pi \in \Pi_i(v)\},\$$

wobei $\sup \emptyset = 0$.

Zeigen Sie, dass die Funktion $f: V \to \{0, \dots, |V|\}^d: v \mapsto (a_0(v), 0, a_2(v), \dots)$ ein Fortschrittsmaß für \mathcal{G} ist. Zeigen Sie dazu zunächst, dass f wohldefiniert ist.

(b) Sei nun \mathcal{G} ein beliebiges endliches, nicht-terminierendes Paritätsspiel. Zeigen Sie, dass ein Fortschrittsmaß $f: V \to \{0, \dots, |V|\}^d \cup \{\top\}$ für \mathcal{G} existiert, so dass die Gewinnregion von Spieler 1 genau die Menge $\{v \in V: f(v) \neq \top\}$ ist.

Aufgabe 3

Sei $\mathfrak{K}=(V,E,P)$ eine Kripke-Struktur und \sim die maximale Bisimulation auf \mathfrak{K} . Geben Sie eine LFP-Formel $\varphi(x,y)$ an, so dass $\mathfrak{K}\models\varphi(u,v)$ gdw. $\mathfrak{K},u\sim\mathfrak{K},v,$ und beweisen Sie dies. *Hinweis:* Eine Bisimulation kann als größter Fixpunkt beschrieben werden.